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Abstract—Traffic congestion is a major concern in many cities
around the world. Previous work mainly focuses on the prediction
of congestion and analysis of traffic flows, while the congestion
correlation between road segments has not been studied yet. In
this paper, we propose a three-phase framework to study the
congestion correlation between road segments from multiple real
world data. In the first phase, we extract congestion information
on each road segment from GPS trajectories of over 10,000
taxis, define congestion correlation and propose a corresponding
mining algorithm to find out all the existing correlations. In
the second phase, we extract various features on each pair of
road segments from road network and POI data. In the last
phase, the results of the first two phases are input into several
classifiers to predict congestion correlation. We further analyze
the important features and evaluate the results of the trained
classifiers. We found some important patterns that lead to a
high/low congestion correlation, and they can facilitate building
various transportation applications. The proposed techniques in
our framework are general, and can be applied to other pairwise
correlation analysis.

Index Terms—Traffic congestion; Congestion correlation; GPS
trajectories; Classification;

I. INTRODUCTION

With the rapid process of urbanization, traffic congestion
becomes an increasingly serious problem in more and more
cities around the world. Understanding, alleviating, and further
tackling traffic congestion have received urgent attentions
from governments and their citizens. Much research work has
been conducted to study congestion from different aspects,
including traffic congestion prediction [1], traffic condition
estimation [2], impact [3] and correlation [4] of traffic con-
gestion, traffic flow propagation [5], etc. They provide many
useful insights on traffic congestions, which may facilitate the
building of many practical applications.

However, the existing work typically assumes or ignores
correlations [6], leaving the impact of correlated patterns to
traffic congestion largely unknown. Analyzing and uncovering
the correlated patterns in traffic congestion can reveal the
insights of congestion such as what factors are correlated
in congestion, how congestions propagate from one road
to another, etc. Furthermore, it can also facilitate building
various applications including road planning, traffic condition
prediction, impact analysis of congestion, etc. As such, both
governments and individuals can be beneficial. For example,
when a person is stuck in traffic congestion, the information

about nearby congestion correlated road segments (i.e., these
roads are likely to be congested as well) will be very useful
since s/he can better estimate the travelling time, or possibly
choose to bypass those roads to avoid congestion. Besides,
with the information of congestion correlation between road
segments acquired, governments are able to make better deci-
sions on traffic light management and road planning, etc.

To fill the gap of existing work on congestion correlation
analysis, we utilize multiple real world data to predict whether
a road segment is correlated with another one in terms of
congestion, where we can uncover some correlated congestion
patterns from features on road segments. Thanks to the wide
deployment of GPS devices and the widely available road and
Point Of Interest (POI) information, we are able to obtain
congestion information and features on road segments easily.
To analyze the correlation between road segments, we apply
a mining algorithm to find out all the existing correlations,
and extract features on each road segment pair. We then build
learning models based on classifiers to infer the correlated
road segments from data. The models also help to identify
some important features and correlated patterns.

To the best of our knowledge, we are the first to study traffic
congestion correlation from a classification perspective using
real world datasets. Our contributions are three folds:

• We propose a novel framework to study traffic conges-
tion correlation between road segments. The framework
utilizes multiple sources of data to mine and analyze
congestion correlation. In addition, the framework is
general, and can be applied to other pairwise correlation
analysis problems as well.

• We focus on congestion analysis of two peak periods
during a day, train two corresponding models on several
well-known classifiers to predict congestion correlation,
and compare the results of different models.

• We predict congestion correlation and found some im-
portant patterns, such as congestions are very likely to
propagate between trunk roads during the evening peak
hours, which can facilitate the decision making for both
individuals and governments.

The rest of this paper is organized as follows. In Section
2, we summarize related work. Section 3 gives an overview
of the proposed framework. Section 4 details each phase of
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the framework. Section 5 shows the experimental and analysis
results. We conclude the paper in Section 6.

