
Resource Allocation in Cloud Computing Using
Genetic Algorithm and Neural Network

1st Mahdi Manavi
Department of Computer Science

University of Houston
Houston, USA

Mmanavi@central.uh.edu

2nd Yunpeng Zhang
Department of Information Science Technology

University of Houston
Houston, USA

yzhan226@central.uh.edu

3rd Guoning Chen
Department of Computer Science

University of Houston
Houston, USA

gchen22@central.uh.edu

Abstract—Cloud computing is one of the most used distributed
systems for data processing and data storage. Due to the continu-
ous increase in the size of the data processed by cloud computing,
scheduling multiple tasks to maintain efficiency while reducing
idle becomes more and more challenging. Efficient cloud-based
scheduling is also highly sought by modern transportation
systems to improve their security. In this paper, we propose a
hybrid algorithm that leverages genetic algorithms and neural
networks to improve scheduling. Our method classifies tasks with
the Neural Network Task Classification (N2TC) and sends the
selected tasks to the Genetic Algorithm Task Assignment (GATA)
to allocate resources. It is fairness aware to prevent starvation
and considers the execution time, response time, cost, and system
efficiency. Evaluations show that our approach outperforms the
state-of-the-art method by 3.2% at execution time, 13.3% in costs,
and 12.1% at response time.

Index Terms—Cloud Computing, Scheduling, Resource Allo-
cation, Neural networks, Genetic Algorithm

I. INTRODUCTION

Cloud computing is a model that enables demand-based
network access for sharing a set of configured resources,
including network, server, storage location, applications, and
services while minimizing latency and reducing the need for
management and interaction with the service provider [1].
Cloud computing enables distributed and parallel comput-
ing [2], making it a common choice for big data processing
that single machines with limited RAM cannot handle [3].

When performing big data processing using cloud comput-
ing, consumers always wish to conduct their work in a short
amount of time with the minimum cost. On the other hand,
service providers aim to maximize their resource efficiency
and their profits. One of the main challenges here is to opti-
mize resource allocation in cloud computing. It is becoming
more and more critical due to the growth of cloud computing
consumers and the need to meet the computing demands of
modern technology [4]. Recently, the rising vehicle traffic and
extensive cloud applications pose a cybersecurity challenge
for vehicular networks due to limited space and computing
capacity on vehicular devices [7] [8]. This limitation increases
the network’s vulnerability to potential cyber threats, such
as Distributed Denial of Service (DDoS) attacks and data
breaches. Applications like that demand an efficient cloud-
based scheduling to enhance their security.

Methods based on greedy algorithms [5] and genetic algo-
rithms [6] have been proposed to schedule tasks for neural net-
work applications, providing optimal solutions. However, one
notable limitation of these approaches is the high execution
time required by the genetic algorithm. To reduce the compu-
tation cost of task scheduling, we propose to combine neural
networks and genetic algorithms to develop a comprehensive
solution for effective resource allocation. This integrated ap-
proach proves particularly effective in addressing big data
problems, optimizing both time and space utilization [9]. Our
method optimizes system performance and improves resource
utilization across diverse computing paradigms.

Resource allocation can indirectly affect other challenges,
such as performance and load balancing. In this paper, we
focus on resource allocation and scheduling. The purpose
of scheduling is to assign tasks to limited resources in an
appropriate way [10]. The parameters to be considered include:

• Fairness: It means that all tasks should equally use the
resources, or the resources are assigned to them based on
the weight given to them.

• Optimal energy consumption: This means turning off a
number of servers and hosts to reduce energy waste on
cloud computing.

• Make span: It is the shorter length of interval that causes
the tasks to be accomplished sooner.

• Load balancing: This means that tasks are allocated to
resources in a way that prevents some resources from
being idle while others are overloaded.

• Cost: Total cost is acquired from cloud consumers for
the services that they need. This parameter can include
different parts, including the cost of processors, the cost
of data storage, and the cost of transferring data in the
network.

• System efficiency: it is the maximum use of resources
with the minimum amount of waste resources and time.

Among the above parameters, the fairness parameter for
tasks to prevent starvation was not considered by the previous
studies on resource allocation in cloud computing. Some
studies have concentrated on a small number of parameters,
while others have ignored some that have an impact on
the system’s overall efficiency. For example, Godhrawala et

ar
X

iv
:2

30
8.

11
78

2v
1

 [
cs

.D
C

]
 2

2
A

ug
 2

02
3

al. [11] focused on quality of service but not the cost of
execution for each task. Additionally, in numerous papers that
present a combined solution using a genetic algorithm and
a neural network, the parameters of the neural network are
determined using the genetic algorithm [12]. This can lead to
a dependency between the two methods, and mistakes in the
genetic algorithm can result in an incorrect configuration of
the neural network; consequently, the results may fall short of
expectations.

