
Monitoring solution for cloud-native DevSecOps
Arun Sojan

M3S Research Unit
University of Oulu

Oulu, Finland
arun.sojan@oulu.fi

Ranjit Rajan
Consultant

Panasonic Europe
Frankfurt, Germany

ranjit.rajan@opscentric.de

Pasi Kuvaja
M3S Research Unit
University of Oulu

Oulu, Finland
pasi.kuvaja@oulu.fi

Abstract—Software development and operations are increas-
ingly adopting cloud-native environments. The popularity of
development practices such as DevSecOps is one of the rea-
sons for this change. It is identified that monitoring is one
essential practice in DevSecOps and currently, a wide variety
of tool offerings are available on the market to address this
new transformation. However, an automated monitoring solution
that covers both the infrastructure and application level is not
available yet. We have developed a repeatable solution based on
the popular microservice architectural style that monitors the
cloud-native infrastructure and application level to address this
gap. Furthermore, we have also added automation capability to
this monitoring solution for easy deployment and event-triggered
alerting. In the future, we plan to do a detailed evaluation and
extend the proposed solution with more data collection features
in order to enhance the monitoring solution.

Index Terms—Cloud computing, DevSecOps, Security Mon-
itoring, Cloud Monitoring, DevSecOps Monitoring, DevSecOps
Cloud, DevOps Cloud

I. INTRODUCTION

In pursuit of agility and velocity to the market with a
security focus, the software teams embrace DevSecOps [1].
Companies favour cloud-native environments for their De-
vSecOps teams. The need for agility and rapid delivery of
secure software based on DevSecOps demands the adoption
of a cloud-native environment [2]. Besides, the demand for
automation is favourable for cloud-native environments [3].
Cloud adoption will encourage the fast pace of development
in DevSecOps with a security focus and avoid costly de-
ployment mistakes [4]. Emerging practices such as “fully-
baked” security through immutable machines are some of the
recent developments that also favour the use of Infrastructure
as Service (IaaS) cloud environments [5]. However, there
are some challenges in cloud environments. Cloud systems
are much more than standards, policies, remote providers
and services [6]. Since the infrastructure itself is dynamic,
managing such infrastructures demands constant monitoring
in addition to the other considerations such as security and
infrastructure governance [3], [6].

The adoption of measurement and automation are two
crucial elements in DevSecOps [7]. Implementing the mea-
surement solutions will foster the production first mental-
ity in the DevSecOps teams [3]. However, the adoption of

This research has been funded by the ITEA3 project Oxilate
(https://itea3.org/project/ oxilate.html)

measurement alone without having the automation will cause
problems in productivity. First, if the measurement adoption
happens without automation, the process will become compli-
cated and the scaling up will slow down the overall process.
Secondly, without continuous monitoring, the measurement
results will not improve the overall situation of the DevSecOps
teams since the results will be delayed [1]. Therefore, the
organisation has to take concrete steps to reach the goal
of automated measurement. In a cloud-native environment
such as Infrastructure as a Service (IaaS), the DevSecOps
teams should measure the environment’s health status along
with the application level monitoring [8]–[10]. There are
existing DevSecOps monitoring tools and practices for Infras-
tructure monitoring, security monitoring and application-level
monitoring [11]. However, they are mostly focused on one
particular area of monitoring, since the standard interface is
not present. It is challenging to integrate them. Furthermore,
additional complexity and the learning curve will slow down
the DevSecOps teams [3].

In this study, we have developed an automated monitoring
solution for the cloud-native DevSecOps. Automated monitor-
ing is gathering, reporting and storing system-related infor-
mation using automated tools [12]. Our proposed solution is
a scalable, automated monitoring framework that will monitor
the infrastructure and the application in the cloud-native De-
vSecOps. This proposed monitoring solution for DevSecOps
uses open-source software as its building blocks. The cloud-
native teams favour more the open-source solutions due to
innovation, portability, flexibility so as to prevent vendor-
lock [13]. Furthermore, our solution uses the Microservice
Architecture.

The rest of the paper is arranged as follows. Section 2
introduces the background of this study. In section 3, we
have related research. In section 4, we introduce our software
artefact. Finally, in section 5, we conclude.

II. BACKGROUND

In this section we will define some of the important concepts
related to the study.