II. RELATED WORK

This section surveys the related work on traffic congestion
prediction, traffic condition estimation, impact and correlation
of congestion and traffic propagation. In [7], Yang formulated
congestion prediction as a binary classification problem and
applied feature selection techniques to reduce the dimension-
ality of data, yet still maintained the comparable accuracy. In
[8], Min et al. proposed an approach based on the multivariate
spatial-temporal autoregressive model to incorporate spatial
and temporal characteristics for real-time traffic prediction,
and found that congestion can change the traffic flow patterns.
Gajewski et al. proposed a Bayesian-based approach in [9] to
estimate link travelling time correlation, and found that the
heavier the congestion, the lower the correlation of travelling
time between links. In [6], Rachtan et al. argued that correla-
tion patterns among the traffic variables are largely unknown,
while most of the work ignores congestion correlation or
assumes correlation exits. Jenelius et al. estimated travelling
time based on low frequency GPS data in [2], and demonstrat-
ed that there is significant correlation between segments and
showed the feasibility of using low frequency GPS data for
monitoring the performance of transport system. In [10] [5],
the authors studied the traffic flow propagation by simulation.
In [11] [12], the authors reviewed several approaches on traffic
density estimation, detection and avoidance. In [4] [13] [3]
[14], the authors studied the impact and correlation on weather,
accident, employment, safety, respectively.

Different from the above work, we focus on congestion
correlation between road segments on GPS trajectories, which
can benefit various applications including traffic prediction,
traffic light management, road planning, etc.

III. OVERVIEW

Figure 1 presents the framework of our work. In this
framework, we utilize GPS trajectory of taxis, road network
and POI data to study the congestion correlation between road
segments. We divide the framework into three phases.

1) Extract congestion information on each road segment
from GPS and road network data, define and mine
congestion correlation between each road segment pair.

2) Extract various topological features and POI features
from road network and POI data, respectively, and
generate training samples on road segment pairs.

3) Input the results of the first two phases into several
classifiers to predict congestion correlation, and analyze
the evaluation results for pattern discovery.

We design the framework in a way that it is general enough
to be used for other pairwise correlation analysis problems
by changing the specific data sources and implementing tech-
niques such as feature extraction, correlation definition, and
etc.

POI Features

GPS Trajectory
of Taxis 

Road Network Point of Interest

Congestion Info

Correlation between 
Road Segments 

Topological Features

Features between 
Road Segments

Classfier

Correlation patternsCongestion and 
correlation  extraction 

Classification 
and analysis

2

1

3

Feature and 
sample generation

Fig. 1. Framework of congestion correlation mining

IV. METHODOLOGY

In this section, we describe the proposed framework in
details. Specifically, we first present the three data sources we
use, and then show how each phase of the framework works.

A. Data sources

Traffic congestion usually results from multiple factors.
Intuitively, the underlying transportation infrastructure, the
traffic information and human mobility are the three major
ones. Therefore, in this work, we exploit three data sources,
i.e., road network, GPS trajectories of taxis and POIs to
cover these three factors. Concretely, road network describes
the spatial topology of the transportation infrastructure; GPS
trajectory of taxis contain the traffic information; and POIs
implicitly convey some information about mobility of people
whose daily activities are relevant to them. We formalize these
information as follows.

Definition 1 (Road network): A road network is modelled as
a graph G = (V,E), where vi ∈ V represents an intersection
of road segments, ei,j ∈ E represents the direct road segment
from vi to vj .

Definition 2 (GPS point): A GPS point, gp is denoted by a
quadruple, i.e., gp = (TaxiID, t, s, l), where TaxiID is the
identifier of the taxi, t is the time at which this GPS point is
sampled, s is the speed of the taxi, and l is the spatial location
consisting of longitude and latitude.

Definition 3 (GPS trajectory): A GPS trajectory, tr,
is consisted of a sequence of GPS points, i.e., tr =
(gp1, gp2, . . . , gpn), where n is the length of tr and gpi.t ≤
gpj .t if i ≤ j.

Definition 4 (Point of Interest, POI): A POI, oi, is denoted
by oi = (ID,Cate, Lng, Lat), where ID is the identifier
of oi, Cate is the category of oi, and Lng and Lat is the
longitude and latitude, respectively, of the spatial location of
oi.



B. Congestion and correlation extraction

In this phase, we first extract the congestion information
from the GPS trajectories of taxis on each road segment. After
that, with a definition of congestion correlation between road
segments, we propose a mining algorithm to find out all the
existing congestion correlation from data.