To address the above issues, our work makes the following
contributions

• We propose a novel scheduling method for cloud comput-
ing. Our method combines genetic algorithms with neural
network techniques. Different from the previous methods,
we use a neural network to select tasks to be sent
to the genetic algorithm for scheduling. Our approach
is customizable and can be adapted to different cloud
computing environments and requirements, allowing for
dynamic changes in resource allocation requirements in
terms of the weight of each parameter. The approach can
adapt to changing conditions in cloud computing environ-
ments, ensuring that resources are allocated optimally.

• Our model can be configured to consider different factors
such as execution time, response time, utilization, and
cost. It is also fairness aware and prevents starvation for
any task to allocate resources optimally.

• Due to using a trained model for the classification and
selection of a set of optimum tasks, we introduce a new
model which improves scalability by efficiently allocating
resources to meet the increasing demand for cloud com-
puting resources. The approach can adapt to changes in
the workload and allocate resources accordingly, ensuring
that applications have access to the required resources.

• Our Neural Network Task Classification (N2TC) and
Genetic Algorithm Task Assignment (GATA) can be used
to gain important insights on choosing how to allocate
resources. Cloud providers allocate resources more in-
telligently, improving overall performance and reducing
costs, by studying previous data and forecasting future
resource requests using our methodology.

Compared to the state-of-the-art methods, our approach
leads to 3.2% reduction in execution time, 13.3% reduction
in cost, and 12.1% improvement in response time.

II. RELATED WORK

In this section, we briefly review the works that are closely
related to the proposed method. We have classified these re-
lated works into two categories: metaheuristic-based resource
scheduling and dynamic resource allocation.

A. Metaheuristic-based resource scheduling

Alkayal et al. [13] proposed a Particle Swarm Optimiza-
tion (PSO) algorithm to optimize cloud computing resource
scheduling for increased efficiency. The system prioritizes
tasks based on length and assigns them to virtual machines that
are mapped to physical machines in the data center. Mezmaza

et al. [14] used the parallel hybrid genetic algorithm to find
the optimal set. They used the island model to migrate the
tasks. Their method is energy aware and reduces the makespan
parameter. Their cloud model is implemented in a data center
that is composed of heterogeneous machines. Their model has
also been implemented using ParadisEO. Mocanu et al. [15]
proposed a genetic algorithm that uses the roulette wheel to
select chromosomes. That method uses elitism in choosing
chromosomes and considers a threshold level of 20 to create
generations. The goal is to minimize the execution time. The
fitness function focused on utilization. It is computed by
dividing the total assigned input sizes by the max span. Geetha
et al. [16] proposed an integrated neural network and genetic
algorithm for scheduling. They reduced the context switching
in the processor to save energy. Their approach handles
unlimited requests in a parallel and distributed system. They
also focused on a federated cloud. Zhou et al. [17] presented
a Growable Genetic Algorithm (GGA) using a Heuristic-
based Local Search Algorithm (HLSA) and a Random multi-
Weight-based algorithm. Their method introduces a growth
stage to the genetic algorithm, resulting in GGA, which allows
individuals to evolve through different growth routes. Ajak et
al. [18] introduced a Directed Acyclic Graph(DAG) scheduling
model aimed at optimizing the quality of service parameters
in the cloud computing platform. Their primary objective is
to achieve makespan optimization through the appropriate
allocation of tasks to nodes and arranging the execution
sequence of jobs/tasks. To achieve near-optimal solutions, the
proposed model leverages resource provisioning and heuristic
techniques.

B. Dynamic resource allocation

Praveenchandar et al. [19] proposed a dynamic resource
allocation that is energy aware and considers the size of
a task and an inter arrival time. The method can improve
response time, resource utilization, task completion ratio, and
makespan. It also improves the efficiency of the dynamic
resource allocation process. The authors used Cloudsim to
simulate the method and they compared the model with first
come first served and round-robin. In the model, they used a
dynamic resource table updating method. Semmoud el al. [20]
introduced a technique to achieve load balancing on their
network and minimize idle time and make span. The authors
limited task migrations when the load of VMs is greater than
the starvation threshold and used task priority level for the
quality of service in cloud computing. They used Cloudsim
for the simulation. In the simulation part, sixteen data centers
are considered which are located in different regions, and
each of them has five physical machines. Shin et al. [21]
proposed a multiple adaptive resource allocation with a real-
time supervisor scheme. They used hybrid cloud services for
the industrial internet of things to implement their model. To
improve response time and reduce cost, they provided the
optimal number of virtual machines. In addition, they used
karush-kuhn-tucker optimization that is applied to continuous

2

time Markov chain, and all resources in public and private
cloud are fully considered.