A. DevOps

DevOps is a relatively new concept and yet widely popular
with software organisations. Despite this popularity, DevOps
lacks a clear definition [14]. [15] states that one of the reasons



for this lack of definition is the overlapping of continuous
practices. However, we have identified several definitions that
vary more on continuous practices aspect alone. Regardless
of this difference there are also commonalities. According
to [15], ”DevOps is a paradigm to reduce the disconnect
between development and operations by promoting collabo-
ration, communication, and integration”. Defining the term
as a paradigm is slightly confusing based on the school of
thought of IS development [16]. [12] defines ”DevOps as a
collection of software engineering activities such as continuous
planning, a continuous deployment that are supported by the
cultural facilitators such as sharing of responsibility and goals,
and technical facilitators such as automated building process
and automated configuration management”. This definition is
based on one of the early definitions of DevOps by [17].
Another definition by [18] defines ”DevOps as a set of prac-
tices that merges software development (Dev) and information
technology operations (Ops) to improve the application deliv-
ery process, thereby increasing the frequency of production
releases of high-quality software”. ”DevOps is an approach for
software development and (IT) systems operations combining
best practices from both such domains to improve the overall
quality of software systems while reducing the costs and
shortening the time to market”, according to [19].

Improved agility, reduction in overall software development
and shorter time to market are some of the benefits offered
by DevOps. DevOps achieves all these advantages by the
conceptual and operational merging of the development and
operations needs, teams and technology [20]. The merging
ensures coupling between the development and operations
teams for software development and software deployment to
avoid working in silos [21]. The core concept of the DevOps
approach is built on four pillars based on the CAMS principle
(Culture, Automation, Measurement, Sharing), later this is
further refined and coined as a new term called CALMS (Cul-
ture, Automation, Lean, Measurement and Sharing) [22]. The
technical implementation of DevOps will result in frequent
delivery of applications with new features through Continuous
Integration (CI) and Continuous Delivery (CD) pipeline [18].
One of the essential features of DevOps is the automation
of the CI and CD pipelines via an automated assembly line
[19]. However, DevOps is a difficult concept to adopt due to
the availability of vast amounts of information and the lack
of collaborative culture [14], [22]. Another challenge is the
lack of security focus triggering the creation of DevSecOps
by integrating security in DevOps [12].

B. DevSecOps

The rapid development pace in DevOps often caused chal-
lenges in integrating security. In addition, the security team
often worked in silos compared to the Development and
Operations, contradicting the DevOps principles [23]. DevSec-
Ops extends the goal of DevOps by integrating the security
practices [20], [24]. Similar to DevOps, the standard definition
of DevSecOps is also not yet available. In DevSecOps, the
evolution from DevOps even caused different aliases such as

“SecDevOps”, “DevOpsSec”, “Rugged Ops”, “SecOps” [25],
[26]. In this article, we intend to use DevSecOps for DevOps
integrated with security. The DevSecOps promotes shifting the
security practices to the left, security-by-design and continuous
security testing [8], [20], [27]. The shift left and security-
by-design means the security team is included in every step
and every iteration of the DevSecOps cycle avoiding silos
by close collaboration between Development, Security and
Operation teams [26], [28]–[30]. In DevOps, security is given
less priority and security practices are often considered at a
later stage due to the non-functional nature of the security
in most systems [15]. However, adding security to DevOps
does not mean a reduction in the rate of development. The
security team should do the security practices simultaneously
as development and operations [29], [31]. In order to achieve
the fast pace of development and operations, DevSecOps
practices recommend the use of automation. Achieving se-
curity automation is often challenging, making the software
development organisations reluctant to transform from DevOps
to DevSecOps [32].

Security practices in DevSecOps involve the security of
the application and the security of infrastructure from the
beginning [1]. This practice makes the selection of the right
tools necessary from the initial stage itself. However, the
DevSecOps transformation means more than just automation.
This transformation also affects other pillars of DevOps such
as Culture, Measurement and Sharing of knowledge based on
the CAMS principle [1], [29], [30]. Furthermore, this change
will improve the close collaboration between development,
operations and security teams besides the tools, practices and
strategies in an organisation [12], [23]. This cross-functional
team involvement is challenging and automation and con-
tinuous testing are vital for iterative, frequent, repeatable,
and reliable unified security practice in DevSecOps [6], [33].
With optimal strategies, the DevSecOps approach has the
potential to deliver secure and high-quality features without
compromising on time [28].