1) Traffic information acquisition: To extract the conges-
tion information, we need to first obtain the traffic information
on each road segment. According to the definition of GPS
trajectories, a GPS trajectory is a sequence of discrete spatial
points. Thus, we need to map-match each GPS trajectory to the
underlying road segments. In this work, we leverage the map-
matching technique in [15]. Meanwhile, considering the time-
consuming characteristic of map-matching operation, a spatial
index R*-tree [16] is built on all road segments to accelerate
the process of map-matching. After map-matching, each road
segment is associated with a set of GPS points capturing the
traffic information there.

2) Congestion extraction: To extract congestion informa-
tion from traffic information, we divide a day into time slots,
and obtain the traffic information Trt on road segment r in a
specific time slot t, using the average speed of all GPS points
on road segment r in time slot t as the proxy. Then we have
the definition of congestion as follows.

Definition 5 (Congestion): A congestion on road segment r
in a specific time slot t is denoted by Crt, and

Crt =

{
1 if Trt ≤ Avgr ∗Ratio;
0 otherwise.

where Avgr is the average speed of all GPS points in road
segment r in all time, and Ratio will be discussed in Section
V.
We store the congestion information of a day in a congestion
matrix as illustrated in Figure 2, where each row represents a
road segment and each column represents a time slot.

1 0 ⋯ 1
1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 1 ⋯ 1
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Fig. 2. Congestion matrix

3) Correlation extraction: To study how congestion occurs
sequentially in terms of time, and consider the propagation
rate of congestion in terms of space, as shown in figure 3,
we define congestion correlation between road segments as
follows.

Definition 6 (Congestion correlation between road seg-
ments): A congestion correlation from road segment a to
segment b, i.e. Cor(a, b), occurs if the following requirements
are satisfied:
(1) a congestion occurs on road a at time t0
(2) from time t0 to t0 + t, a congestion occurs on road b
(3) a and b are within a certain distance s

Road b

Congestion! Congestion!

Road a

Correlation

t0 t0+t

time 

s

Fig. 3. Congestion correlation

We propose Algorithm 1 to mine all congestion correlations
in a designated time period, i.e., from tstart to tend. The
correlations are stored in a square matrix R, where Rik stores
the occurrence count of congestion correlation between road
segment i and k from tstart to tend.

Algorithm 1 Congestion Correlation Mining
Input: the congestion matrix C, time threshold t, distance

threshold s, start time slot tstart and end time slot tend;
Output: the correlation matrix R;

1: R = 0; Create a vector cv of size C.rowNumber;
2: for j = tstart to tend do
3: cv = 0;
4: isFound = false;
5: for i = 1 to C.rowNumber do
6: if C[i][j] == 1 then
7: if isFound == false then
8: for k = 1 to C.rowNumber do
9: for t = j+1 to j+t do

10: if C[k][t] == 1 then
11: cv[k] = 1;
12: break;
13: isFound = true;
14: for k = 1 to C.rowNumber do
15: R[i][k] = R[i][k] + cv[k];
16: for i = 1 to C.rowNumber do
17: for k = 1 to C.colNumber do
18: if Dist(i, k) > s then
19: R[i][k] = 0;
20: return R;

In Algorithm 1, at each time slot j, for each congested road
segment i, we retrieve all the congested road segments in next
t time slots, and increase the occurrence count of correlation
stored in Ri·. We use a vector cv to store the retrieved
congested road segments, so that the retrieving process only
executes once in each time slot, thus improving the efficiency
of the algorithm. Then, we also check the distance in all pairs
of road segments to make sure the distance requirement in
congestion correlation is also satisfied. The time complexity
of the proposed algorithm is O(n2m), where n is number of
road segments and m is the number of time slots from tstart
to tend.



To further refine congestion correlation, we have the fol-
lowing definition.

Definition 7 (Correlation confidence): Correlation
confidence from road segment a to segment b, i.e., CCab

indicates the confident level of the congestion correlation and
is computed as follows:

CCab =
occurrence count of Cor(a, b)

No. of congestions occur at a

With the correlation confidence, an analogy to confidence in
Association Analysis [17], we are able to identify some false
positive and true positive correlations, and use them to conduct
more accurate analysis in later phases.

C. Feature and sample generation

In this phase, we first extract various features on each
road segment from road network and POI data, and then fuse
the features for each road segment pair to generate training
samples.