In [13] [14] [15] [16] [17] [18] [19] [21], fairness is not
considered, thus, there is a possibility of starvation for tasks.
Moreover, due to the use of penalty functions in [18] [20] [21],
the computation overhead can be high. More importantly, some
approaches pay little attention to balancing critical parameters
in resource allocation, leading to sub-optimal scheduling. Our
method aims to address these issues.

III. PROPOSED APPROACH

In this section, we provide a detailed description of our ap-
proach, including the architecture and the involved algorithms
of our approach. We used a hybrid cloud to implement our
model which combines both public and private cloud services.

A. Architecture

Task scheduling is essential in cloud computing. Since the
cloud provider has to deal with many user applications, task
scheduling can no longer be handled by traditional sched-
ulers [22]. Figure 1 illustrates the architecture of our proposed
system, which consists of 5 components:

Fig. 1. High-level architecture consisting of a scheduler, clients, dispatcher,
resource table, and resources.

• Scheduler: It consists of 2 components, Neural Network
Task Classification (N2TC) and Genetic Algorithm Task
Assignment (GATA), which is the main module for
scheduling and all computation processes are performed
on it.

• Dispatcher: It sends the tasks to the resources based on
the situation of resources and binds the tasks to resources.

• Resources: All tools and applications in server-side that
are used to respond clients requests, such as fetch a file
or computation request.

• Resource table: It shows the current status of resources
and the number of tasks that each resource is running
right now. The resource table is necessary so that we can

keep track of the resources’ status and use any that are
not in use during the current scheduling period.

• Clients: An entity that wants to use cloud computing.
In our architecture, at first, tasks are sent by clients to the

RAM. We use online mode to send a task. Depending on
which resources the task requires, RAM sends a request to the
resource table module to determine the status of the intended
resources. According to the number of available resources,
the appropriate tasks are selected by GATA and N2TC, then
transmitted to the dispatcher along with the free resource
specification. Dispatcher then transfers the received tasks to
the resources. The role of the dispatcher is to send tasks to
the desired resources and to ensure those tasks are received
by the resources (e.g., via the acknowledgments of resources).
Next, the status of resources in the resource table is updated,
and it waits for the next task to be assigned by the schedule.
The resource table is intended to monitor the resources status
of the network. When the scheduler is aware of the current
state of resources on the network, it can perform scheduling
more efficiently. Also, the resources in this architecture have
a number of virtual machines to increase the speed of task
execution. The proposed architecture increases the accuracy
of selecting the appropriate tasks as well as the convergence
towards the optimal tasks by classifying the tasks and then
selecting the optimal set that is performed in the scheduler.

B. Mathematical Model

In this section, we present the definitions, methods, and
equations used in N2TC and GATA that are the essential
steps of RAM module shown in Figure 1. In particular, we
provide the necessary formulas for weighing the tasks and their
classification based on the desired parameters and a fitness
measurement. Table I lists the abbreviations used in this paper.

TABLE I
TABLE OF ABBREVIATIONS

abbreviations Meaning
TW Task Weight
ET Execution Time
C Cost
SE System Efficiency
WP Weight of Parameter
CW Class Weight
TC Tasks of Class
SC Size of Class
RT Response Time
F Fairness
Q Queue
r Class Number (1,3)

MR Minimum Resources required

Equation (1) computes the weight for a task i based on the
parameters of the execution time, cost, and system efficiency.
We assign the initial weight to each parameter based on
our system condition dynamically. We estimate the parameter
values for a new task that is added to the network, using
limited historical data [23].

(1)TW[i] = [WP (ET)× ET[i]] + [WP (C)× C[i]] + [(WP (SE)× SE[i]]

3

where WP(ET) is the weight determined for execution time.
WP(C) is the weight of cost, and WP(SE) is the weight of
system efficiency. ET[i] is the execution time, C[i] is the cost,
and SE[i] is the system efficiency of task i.

In Equation (2), the weight of a task is compared with the
average weights of different classes of tasks. The tasks with
similar weights are grouped into a class. TW[i] is the total
weight of task i (Equation (1)), CW[r] is the average weight
of class r, and TC[r] represents the tasks in the class r.

(2)∀iε[1..n], |TW[i] − CW[r]|< ϵ → TC[r] = i
⋃
TC[r]

Equation (3) determines the value of the fitness for each
task based on response time and cost. The goal is to minimize
the value of the fitness function. SC[r] is the size of class r, q
is the class number, and p is the task number. TC[q,p] denotes
task p in class q. F is the parameter of Fairness.