C. Toolchains in DevOps and DevSecOps

The implementation of DevOps and DevSecOps is achieved
using tools [19], [30]. These tools are used in every stage,
such as managing the development and operations environment
and testing and releasing [19]. The combination tools adopted
for the high degree of automation are called toolchains. Even
though these tools have automation capability, each tool has
its specific function. For example, there are separate tools
available for functional requirements and non-functional re-
quirements in addition to the constraints, rules and practices
[34]. Further, the infrastructure plays a significant role in the
success of DevSecOps and DevOps. For example, tools that
have a shared interface between the development and security
team to keep track of vulnerabilities play a reasonable role in
improving the culture from the CAMS principle [30]. More
information on a detailed list of tools used by the DevSecOps
and DevOps teams is explained in [11]. The reasons for this
open-source tools favouritism are the need to foster innovation,



prevent vendor-lock and support maximum interoperability
[13].

D. Cloud native DevSecOps

DevSecOps and DevOps have a customer centrist view
bringing the product to the customer faster. This fast-paced
development requires the fast deployment of a production
environment such as in the cloud [3], [5]. Besides, the
automation of infrastructure provisioning and configuration
management features provided by the cloud infrastructure
benefit the DevSecOps and DevOps software development
at different stages [2], [27]. On the other hand, the lack of
automation and provisioning features will hinder the fast-
paced development in non-cloud environments. The cloud
systems also offer encryption, key management, privileged
identity management and provisions to centralize security
monitoring [3]. In DevSecOps, such security features will help
in different stages of development. Another emerging practice
related to DevSecOps in cloud infrastructure is the utilization
of immutable virtual machines with baked-in security. These
immutable virtual machines are easy to provision on a cloud
and can be discarded when they become old [5]. Furthermore,
cloud computing offers the high availability, lower cost, se-
curity and scalability required for the DevSecOps [4], [6],
[13]. The combination of all these factors makes cloud-native
environment ideal for DevSecOps.

E. Microservices architecture (MSA)

Microservice Architecture (MSA) is one of the prominent
architectural styles used by the service-oriented software in-
dustry, such as cloud [35]. [36] defines Microservices as
“a cohesive independent process interacting via messages”
and microservice architecture as “a distributed application
where all its modules are microservices”. The key benefit of
microservice architecture style is the independence of indi-
vidual service compared to most service-oriented architecture
solutions [37]. Furthermore, this architectural style helps in
building reusable, modular component designs. The DevOps
agility requirements can be satisfied with the microservice
due to the modularity and scalability of the microservices
[38]. Combined with the cloud, since it is a cloud-native
architecture, the microservices architecture style can develop
efficient solutions for DevOps. Continuous Deployment is one
of the best examples of the use of a microservice in DevOps.
With the increase in deployable units, microservice is one
of the most effective ways to build CD pipelines. In this
study, we are using the microservice architectural style for the
monitoring solution. The use of MSA in DevOps is mapped
systematically by [39] in their study.

III. RELATED LITERATURE

A. Need for monitoring and measurement in DevSecOps

Measurement is a fundamental software engineering prac-
tice [40]. DevSecOps encourages measurement and system
matrix [29]. According to CAMS, measurement is one of the
core practices in DevSecOps. Accurate measurement is crucial

for understanding the system quality attributes and improving
the work practices to help practitioners and researchers [40].
In addition, the security focus is one of the critical aspects of
DevSecOps. Using the monitoring and metrics, the team can
detect security threats and vulnerabilities [29]. Software mea-
surements usually need tools, and it is the same for the case
of DevSecOps [40]. Identification of system problems such as
security threats via measurements can significantly improve
the cost and time in DevSecOps [29]. DevSecOps teams are
usually cross-functional teams [41]. The team members need
a lot of different skills to solve the challenges throughout
the development life-cycle. These people with measurement
skills have an important role [2]. These measurement resources
are expected to have the math skills to do the measurement,
monitoring and performance analysis of team members, non-
human resources and software systems in addition to knowl-
edge sharing skills [2], [8]. Including appropriate measuring
techniques will foster the production mindset to the culture,
improving overall efficiency [3]. Finally, quality is often
equated with measuring: this is evident from the importance
of measurement from initiatives such as SW-CMM (Capability
maturity model of CMM), ISO/IEC 15504 (SPICE software
process improvement and capability determination) and CMMI
(Capability maturity model integration) [40].