1) Feature extraction: To extract features on each road
segment from road network data, we consider not only their
traditional features, including length, type, and degree, but also
some advanced features, including betweenness and closeness.
It is straightforward to extract those traditional features. There-
fore, we will only detail how to extract the advanced features
as follows.

In graph theory, betweenness is used to measure the im-
portance of nodes in terms of the number of shortest paths
passing them. The intuition is that a node is more important if
more shortest paths go through it. The betweenness of a node
vi is computed with the following formula [18].

B(vi) =
1

(N − 1)(N − 2)

∑
vj ,vk∈V ∧i6=j 6=k

njk(vi)

njk
(1)

where njk is the total number of shortest paths between nodes
vj and vk, njk(vi) is the number of shortest paths between
nodes vj and vk that pass node vi.

Similarly, we compute the betweenness of a road segment,
ei1,i2 as below (cf. Definition 1).

B(ei1,i2) =
1

(N − 1)(N − 2)

∑
vj ,vk∈V

njk(ei1,i2)

njk
(2)

where njk is the total number of shortest paths between nodes
vj and vk, njk(ei1,i2) is the number of shortest paths between
nodes vj and vk that pass edge ei1,i2 .

According to [18], closeness centrality is used to measure
the centrality of a node, vi, in the network and is computed
as below.

C(vi) =
N − 1∑

j∈V ∧j 6=i netDis(vi, vj)
(3)

where netDis(vi, vj) is the network distance between nodes
vi and vj .

To compute the closeness of a road segment, ei1,i2 , we
change the formula above to the following form.

C(ei1,i2) =
N − 1∑

e∈E∧e6=ei1,i2
netDis(e, ei1,i2)

(4)

where netDis(e, ei1,i2) is the network distance between edges
e and ei1,i2 (cf. Eq.(6)).

To extract features from POI data on each road segmen-
t, we consider the total number of POIs, the number of
POIs in each category, the Term Frequency-Inverse Document
Frequency(TF-IDF) value of each POI category. Specifically,
we treat road segments as documents and POI categories as
terms, and TF-IDF value indicates the importance of POI
categories on road segments. Similar to [19], to compute TF-
IDF value of the i-th POI category of a given road segment,
we have the following formula:

TF-IDFi =
ni

N
× log

R

||{r|the i-th POI category ∈ r}||
(5)

where ni is the number of POIs in i-th category and N is
the total number of POIs in the given road segment. The first
term calculates POI frequency in the given road segments, and
the second term calculates the inverse segment frequency by
taking the logarithm of a quotient, resulting from the number
of road segments R divided by the number of segments which
have POIs in i-th category.

The extracted features are summarized in Table I.

TABLE I
EXTRACTED FEATURES ON A ROAD SEGMENT

Features Description
length the length of each road segment
degree the degree of each road segment
type type of road segments, e.g., motorway and trunk
B(ei,j) the betweenness of the road segment ei,j
C(ei,j) the closeness of the road segment ei,j
#POIs the total number of POIs
#CatPOIs the number of POIs in each category
POI-TF-IDF the tf-idf value of each POI category

2) Sample generation: To generate training samples, con-
sidering all features extracted on a road segment, we need
to fuse the features of each road segment pair, and generate
features for each pair.

For length, degree, betweenness, closeness and total number
of POI, we calculate their difference between segments, and
then add them to the features for each pair. We also add
network distance and Pearson similarity of POI TF-IDF value
distributions between road segments into features for each pair.

Network distance between road segment ei1,i2 and ej1,j2 is
computed based on the underlying road network (cf. Definition
1), i.e.,

netDis(ei1,i2 , ej1,j2) = min
i∈{i1,i2},j∈{j1,j2}

{netDis(vi, vj)}
(6)

where netDis(vi, vj) is the length of the shortest path between
nodes vi and vj . To accelerate the computation of network
distance, we index road network G with CH (Contraction
Hierarchy) [20] which organizes G in a hierarchy structure.



For each distinct ordered combination of two road types
in a pair of road segments, we create a binary indicator
variable to represent the existence of it between road segments.
For example, a road segment type is ‘trunk’ and that of
the other is ‘primary’, then the corresponding indicator vari-
able that represents the existence of the ordered combination
‘trunk→primary’ is set to 1, and all other indicator variables
of this ordered pair are set to 0. The idea of this design
is to see how congestion correlation varies from one road
type to another. Slightly different, for each distinct ordered
combination of two POI categories, we create a variable to
represent the importance level of it by calculating the product
of TF-IDF values of the two categories on each pair of road
segments. The idea of this design is to see how congestion
correlation varies from one POI category to another.