(3)Min[

r∑
q=1

SC[r]∑
p=1

RT (TC[q,p] + C(TC[q,p])× F]

If a task i is waiting in the queue Q from the previous
scheduling, using Equation (4) the value of the fitness function
will be improved (i.e., multiplied by a factor of 0.9 to reduce
the fitness value). This method is used for increasing the
chance of tasks that are waiting in the queue to be executed
in the next iteration.

(4)

{
Fi = 0.9 for iεQ
Fi = 1 otherwise

C. Proposed Scheduling Algorithm

Algorithm 1 describes the process of the proposed schedul-
ing given all the input tasks. First, based on the weight
attributes of each task, it is added to the desired class. We
implement 3 classes. In the next step, if the task has been
waiting in the queue from the previous scheduling, we improve
the rank of the class that the task is classified to. For example,
if the class of the task is 2 and it has been waiting in the queue
from the previous step, the task is transferred to class 1. When
all tasks are placed in the appropriate classes, the number of
idle resources in the network is compared with the number
of tasks in class 1. If the number of idle resources is less
than or equal to the number of tasks in class 1, then tasks of
class 1 are sent to the genetic algorithm; otherwise, the tasks
of class 2 are also sent to the genetic algorithm. If the idle
resources are still available after sending all tasks in classes
1 and 2, we move forward to sending the tasks in class 3.
The amount of idle resources is important for us, as resources
are limited. Depending on how many tasks are active on the
resources at any given time, there may be a different amount
of idle resources throughout execution.

Next, the selected tasks are fed to the genetic algorithm. The
initial population is constructed randomly, and the value of the
fitness function for each chromosome is calculated. If there is
any task waiting in the queue from the previous scheduling,
the value of the fitness function of that gene will be increased
by 10%. Then the chromosomes are sorted according to their

Algorithm 1 Proposed Algorithm
Input: List of tasks
Output: Optimum set of tasks
1: for i = 1 to n do
2: for j = 1 to 3 do
3:
4: if (Task i is similar to a set of class j) then
5:
6: if (Task i in waiting queue and j >1) then
7: Add task i to class(j-1)
8: else
9: Add task i to class j

10: end if
11: end if
12: end for
13: end for
14: while (NumberofIdleResources >set of tasks) do
15: Add jobs of class 2 or class 3 to a set of tasks for scheduling
16: end while
17: Initial population(set of tasks)
18: if (Each gene in waiting queue) then
19: Fitness of gene improve 0.1
20: end if
21: Sort chromosome by DESC
22: while ((!Feasible solution) OR (Iteration !=Max)) do
23: Select parents by Elitism
24: Apply two-point crossover
25: Gene of a chromosome is muted
26: Local search in the gene muted for finding a better gene to replace
27: Apply mutation
28: end while
29: return SetofTasks

fitness values, and the higher chromosomes are used for the
offspring generation. We use the two-point method, and the
intersection operator is applied to them. To apply the mutation
operator, the mutation is initially performed on the desired
gene. Then, a local search is performed around the mutated
gene so that if there is a gene with a higher value of the fitness
function, it will be selected. This process is performed until
the optimal set is found or the iteration number of the process
exceeds the predetermined number of iterations. The time
complexity analysis of our algorithm is as follows. The first
nested loop contributes O(n) to the overall time complexity,
where n is the number of tasks. The while loop depends on
the number of idle resources m, and its time complexity is
O(m). The initial population setup has a time complexity of
O(n). The sorting process takes O(n log n) time. The last
while loop has a time complexity of O(kn), where k represents
the number of iterations until a feasible solution is found. The
overall time complexity is O(n log n+kn+m). If k and m are
much smaller than n, the overall time complexity simplifies
to O(n log n).

D. N2TC

N2TC is used to classify the input tasks that are entered
into the cloud computing, which operates on the basis of
the neural network. We use a feed-forward back propagation
neural network for our model.

1) Data Preparation: In the first step, data are partitioned.
70% of the data is used for training, 15% for network
validation, and 15% for network testing. Although there is
no set ratio, 70:30 is typically regarded as the norm [25]. The

4

data for training, validation, and testing are selected randomly
so that the performance of training, validation, and testing is
enhanced.

2) Transform: Since the sigmoid logarithmic transfer func-
tion is a derivative function, it is commonly used in multi-layer
networks that are trained by the back propagation algorithm.
An example of this function is based on Equation (5):

A =
1

1 + e−net
where, net =

n∑
i=1

(W[i] ∗X[i]) (5)

X[i] is the input of the function and W[i] is the weight of the
X[i].

Fig. 2. This illustrates the function (Equation (5)) for transform.