B. Automation of monitoring and measurement in DevSecOps

Manual measurement is time-consuming and also can cause
bottleneck issues for the teams. In the DevSecOps approach,
automation practice is considered necessary to minimize man-
ual work and reduce bottleneck issues. Automation of con-
tinuous monitoring of the application and overall health of
infrastructure is considered best practice in DevSecOps mea-
surement [1]. In addition, the software systems can become
quite complex over time, and it is virtually impossible to
check the metrics manually; this includes information such
as logging data generated by the software. The situation
becomes much worse in collaboration since members may not
be aware of each other’s situations [23]. Furthermore, in a
cloud environment such as Infrastructure as a Service (IaaS)
models, the number of deployed systems will be too high
to monitor manually, and the monitoring solution should be
capable of handling scalability [2], [5].

C. Existing solutions

There are some existing solutions for cloud-native envi-
ronments. [11] provides a comprehensive list of tools in this
area and some of the existing DevSecOps tools that can be
extended for monitoring and measurement. However, these
tools are primarily for a single category of monitoring, such
as infrastructure monitoring, security monitoring and logging
tools. There is also no comprehensive approach to integrate
and replicate the system. Additionally, there are also limita-
tions of visualizations techniques and centralized control. [33]
demonstrates a rule-based business engine for the application
security level vulnerabilities. However, this solution does not



consider infrastructure monitoring. [24] states that there is a
lack of DevSecOps tools and mature DevSecOps solutions.

IV. DEVSECOPS CLOUD MONITORING SOLUTION

This section will first explain the overall concepts of the
monitoring solution, then the open-source components used
in this solution.

A. Overview of the solution

DevSecOps teams usually consist of three groups: De-
velopment, Operations and Security teams. All these teams
will interact with the cloud-native infrastructure, as shown in
Figure 1.

Fig. 1. Cloud interaction with the DevSecOps teams

The monitoring system will monitor two aspects
1) Infrastructure monitoring (cloud monitoring)
2) Application monitoring
The infrastructure part of the monitoring solution will

monitor the health of the infrastructure. This infrastructure
monitoring is vital for the Operations, Development and
Security teams in DevSecOps since they all work in the
same environment. The infrastructure monitoring service will
monitor the general status of the different deployed envi-
ronments. Furthermore, users can also select a particular
deployed virtual machine based on their requirements. For
example, the operations team can see the production server
or the development team can see their development servers
according to their requirements. Every team member can see
the system’s overall status and compartmentalization of teams
can be avoided, which will facilitate better communication.
The infrastructure monitoring will provide four values based

on the time and it can also further expand these values for
additional information with a click of the button. The general
four values are:

1) System health (System is online or not)
2) CPU Rate (The average CPU usage)
3) File system usage (Usage of active disk space)
4) Network Usage (The network activity)

The application monitoring solution shall monitor activities
related to the application developed using the DevSecOps
practices. Primarily, it shall show all the monitored aspects
on a Dashboard. The application monitoring will monitor the
continuous integration and continuous deployment pipeline.
In addition, for security monitoring an open-source package
has been included that can identify the location information
of the users from the IP address. The application monitoring
solution provides a framework that can be expanded based
on the project requirement. The decision was to keep it in
this format to ensure that the solution shall stay generic. The
monitored data is based on the collected data from data agents
installed on the worker nodes.

B. Components of the monitoring solution

In the DevSecOps cloud monitoring, a toolchain was de-
veloped based on combining several existing open-source
projects. The DevOps community is known for many open
source solutions favouring agility, reliability and improved
security [5], [42]. The DevOps teams widely use open source
tools such as Jenkins, Chef, Ansible, Puppet, Logstash [2],
[13]. One of the key practices in DevSecOps is automation.
The need for specialized tools is high in automation and the
open-source community is addressing this gap effectively [12],
[42]. The proposed solution at this stage is primarily aimed at
the operations teams after the deployment phase with a focus
on security. However, we plan to extend this method to the
development teams in the future. The method is designed in a
highly extensible format to accommodate future requirements
related to the DevSecOps cloud monitoring. For this study,
open-source cloud solution was used for Infrastructure as a
Service (IaaS) called OpenStack which is also used in similar
DevSecOps deployments [25].

We have designed the monitoring solution based on the
MSA. The high-level architecture of the system is shown in
Figure 2. There are three types of users based on the teams
in DevSecOps. Each user shall have a unified dashboard.
This unified view approach is beneficial in cross-functional
teams. There shall be one main Docker container that has all
the critical components. In Figure 2, this container is named
the Docker manager, and all the other machines that need
monitoring will act as Docker worker nodes. We have used
MSA-based architecture using Docker to ensure scalability
and easier control of the solution. The team access shall be
granted access to the Grafical interface of the manager node.
Furthermore, there is a certain level of reliability and it is
possible to migrate the manager to another node and reduce
the downtime in the event of failure.