Finally, we apply Min-Max scaling [21] to scale all the
features for each pair of road segments into the range of [0,
1], which not only enhances the performance of the trained
models, but also facilitates the process of analysis on feature
importance later, since the trained models are not biased
towards the features simply due to their large numeric range.

The features for each road segment pair are summarized in
Table II.

TABLE II
FEATURES FOR EACH ROAD SEGMENT PAIR

Features Description
Diff-Len the difference of length
Diff-Degree the difference of degree
Diff-B the difference of betweenness
Diff-C the difference of closeness
Diff-POI the difference of the total number of POIs
netDis the network distance
SimPOIs Pearson similarity of POI TF-IDF value distribu-

tions
OrderedComb-
types

the binary indicator variable for ordered combina-
tion of road types

OrderedComb-
POI

the variable for ordered combination of POI cate-
gories

D. Classification and analysis

In this phase, we input the results of the first two phases
into several classifiers to predict congestion correlation, and
analyze the evaluation results for pattern discovery.

1) Classification: After finishing the first two phases, we
have all the congestion correlation between road segments,
and all features on each pair of road segments. We now
combine these two parts to generate training samples for
binary classification.

For any given pair of road segments, the models will predict
whether there exists high congestion correlation between them.
To refine and enhance the knowledge models learn from data,
we set a threshold of Correlation confidence (cf. Definition
7) for positive class and negative class, respectively. Thus,
we only keep those pairs of road segments, whose correlation
confidence is higher than the threshold for positive class, and
treat them as positive training samples; or lower than the
threshold for negative class and higher than 0, and treat them
as negative training samples.

Usually the classes of training samples are highly im-
balanced, i.e., the samples in uncorrelated class are much
more than those in the correlated class, which will impair
the performance of classifiers. Therefore, we apply random
majority undersampling (RUS) [22] to generate a balanced
training samples.

Finally, we input the balanced training samples into well-
known classifiers including Decision Tree (DT), Random
Forest (RF), Logistic Regression (LR) and Support Vector
Machine (SVM), then evaluate the performance of the built
models using classic metrics.

2) Analysis: After the evaluation of the models, we analyze
the built models for pattern discovery.

Feature importance indicates how important a feature is
for the prediction of classifiers, which can help to identify
important features and patterns during the analysis process.
We employ different feature importance measures for different
classifiers. For Decision Tree and Random Forest, we use
Gini importances [23]. For Logistic Regression and Support
Vector Machine, we consider the absolute values of feature
coefficients as the measure of feature importance. Besides, we
also generate some decision rules from Decision tree for better
understanding of the analysis results.

With different training samples, we can build different
models on different classifiers. The comparison of evaluation
results, identified features and patterns among different models
on different classifiers can also provide useful insights on
congestion correlation between road segments.

V. EXPERIMENTS

In this section, we present the details of datasets, experiment
settings and results.

A. Datasets

In the experiments, we use three datasets, i.e., road network,
POIs, and the GPS trajectories of taxis. All these three datasets
are for Beijing, China and their details are elaborated as below.

The road network data is extracted from OpenStreetMap
(OSM)1, an open source online map. In Beijing road network,
we have 109, 029 edges and 105, 030 nodes, with 13 categories
of road types.

POI data set contains all kinds of physical objects in spatial
space such as shops, schools, banks, and restaurants. Though
we can also download POIs from OSM, the number of POIs
there is quite small. To collect enough POIs, we obtain the
POI data from a data sharing web site called DataTang2. This
POI data set is comprised of 220, 137 POIs which cover 21
categories.

We collect a large set of GPS trajectories of over 10, 000
taxis in Beijing for 30 days in 2012.