3) Training: The scaled conjugate gradient method is used
to update the weight and bias of the data, and training is
terminated if:

• Maximum number of epochs has been created
• The time exceeds the maximum level
• The network’s performance falls below a threshold
• The gradient of the performance graph is below the

minimum
• Validity confirmation performance has decreased since

the last time.
4) Performance Function: In Equation (6), the efficiency

function is applied. This function calculates the average
squares of the errors between the output and the target. One
of the cases of stopping earlier before the completion of the
network training is the reduced network performance. If the
difference between the output and target increases, the network
training will be stopped.

Performance =
1

n

n∑
i=1

(Y ∗(i)− Y (i))2 (6)

Another feature considered for this network is memory reduc-
tion, which speeds up network execution. The higher number
of these layers enhances the network accuracy but increases the
run-time. The number of hidden layers of the neural network
is set as 20 which produces the best results based on our
evaluation.

The tasks in N2TC are divided into three categories and
the high-priority tasks are sent to the GATA. The task clas-
sification criteria in N2TC include the execution time, cost,
and system efficiency. The tasks from the previous periods in

the waiting queue are improved by one level to give them an
opportunity to run and prevent starvation for the tasks. Also,
if the number of tasks with the first priority is lower than the
resources available in the cloud computing, tasks with a lower
priority will be sent to GATA to have the maximum resources
available on the network.

E. GATA

GATA is designed to select tasks using the cloud computing
resources based on the genetic algorithm. In our proposed
approach the method of decimal is used to represent the
chromosomes because the binary display method increases the
amount of data storage. All resources have a decimal number
and each gene in the chromosome stores this number.

1) Initial Population: The first stage of the genetic algo-
rithm is the production of the initial population. To prevent
early convergence, the initial population is randomly selected
to cover a wide range of data. The fitness of the chromosomes
is based on their gene fitness; the initial population is 500.

2) Selection Function: In this operator, from the chro-
mosomes in a population, a number of chromosomes are
selected for reproduction. The elitism method is used to select
the parent chromosomes to produce the children so that the
chromosomes are originally arranged on the basis of fitness
value and then the chromosomes with the highest fitness
value are prepared for the child generation stage. This method
increases the convergence rate to achieve the optimal response.

3) Crossover: As part of the integration process, parts
of the chromosomes are replaced randomly. This makes the
children have a combination of their parents’ characteristics
while do not exactly resemble their parents. In our model,
we use the 2-point crossover approach, and various parts of
the parent chromosomes are selected for the production of
children.

4) Mutation: After completing the crossover, the mutation
operator is performed. This operator randomly selects a gene
from the chromosome and changes the content of that gene.
The mutation operator is used to avoid getting stuck in a local
maximum or minimum. The probability of mutation in our
model is 5%.

5) Fitness: To solve the problem using the genetic algo-
rithm, an appropriate fitness function must be developed for
that problem. If an appropriate function is selected, higher
convergence is obtained, the algorithm runs faster and the
optimal answer is selected. As seen in Equation (7), we
considered the response time and cost in the fitness function.

(7)fitness =

∑n

i=1(RT (i) +MR(i)) Task[i] /∈ Q

0.9× [
∑n

i=1(RT (i) +MR(i))] otherwise

In the fitness function, the minimum level of fitness value
represents the optimality of the chromosome. MR(i) is the
number of resources required for the task(i). Since the number
of resources needed to do it is lower, it is more desirable in
terms of cost. RT(i) indicates the response time for task(i)
which should be minimized. After determining the fitness

5

function for each gene, the fairness parameter is raised by
asking whether task(i) has remained in the queue from the
previous scheduling. If it is in the queue, its fitness value
will be increased by 10% to give it an opportunity to obtain
resources to prevent starvation.

IV. EVALUATION

We use Google cluster-traces v3 dataset [27] for evaluation.
The Google dataset concentrates on resource requests and
usage, without any information about end users and their data
or storage systems, and so on. It consists of 405894 rows.

Table 2 shows the hardware system used to run the proposed
approach. Three assumptions are considered for the proposed
approach, including:

• The tasks are independent from each other–i.e., to do the
task i there is no need to do the task j before it.

• Tasks do not have a deadline.
• Tasks in our network are non-pre-emptible, the resources

will not release until the task is completed.