Fig. 2. MSA of the system

The Microservice Architecture Style (MSA) is considered
best practice in DevSecOps [7]. In addition, the cloud comput-
ing environment demands scalability and the MSA style has
improved scalability significantly compared to the monolithic
architecture. A simple application is easy to develop using
the monolithic architecture style; however, as the complexity
increases, the MSA style is more favourable due to the loose
coupling. Furthermore, each component in the microservice
can be given a more specialized set of tasks [8]. In the
DevSecOps environment, these factors promote efficiency and
agility. In a distributed systems environment like the cloud,
separating individual tasks through specialization will help
develop well-defined interfaces, further promoting automation
and flexible adoption of the software systems [31]. At the
moment, several MSA deployment technologies are in use by
several vendors, such as serverless microservice using func-
tions called Amazon Lambda and container-based deployment
called Docker [9]. The selection of this deployment technology
depends on vendor support and performance requirements.
This study has selected container-based MSA deployment
using Docker since it is an open-source software and can be
easily deployed in almost any cloud environment.

We have deployed Docker in the Linux environment, in-
stalled it on the OpenStack cloud. Docker is an open-source
container-based virtualisation platform used to provision mul-
tiple applications over shared physical hosts in lighter form
compared to virtual machines [26]. The standard virtual
machines are low-level abstractions that virtualise hardware
and requires a full-blown installation of the guest operating
systems. Compared to regular virtual machines, the Docker is
a lightweight system that virtualise the operating system and
eliminates the need for a secondary operating system. Docker

is a developer-friendly technology [10]. Docker works based
on the container images. The Docker images are packages of
all the necessary files such as the application itself, libraries,
middleware and network configurations in a layered structure
using a union file system (UFS) [10], [26]. Docker platform
has a container orchestration mechanism Docker swarm in
order to manage the multiple containers running in distributed
environments such as cloud. This feature has increased the
scalability of the Docker platform. The orchestration helps
to have centralised control over containers that help in the
distributed environment. Orchestration is yet another feature
that increased the Docker platform’s desirability in the agile
development environments [18].

Traefik is an open-source solution that supports routing,
reverse proxy and load balancing [33]. Together with the
reverse proxy and the load balancer, Traefik will hide the
internal cloud services from the external world and provide
better security and refined control. One of the challenges
of running a Docker swarm is the reservation of ports. For
example, if port 3000 is used by Grafana running on a
Docker swarm it will reserve the port 3000 in every cloud
machine running the swarm even if it is not running in that
specific cloud machine service. Furthermore, as the number
of services running in the Docker swarm increases, it will
become challenging to manage all the ports in the machine.
Traefik, in such a case will also act as a router; based on
the received connection request, it forwards the connection
to specific endpoints in the system. In addition, there is a
middleware layer that will help to extend the capabilities of
Traefik. We have used it for internal service authentication to
enable better security.

ELK Stack is used for collecting the application level
log information in this study. ELK Stack is an open-source
solution used for data gathering and analysis. ELK Stack
is made up of different components such as Elasticsearch,
Logstash and Kibana [40]. This study used Elasticsearch and
Logstash along with the data shipper Filebeat. Filebeat is
a data shipper to collect information from various sources
and send it to Logstash [43]. We have installed Filebeat in
every cloud node to collect log related information at the
application level. These collected logs are sent to the log stash
for transforming it into the format supported by Elasticsearch.
Elasticsearch is an analytic engine and also does text-based
search. Elasticsearch will help to store and ship the large
amounts of data provided by Logstash. One of the primary
benefits of using Elasticsearch is generating search results in
near real-time. Grafana [24] which is used for visualization
retrieves respective metric data from Elasticsearch using its
API.

For infrastructure monitoring, an open-source solution
called Node Exporter was used. The Node Exporter is a
collector agent that collects system-level information such as
CPU usage rate, memory usage in a time-series format [40].
Based on this information from the collector agent, the system
health can be evaluated. The Node Exporter itself does not
have storage capability. It will collect the information and then



make it available over an endpoint for time-series database
such as Prometheus to scrape the metrics [40]. Prometheus
is an open-source Time Series Database (TSDB) solution.
Prometheus gets the data in two models, the pull-based data
model and the push-based data model. Prometheus scrapes
data from its added data source using the PromQL language
[27]. To get the data from Node Exporter, Prometheus uses
the pull-based data model.