1https://www.openstreetmap.org
2http://www.datatang.com/



B. Data filtering

From the view of road segments, each road segment has a
set of GPS records with time stamps. The goal of this work
is to study the congestion correlation between road segments.
Therefore, it is very important to obtain the traffic information
on road segments as accurate as possible.
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Fig. 4. The distribution of the number of speed records on each road segment
per day

According to [19], more than 12 percent of traffic flow in
Beijing is occupied by taxi trips, it is reasonable for us to
use the speeds of GPS records of taxis to approximate the
real traffic congestion information. However, though we have
over 10, 000 taxis, the number of speed samples of some
road segments are still very small, which makes it difficult
to capture the real traffic on these road segments. In the
experiments, we divide a day into 10 minutes time slots,
resulting in 144 time slots one day. According to Figure 4,
many road segments have speed records less than 100 per
day meaning that there is no traffic information in some time
slots for many road segments. To alleviate the impact of data
sparsity, we remove those segments that have less than 500
speed samples in a whole day. Finally, we get 3,004 road
segments which have enough traffic information to support our
further analysis. The remaining roads are plotted with red color
in Figure 5(a). Figure 5(b) illustrates the real traffic in Beijing
at 6pm, where red color represents busy traffic. Obviously, the
remaining roads in Figure 5(a) cover most of the roads that
have busy traffic in Figure 5(b). Therefore, it is reasonable for
us to conduct analysis on remaining roads since our goal is to
study the congestion correlation between road segments.

C. Settings

In the experiments, we set the ratio in Definition 5 to 0.5,
which is similar to [7], and compute the average speed on a
road segment by all GPS records on the segment over 30 days.

As illustrated in Figure 6, there are three sub-figures rep-
resenting respectively the number of congested roads, the
number of roads with GPS records and the proportion of
congested roads from 0:00 to 23:59 over 30 days. We can
see two peaks of congested roads and the proportion, which
corresponds to morning peak and evening peak in a day.

Fig. 6. The number of congested roads, the number of roads with GPS
records, and the proportion of congested roads

Besides, during late night, the number of roads with GPS
records dramatically falls, which is probably because there
are much fewer taxis travelling during this period. Since our
goal is to study congestion correlation between road segments,
to ensure accurate traffic information extraction and enough
congested roads for analysis, we focus on morning peak and
evening peak. Specifically, we generate two sets of training
samples from these two peaks in 30 days, respectively. The
morning peak is from 7:30-9:00, and the evening peak is from
17:30 - 19:00.

Recall Definition 6, in the experiments, we set t = 2, which
is 20 minutes; s = 5 km, since the average speed of all
GPS records in congested roads is about 16 km/h, and in 20
minutes the congestion can propagate at most around 5 km,
thus reducing the false congestion correlation to some extent.

For the two sets of training samples, we set the threshold
of correlation confidence for positive sample to 0.6, and the
threshold for negative sample to 0.4. In the morning peak
samples, 33909 positive samples are collected, and 386875
negative samples are collected. After RUS, a balanced morning
peak samples are generated with a total of 67915 samples.
In the evening peak samples, 53968 positive samples are
collected, and 495808 negative samples are collected. After
RUS, a balanced evening peak samples are generated with
a total of 108435 samples. For each sample, we initially
generate 618 features as described in Table II. Then we discard
Diff-Len and Diff-Degree, since they hardly contribute to the
performance of models during the experiments, and end up
with 616 features for each sample.

We input the two sets of training samples and train the
two peak models on four well-known classifers: Decision Tree
(DT), Random Forest (RF), Logistic Regression (LR) and
Support Vector Machine (SVM) [24] to predict congestion
correlation. Then the average precision and recall computed
by 10-fold cross validation are applied to evaluate the perfor-
mance of the trained models.



(a) Remaining roads (red) (b) Real traffic in Beijing at 6pm
Fig. 5. The remaining road segments after filtering and the real traffic in Beijing at 6pm.