TABLE II
PLATFORM PROPERTIES

Properties Values
Computer Asus

CPU Intel® Core™ i5-3230M CPU @ 2.60 GHz
RAM 6.00 GB(5.45 GB Usable)

Operating System 64-bit , windows 8

We use MATLAB to implement and evaluate our proposed
approach. All tasks have been entered into the network and
are awaiting scheduling. During the scheduling, we choose 10
tasks for execution based on the specified parameters. In our
model, the evaluation is conducted using a set of 10 tasks,
which we have determined to be sufficient for assessing the
performance and effectiveness of our approach. In our genetic
algorithm, each gene in the chromosome corresponds to a
specific task. It is common for genetic algorithms to utilize
a relatively small number of genes in each chromosome, as
observed in studies such as [28] and [29], where the size
of the chromosomes typically ranges from 8 to 12 genes.
However, it is important to note that as the size of the chromo-
some increases, the computational complexity of the algorithm
also grows [30]. This poses a significant constraint, as the
computational demands escalate with larger chromosomes.
The response time, execution time, cost, and performance of
particular tasks vary. In this section, we demonstrate that the
set of tasks chosen by our model is superior to the set chosen
by other approaches. As we mentioned earlier, N2TC receives
all tasks and classifies them based on metrics for execution
time, cost, and system efficiency.

Figure 3 presents the network performance graph. In Figure
3, the network performance is finished with 27 epochs, and
it has the best performance in epoch 21. As the curvature of
the test graph is higher, the probability of over-fitting in the
network is greater. The descending trend of the graph indicates
good network performance. Here the results of GATA are

Fig. 3. Performance of the network during the training, validation, and testing
processes. We use cross-Entropy to check the condition of our model in each
epoch. In our model, we have 27 epochs.

addressed. The most important part of the genetic algorithm
is the fitness function.

In the next step, tasks classified in class 1, in some situations
tasks classified in class 2, are sent to the GATA to find an
optimal set of tasks for execution. The length of the optimal
set is 10, which means 10 tasks are selected for execution.
Figure 4 presents the value of the fitness function during
finding the optimal set of tasks.

Fig. 4. The fitness value of selection tasks in each generation.

Due to the fact that a set of tasks is optimal when the
fitness value of that chromosome is minimized, the descending
trend of the graph indicates the suitability of the GATA
configuration.

Next, We compare the results of the proposed approach with
two widely used algorithms in this field, namely First In First
Out (FIFO) and Shortest Job First (SJF), as well as two related
works (Mezmaz et al. [14] and Mocanu et al. [15]) that are
considered as the best methods in this domain. These related
works provide valuable insights and serve as benchmarks for
comparison, as they have achieved significant advances in
resource allocation techniques.

In Figure 5, the execution times of the tasks with the five
methods are shown, respectively. Among the 10 selected tasks
to run in each of the five methods, the proposed solution has

6

a lower execution time in general and SJF has the longest
execution time.

Fig. 5. The execution times of the 10 tasks scheduled with five different
methods.

The system utilization rate is shown in Figure 6. An
ideal utilization rate is achieved if the available resources on
the network are used maximally, and the idle resources are
minimized. In other words, the higher the utilization rate, the
better the scheduling is. At this point, the solution provided
by Mezmaz et al. [14] has the worst utilization rate, while
our method has the second-best utilization rate.

Fig. 6. System utilization rate with the five scheduling methods.

Figure 7 compares the costs of executing the tasks with
the five methods, respectively. We see that the lowest cost
of completing all 10 tasks (i.e., adding all costs for the 10
individual tasks) is with the proposed approach.

Figure 8 shows the response time graph of the 5 schedul-
ing methods. This measure shows the time interval between
sending the task to the cloud computing and receiving the first
response from the network to the user. From the comparison,
we see that our method has the shortest response time for most
tasks except for task 10.

Generally, according to the presented graphs, it can be con-
cluded that the proposed approach has the best performance
among the five solutions, and it can be used in a wide range
of applications.

Fig. 7. Costs of executing the 10 tasks with five different methods.

Fig. 8. Response times of executing the 10 tasks with the five scheduling
methods.

Table 3 presents a summary of the performance of the stated
strategies, which indicates the total average of the ten selected
tasks in each solution. We converted the value of each task
between the 0 and 1 range to simplify the results. Compared
to the average performance of the existing state-of-the-art
methods, the proposed method has improved by about 3.2% at
execution time, 13.3% in costs, and 12.1% at response time.

TABLE III
SUMMARY OF THE QUALITATIVE COMPARISON BETWEEN THE PROPOSED
ALGORITHM AND STATE-OF-THE-ART SOLUTIONS. ALL TIMES REPORTED

HERE ARE IN SECONDS.