Grafana is an open-source visualization solution with an in-
teractive dashboard. Grafana can consume data from different
data sources such as InfluxDB, Elasticsearch and OpenTSDB
and display them using different widgets [24]. Grafana is a
resource-efficient tool with several alerting and notification
capabilities. In addition, there are several time-series ready
templates available in Grafana, making it easier to use. In our
study, inputs from two different data sources was populated
in Grafana. The data from Prometheus gives system-level
information, the data from Elasticsearch is used for displaying
information from each of the applications running on respec-
tive systems. Grafana dashboard is created dynamically based
on the data in real-time. Furthermore, we have also used the
alerting and notification capabilities of Grafana to automate
the notifications related to the system monitoring.

Many of the automation and the alerting systems are han-
dled by a Python application which was developed to cater
the purpose of automation. The Python application provides
a user interface for adding emails to the alert monitor. In the
event of an alert, the necessary information shall be sent to
the configured email addresses. This application also allows
adding granular information such as information related to
specific nodes, alert events, and details that need to be sent to
the email addresses. This application also does API calls to
Elasticsearch for data retrieval which are not readily available
from Grafana. Any persistent data for the application is stored
in Postgresql.

Fig. 3. Components in the Docker stack

Figure 3 shows the different components deployed using
Docker and their interfaces in the monitoring solution. We
have used agent-based monitoring. The data collection is based
on the agents running on the worker node. The worker node
has two agents, Node Exporter and Filebeat. Node Exporter

shall expose the system level monitoring information, Filebeat
collects the data from application logs and other text-based
log files. The information from Node Exporter is stored in
Prometheus time-series database. This stored information is
constantly retrieved by Grafana and stored in its database for
visualization. The data exposed by Filebeat will be passed
through logstash and stored in Elasticsearch. The data from
Elasticsearch is retrieved by Grafana to populate the appli-
cation level information. Finally, all the external connections
shall be handled by Traefik. The primary advantage of using
Traefik is security. In addition, Traefik also solves the problem
of port allocation in Docker. For example, in Docker swarm, if
a Docker service is exposing one port to an external network
other than the internal Docker network, this port will be
reserved in all the worker nodes. This is particularly chal-
lenging when Docker is used in the DevSecOps environment.
Furthermore, Traefik has authentication middleware that can
be used for additional security.

V. CONCLUSION AND FUTURE WORK

Cloud-native DevSecOps monitoring is challenging. There
are some tools and practices for cloud-native DevSecOps
monitoring. However, they only focus on some of the aspects
of monitoring. This results in a lack of comprehensive DevSec-
Ops monitoring solutions. The study addressed this gap by
developing a novel monitoring solution for infrastructure and
application as an integrated solution. The proposed solution
was based on the popular open source solutions that had been
already used by DevSecOps community. This study has several
limitations. Firstly, we did not present an evaluation based
on the proposed solution. In the future, there is a plan to
address this limitation by doing a detailed evaluation based
on an experimental case. Secondly, the developed solution
only considered an agent-based data collection, which shall
be iterated with more data collection features in our future
study.

ACKNOWLEDGMENT

We want to thank Companies Cybene automation and
Opscentric for their valuable contributions. We also would like
to thank Polina and Olli-Pekka for their valuable comments.

REFERENCES

[1] M. Zaydi and B. Nassereddine, “Devsecops practices for an agile and
secure it service management,” Journal of Management Information and
Decision Sciences, vol. 23, no. 2, pp. 1–16, 2020.

[2] B. B. N. de França, H. Jeronimo, and G. H. Travassos, “Characterizing
devops by hearing multiple voices,” in Proceedings of the 30th Brazilian
Symposium on Software Engineering, ser. SBES ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 53–62. [Online].
Available: https://doi.org/10.1145/2973839.2973845

[3] W. van der Houven MSc, “Security principles for devops and cloud.”
[4] B. Somoskői, S. Spahr, E. Rios, O. Ripolles, J. Dominiak, T. Cserveny,

P. Bálint, P. Matthews, E. Iturbe, and V. Muntés-Mulero, “Airline appli-
cation security in the digital economy: Tackling security challenges for
distributed applications in lufthansa systems,” in Digitalization Cases.
Springer, 2019, pp. 35–58.