TABLE III
10-FOLD CV RESULTS ON DIFFERENT CLASSIFIERS OF TWO MODELS

Morning Peak Evening Peak
`````````Classfiers

Metircs Precision Recall Precision Recall

Decision Tree 0.615(0.012) 0.598(0.033) 0.661(0.014) 0.642(0.053)
Random Forest 0.693(0.020) 0.550(0.029) 0.742(0.013) 0.627(0.031)

Logistic Regression 0.626(0.017) 0.559(0.048) 0.682(0.012) 0.665(0.030)
Support Vector Machine 0.639(0.027) 0.446(0.055) 0.692(0.011) 0.633(0.032)

TABLE IV
COMMONLY IDENTIFIED IMPORTANT FEATURES

Features Description

Morning Peak

Diff-B the difference of betweenness
Diff-C the difference of closeness
Diff-POI the difference of the total number of POIs
SimPOIs Pearson similarity of POI TF-IDF value distributions
netDis the network distance
‘trunk→trunk’ binary indicator variable for the ordered combination ‘trunk→trunk’of road types
‘motorway→motorway’ binary indicator variable for the ordered combination ‘motorway→motorway’of road types
‘catering→catering’ variable for the ordered combination ‘catering→catering’of POI categories

Evening Peak

Diff-B the difference of betweenness
Diff-C the difference of closeness
Diff-POI the difference of the total number of POIs
netDis the network distance
‘trunk→trunk’ binary indicator variable for the ordered combination ‘trunk→trunk’ of road types
‘trunk→secondary’ binary indicator variable for the ordered combination ‘trunk→secondary’ of road types
‘tertiary→secondary’ binary indicator variable for the ordered combination ‘tertiary→secondary’ of road types

D. Results and analysis

We evaluate the trained models using average precision and
recall. The 10-fold cross validation results are shown in Table
III, where the number in the bracket is the standard deviation.
Generally, the results are stable with satisfactory precision and
recall.

In terms of the two peak models, the evening peak models
achieve better performance in both precision and recall than
the morning peak models. In terms of precision, models
trained on Random Forest achieve the best performance in
both morning and evening peaks. In terms of recall, models

trained on Decision Tree and Logistic Regression achieve the
best performance, respectively in morning peak and evening
peak.

We also compare the top 10 important features identified
by two models on different classifiers, and list the commonly
identified important features on two models in Table IV. In
addition, Table V shows some rules generated by Decision
Tree on the two models (note that all the features have been
scaled into the range of [0, 1] as described in Section IV).

As we can see, Diff-B, Diff-C, Diff-POI, netDis, and
‘trunk→trunk’ are both commonly identified important fea-
tures in the two models, meaning that they are impor-



TABLE V
GENERATED RULES

Rules

Morning Peak If 0.4184 < Diff-POI ≤ 0.4454 and Diff-B > 0.4755 and Diff-C ≤ 0.4906, then uncorrelated
If Diff-POI > 0.4947 and netDis ≤ 0.294 and ‘motorway→motorway’ = 1, then correlated

Evening Peak If Diff-POI ≤ 0.49 and Diff-B > 0.4938 and ‘tertiary→secondary’ = 1, then uncorrelated
If 0.0038 < netDis ≤ 0.0877 and ‘trunk→trunk’ = 1, then correlated

tant to predict whether a road segment is correlated with
another one in terms of congestion in both morning and
evening peaks. On the other hand, ‘motorway→motorway’
and ‘catering→catering’ are more important in the morning
peak, and ‘trunk→secondary’ and ‘tertiary→secondary’ are
more important in the evening peak. The results reveal the
common and different patterns between morning and evening
peaks.

From the generated rules, we can observe more different
patterns in the morning and evening peaks. For example,
in the morning peak, there exits high congestion correlation
from one motorway to another if the POI numbers of them
are quite different, meaning that congestions are more likely
to propagate from a motorway with more POIs to another
one with less POIs in the morning peak. On the other hand,
there exits high congestion correlation from one trunk road
to another in the evening peak, meaning that congestions are
more likely to propagate between trunk roads in the evening
peak.

VI. CONCLUSION

In this paper, we outline a three-phase framework to study
the congestion correlation between road segments from multi-
ple sources of data. We first obtain congestion information on
road segments from GPS data, give the definition of congestion
correlation and design the mining algorithm. Then we extract
topological and POI features on each road segment, and fuse
them to generate the features of training samples for each
pair of road segments. Finally, the congestion correlation and
features on each pair of road segments are input to well-known
classifiers including Decision Tree, Random Forest, Logistic
Regression and Support Vector Machine. We train two models
on different classifiers to predict congestion correlation, com-
pare and analyze the performance and important features. The
experiment results show stable and satisfactory performance
as well as some important patterns of congestion correlation.
Notably, the proposed framework is general and can be applied
to other pairwise correlation analysis.
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