Algorithm Utility Response Time Cost Execution Time
Proposed Approach 0.465 0.246 0.227 0.30

FIFO 0.331 0.280 0.311 0.36
SJF 0.285 0.296 0.262 0.45

Mezmaza et al. [14] 0.127 0.357 0.441 0.41
Mocanu et al. [15] 0.565 0.508 0.302 0.31

In particular, the proposed method has the best response
time for nine out of ten tasks among all methods and the
best costs for executing all 10 tasks. Our method also has the
second-best performance in utilization rate and the best overall
performance to improve the execution time. The results from
the graphs indicate that the proposed model not only prevents

7

task starvation but also has a positive impact on the best task
selection and the improvement of the aforementioned param-
eters. For this reason, the proposed approach outperforms the
methods already mentioned.

V. CONCLUSION AND FUTURE WORK

Resource allocation is considered one of the major chal-
lenges in cloud computing. Many efforts have been made in
this field. Since the heuristic methods have better results in
large environments, these methods are more popular. In the
proposed approach we used the combination of genetic algo-
rithms and neural networks to solve the problem of scheduling
and selection of resources to get the optimal answers for
resource assignment in cloud computing. In the future, the
load balancing issue can be included in the defined parameters.
Also, for tasks that have a deadline, some priorities will be
considered so that they can be run at the right time. In addition,
this method can be extended to tasks that are dependent
on each other. Furthermore, the proposed efficient cloud-
based scheduling can be applied by transportation systems
to improve cybersecurity, which enables immediate responses
to potential threats and consolidates security monitoring. By
harnessing the flexibility and effectiveness of cloud comput-
ing, transportation systems can strengthen their cybersecurity
measures and enhance their ability to withstand cyber threats.
We will explore this in the future.

APPENDIX
ACKNOWLEDGMENT

This work is funded by the US Department of Trans-
portation (USDOT) Tier-1 University Transportation Cen-
ter (UTC) Transportation Cybersecurity Center for Ad-
vanced Research and Education (CYBER-CARE). (Grant No.
69A3552348332), and Theorizing Connected Vehicle (CV)
Based Advanced Traffic Management System (ATMS) Vul-
nerability Analysis and Strategizing for Cyber Security (Grant
No. I0509667)

REFERENCES

[1] P. Mell and T. Grance, ”The NIST definition of cloud computing”,
National Institute of Standards and Technology, 2004.

[2] P.Gao, Z.Han,and F.Wan, ”Big Data Processing and Application Re-
search”, 2nd International Conference on Artificial Intelligence and
Advanced Manufacture (AIAM),2020.

[3] J.Sun, Z.Shang, G.Li, D.Deng, and Z.Bao, ”Balance-Aware Distributed
String Similarity-Based Query Processing System”, Proceedings of the
VLDB Endowment Volume 12pp 961–974,2019.

[4] A.Belgacem, S.Mahmoudi,and M.Kihl, ”Intelligent multi-agent rein-
forcement learning model for resources allocation in cloud computing”,
Journal of King Saud University - Computer and Information Sciences
Volume 34, Issue 6, Part A, Pages 2391-2404, 2022.

[5] Chen Z, Junqin Hu, Chen X, Jia Hu, Zheng X, Min G, “Computation
offloading and task scheduling for dnn-based applications in cloud-edge
computing”, IEEE Access 8:115537–115547,2020.

[6] Cui D, Peng Z, JianbinXiong BX, Lin W , “A reinforcement learning-
based mixed job scheduler scheme for grid or IaaS cloud”, IEEE Trans
Cloud Comput 8(4):1030–1039, 2020.

[7] C. Chen, B. Liu, S. Wan, P. Qiao, and Q. Pei, “An edge traffic flow
detection scheme based on deep learning in an intelligent transportation
system,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3, pp. 1840–1852,
Mar. 2021.

[8] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge
computing and networking: A survey,” Mobile Netw. Appl., vol. 3, pp.
1–24, 2020.

[9] Xinlei Wang, Xin Zhou, Heng Liu, Jianhua Chang, ”Optimal path
for fault identification of marine communication network in the back-
groundof big data”, Arabian Journal of Geosciences, volume 14, 2021.

[10] C.Wei Tsai, and J. P. C. Rodrigues, ”Metaheuristic Scheduling for Cloud:
A Survey”, SYSTEMS JOURNAL IEEE, 2013.

[11] Godhrawala, H., Sridaran, R,”Improving Architectural Reusability for
Resource Allocation Framework in Futuristic Cloud Computing Using
Decision Tree Based Multi-objective Automated Approach”, Communi-
cations in Computer and Information Science, vol 1759. Springer, 2023.

[12] Xing, J, ”Network Security Optimization Method Based on Genetic
Algorithm”, Lecture Notes in Electrical Engineering, vol 791. Springer,
2022.

[13] E.S. Alkayal, N.R. Jennings, and M.F. Abulkhair, ”Efficient Task
Scheduling Multi-Objective Particle Swarm Optimization in Cloud com-
puting”. Local Computer Networks Workshops, 2016.