[5] N. Wilde, B. Eddy, K. Patel, N. Cooper, V. Gamboa, B. Mishra, and
K. Shah, “Security for devops deployment processes: Defenses risks
research directions,” International Journal of Software Engineering &
Applications, vol. 7, no. 6, pp. 01–16, 2016.



[6] S. Carturan and D. Goya, “Major challenges of systems-of-systems with
cloud and devops – a financial experience report,” in 2019 IEEE/ACM
7th International Workshop on Software Engineering for Systems-of-
Systems (SESoS) and 13th Workshop on Distributed Software Develop-
ment, Software Ecosystems and Systems-of-Systems (WDES), 2019, pp.
10–17.

[7] M. Sánchez-Gordón and R. Colomo-Palacios, “Security as culture:
A systematic literature review of devsecops,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, ser. ICSEW’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 266–269. [Online]. Available:
https://doi.org/10.1145/3387940.3392233

[8] N. Tomas, J. Li, and H. Huang, “An empirical study on culture, automa-
tion, measurement, and sharing of devsecops,” in 2019 International
Conference on Cyber Security and Protection of Digital Services (Cyber
Security), 2019, pp. 1–8.

[9] J. Dı́az, J. E. Pérez, M. A. Lopez-Peña, G. A. Mena, and A. Yagüe,
“Self-service cybersecurity monitoring as enabler for devsecops,” IEEE
Access, vol. 7, pp. 100 283–100 295, 2019.

[10] J. Morales, R. Turner, S. Miller, P. Capell, P. Place, and D. J. Shepard,
“Guide to implementing devsecops for a system of systems in highly
regulated environments,” CARNEGIE-MELLON UNIV PITTSBURGH
PA, Tech. Rep., 2020.

[11] V. Mohan and L. B. Othmane, “Secdevops: Is it a marketing buzzword?
- mapping research on security in devops,” in 2016 11th International
Conference on Availability, Reliability and Security (ARES), 2016, pp.
542–547.

[12] A. A. U. Rahman and L. Williams, “Software security in devops: Syn-
thesizing practitioners’ perceptions and practices,” in 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery
(CSED), 2016, pp. 70–76.

[13] S. Cash, V. Jain, L. Jiang, A. Karve, J. Kidambi, M. Lyons, T. Mathews,
S. Mullen, M. Mulsow, and N. Patel, “Managed infrastructure with ibm
cloud openstack services,” IBM Journal of Research and Development,
vol. 60, no. 2-3, pp. 6:1–6:12, 2016.

[14] S. Rafi, W. Yu, and M. A. Akbar, “Rmdevops: A road map for
improvement in devops activities in context of software organizations,”
in Proceedings of the Evaluation and Assessment in Software
Engineering, ser. EASE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 413–418. [Online]. Available:
https://doi.org/10.1145/3383219.3383278

[15] R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen, “Challenges
and solutions when adopting devsecops: A systematic review,” 2021.

[16] J. Iivari, “A paradigmatic analysis of contemporary schools of is devel-
opment,” European Journal of Information Systems, vol. 1, no. 4, pp.
249–272, 1991.

[17] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release
engineering and devops,” in 2015 IEEE/ACM 3rd International Work-
shop on Release Engineering, 2015, pp. 3–3.

[18] A. Sen, “Devops, devsecops, aiops-paradigms to it operations,” in
Evolving Technologies for Computing, Communication and Smart World.
Springer, 2021, pp. 211–221.

[19] A. Capizzi, S. Distefano, and M. Mazzara, “From devops to devdataops:
data management in devops processes,” in International Workshop on
Software Engineering Aspects of Continuous Development and New
Paradigms of Software Production and Deployment. Springer, 2019,
pp. 52–62.

[20] H. Myrbakken and R. Colomo-Palacios, “Devsecops: a multivocal
literature review,” in International Conference on Software Process
Improvement and Capability Determination. Springer, 2017, pp. 17–29.

[21] K. Carter, “Francois raynaud on devsecops,” IEEE Software, vol. 34,
no. 5, pp. 93–96, 2017.

[22] K. Maroukian and S. R. Gulliver, “Leading devops practice and
principle adoption,” 9th International Conference on Information
Technology Convergence and Services (ITCSE 2020), May 2020.
[Online]. Available: http://dx.doi.org/10.5121/csit.2020.100504

[23] D. Ashenden and G. Ollis, “Putting the sec in devsecops: Using social
practice theory to improve secure software development,” in New
Security Paradigms Workshop 2020, ser. NSPW ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 34–44. [Online].
Available: https://doi.org/10.1145/3442167.3442178

[24] R. Mao, H. Zhang, Q. Dai, H. Huang, G. Rong, H. Shen, L. Chen,
and K. Lu, “Preliminary findings about devsecops from grey literature,”

in 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security (QRS), 2020, pp. 450–457.