[14] M. Mezmaza, N. Melabb, Y.Kessaci, A.Y.Zomaya E.G. Talbibd, and
D. Tuyttens, ”A parallel bi objective hybrid metaheuristic for energy
aware scheduling for cloud computing systems”, Journal of Parallel and
Distributed Computing, 2011.

[15] E.M.Mocanu, M.Florea,and M.Ionu Andreica, ”Cloud computing Task
scheduling based on genetic algorithms”, IEEE International Systems
Conference SysCon, 2012.

[16] R. Geetha, and V.Parthasarathy, ”An advanced artificial intelligence tech-
nique for resource allocation by investigating and scheduling parallel-
distributed request/response handling”, Journal of Ambient Intelligence
and Humanized Computing volume 12, pages6899–6909 , 2021.

[17] Zhou, Guangyao, et al. ”Growable Genetic Algorithm with Heuristic-
based Local Search for multi-dimensional resources scheduling of cloud
computing.” Applied Soft Computing 136,2023.

[18] Rajak, Ranjit, et al. ”A novel technique to optimize quality of service for
directed acyclic graph (DAG) scheduling in cloud computing environ-
ment using heuristic approach.” The Journal of Supercomputing 79.2,
2023.

[19] Praveenchandar, and J.Tamilarasi, ”A. Dynamic resource allocation with
optimized task scheduling and improved power management in cloud
computing”, J Ambient Intell Human Comput 12, 4147–4159 , 2021.

[20] A. Semmoud, M. Hakem, B. Benmammar,and J. Charr, ”Load balancing
in cloud computing environments based on adaptive starvation thresh-
old”, Concurr. Comput. Pr. Exper , 2019.

[21] Y.H.Shin, W.Yang , and S.Kim,J.M.Chung, ”Multiple Adaptive-
Resource-Allocation Real-Time Supervisor (MARS) for Elastic IIoT
Hybrid Cloud Services”, IEEE Transactions on network science and
engineering , VOL. 9, NO. 3, 2022.

[22] C.Salmi, J.Walker, A.Ahmed, ”A Parallel Heuristic Scheduler for Cloud
Computing Environment”,2021 Second International Conference on In-
telligent Data Science Technologies and Applications (IDSTA), pp.114-
121, 2021.

[23] Sarah Shah, Yasaman Amannejad, Diwakar Krishnamurthy, Mea Wang,
”PERIDOT: Modeling Execution Time of Spark Applications ”, IEEE
Open Journal of the Computer Society,2021.

[24] Y.Xiaoting, Z.Qingchun, and Z.Tao, ”Speed Estimation of Induction
Motor based on Neural Network”, 2nd International Conference on
Intelligent Control and Information Processing, 2011.

[25] . Rácz, A., Bajusz, D., Héberger, K,” Effect of dataset size and train/test
split ratios in QSAR/QSPR multiclass classification”, Molecules 26(4),
1111, 2021.

[26] Z.Jin, H.Li-bo, and C.Rong-yi, ”Research and application of hybrid
random selection genetic algorithm”, 10th International Symposium on
Computational Intelligence and Design (ISCID),2017.

[27] Wilkes.J, ”Google cluster-usage traces v3. Technical report”, Google Inc,
Mountain View, CA, USA. Posted at https://github.com/google/cluster-
data/blob/,2020.

[28] Jia Liu, Yisheng Liu, Ying Shi3, Jian Li, “Solving Resource-Constrained
Project Scheduling Problem via Genetic Algorithm”, Journal of Com-
puting in Civil Engineering, 2020.

[29] Saleem.U., Liu.Y, Jangsher.S., Li.Y, Jiang.T, “ Mobility-Aware Joint
Task Scheduling and Resource Allocation for Cooperative Mobile Edge
Computing”, IEEE Transactions on Wireless Communications, 2020.

[30] Waqar Ahmed Khan, Muhammad Bilal Kadri, Qasim Ali, “Optimization
of Microchannel Heat Sinks Using Genetic Algorithm”, Heat Transfer
Engineering Volume 34, 2013 - Issue 4, 2013.

8

	Introduction
	Related Work
	Metaheuristic-based resource scheduling
	Dynamic resource allocation

	Proposed Approach
	Architecture
	Mathematical Model
	Proposed Scheduling Algorithm
	N2TC
	Data Preparation
	Transform
	Training
	Performance Function

	GATA
	Initial Population
	Selection Function
	Crossover
	Mutation
	Fitness

	EVALUATION
	CONCLUSION AND FUTURE WORK
	Appendix: ACKNOWLEDGMENT
	References