[25] C. Izurieta and M. Prouty, “Leveraging secdevops to tackle the technical
debt associated with cybersecurity attack tactics,” in 2019 IEEE/ACM
International Conference on Technical Debt (TechDebt), 2019, pp. 33–
37.

[26] S. Wrycza and J. Maślankowski, Information Systems: Research, De-
velopment, Applications, Education: 12th SIGSAND/PLAIS EuroSympo-
sium 2019, Gdansk, Poland, September 19, 2019, Proceedings. Springer
Nature, 2019, vol. 359.

[27] R. Kumar and R. Goyal, “Modeling continuous security: A conceptual
model for automated devsecops using open-source software over cloud
(adoc),” Computers & Security, vol. 97, p. 101967, 2020.

[28] J. S. Lee, “The devsecops and agency theory,” in 2018 IEEE Inter-
national Symposium on Software Reliability Engineering Workshops
(ISSREW), 2018, pp. 243–244.

[29] B. Jammeh, “Devsecops: Security expertise a key to automated testing
in ci/cd pipeline.”

[30] N. Tomas, J. Li, and H. Huang, “An empirical study on culture, automa-
tion, measurement, and sharing of devsecops,” in 2019 International
Conference on Cyber Security and Protection of Digital Services (Cyber
Security), 2019, pp. 1–8.

[31] Z. Ahmed and S. C. Francis, “Integrating security with devsecops: Tech-
niques and challenges,” in 2019 International Conference on Digitization
(ICD), 2019, pp. 178–182.

[32] V. Mohan, L. ben Othmane, and A. Kres, “Bp: Security concerns
and best practices for automation of software deployment processes:
An industrial case study,” in 2018 IEEE Cybersecurity Development
(SecDev), 2018, pp. 21–28.

[33] Y. Rouf, J. Mukherjee, M. Fokaefs, M. Shtern, J. Le, and M. Litoiu,
“Rule-based security management system for data-intensive applica-
tions,” in Proceedings of the 29th Annual International Conference on
Computer Science and Software Engineering, ser. CASCON ’19. USA:
IBM Corp., 2019, p. 254–263.

[34] S. Rafi, W. Yu, and M. A. Akbar, “Rmdevops: A road map for
improvement in devops activities in context of software organizations,”
in Proceedings of the Evaluation and Assessment in Software
Engineering, ser. EASE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 413–418. [Online]. Available:
https://doi.org/10.1145/3383219.3383278

[35] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA), 2016, pp.
44–51.

[36] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” Present and ulterior software engineering, pp. 195–216, 2017.

[37] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding
of microservice architecture: Current and future directions,” SIGAPP
Appl. Comput. Rev., vol. 17, no. 4, p. 29–45, Jan. 2018. [Online].
Available: https://doi.org/10.1145/3183628.3183631

[38] H. Kang, M. Le, and S. Tao, “Container and microservice driven design
for cloud infrastructure devops,” in 2016 IEEE International Conference
on Cloud Engineering (IC2E), 2016, pp. 202–211.

[39] M. Waseem, P. Liang, and M. Shahin, “A systematic mapping study on
microservices architecture in devops,” Journal of Systems and Software,
vol. 170, p. 110798, 2020.

[40] W. Mallouli, A. R. Cavalli, A. Bagnato, and E. M. De Oca, “Metrics-
driven devsecops.” in ICSOFT, 2020, pp. 228–233.

[41] M. Gokarna and R. Singh, “Devops: A historical review and future
works,” in 2021 International Conference on Computing, Communica-
tion, and Intelligent Systems (ICCCIS), 2021, pp. 366–371.

[42] N. Wilde, B. Eddy, K. Patel, N. Cooper, V. Gamboa, B. Mishra, and
K. Shah, “Security for devops deployment processes: Defenses risks
research directions,” International Journal of Software Engineering &
Applications, vol. 7, no. 6, pp. 01–16, 2016.

[43] M. Sánchez-Gordón and R. Colomo-Palacios, “Security as culture:
A systematic literature review of devsecops,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, ser. ICSEW’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 266–269. [Online]. Available:
https://doi.org/10.1145/3387940.3392233


