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Abstract—This paper aims to explore the potential application 
of advanced DM techniques for effective utilization of big 
building operational data. Case studies of mining the operational 
data of an institutional building for cooling load prediction and 
operation performance improvement is presented. Deep learning-
based prediction techniques, decision tree and association rule 
mining are adopted to analyze the operational data. The results 
show that useful knowledge can be extracted for forecasting 24-
hour ahead building cooling load profiles, identifying typical 
building operation patterns and spotting energy conservation 
opportunities.  
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I.  INTRODUCTION 

The building sector has become one of the largest energy 
consumers worldwide[1]. In Hong Kong, buildings are 
responsible for 92% of electricity consumption in 2014[2]. 
Building energy efficiency has become a global urgent issue 
and attracted great efforts. To improve the building operational 
performance, Building Automation Systems(BASs) are usually 
installed in modern buildings, which facilitate the real-time 
monitoring, control and energy management. Massive amounts 
of building operational data are collected and stored in BAS. 
However, the current utilization of big building operational 
data is far from being effective due to the lack of suitable 
methods or tools for analyzing the data. Data mining(DM) is a 
promising solution having excellent ability in extracting useful 
knowledge from massive data sets[3, 4].  

This paper presents two case studies on (1) using deep 
learning to predict 24-hour ahead building cooling load profiles 
and (2) extracting useful knowledge from massive building 
operational data using typical DM techniques. The method is 
developed based on the generic data analytic framework 
proposed in our previous study[5]. The methods are applied to 
analyze the data retrieved from one building in the Hong Kong 
Polytechnic University. 

II. RESEARCH METHODOLOGY 

The generic DM-based analytic framework[5] includes four 
phases i.e., data exploration, data partitioning, knowledge 

discovery and post-mining. The following sections present the 
details of methods used at different phases.  

A. Deep learning-based prediction techniques

Deep learning is a technique allowing computational
models with multiple processing layers to learn representations 
of data with multiple levels of abstractions[6]. This study 
investigates the potential of supervised and unsupervised deep 
learning in predicting building cooling load. Unsupervised 
deep learning is applied for extracting features as model inputs. 
Supervised deep learning is applied for developing prediction 
models. The performance is validated through comparisons 
with advanced predictive techniques, e.g., gradient boosting 
machines(GBM), support vector regression(SVR), extreme 
gradient boosting trees(XGB).  

B. Data partitioning

Data partitioning refers to the process of dividing the entire
data table into several subsets, each containing a number of 
rows. Two data mining techniques are suitable for this task. 
The first is clustering analysis, which partitions the massive 
data sets based on data similarities. The other is decision tree, 
which divides the data according to certain splitting criteria. 
This study selected the decision tree method due to its high 
interpretability.  

C. Knowledge discovery

One of the main approach for knowledge discovery is to
investigate the relationships between different variables using 
association rule mining. Traditional association rule mining 
method has heavy burden in manually discovering potentially 
useful rules from a large number of association rules obtained 
and determining the discretization methods for numeric 
variables. This study adopts the quantitative association rule 
mining algorithm QuantMiner[7] to mine both numeric and 
categorical variables directly. 

III. CASE STUDY

A. Description of building, system and data

The data to be analyzed are retrieved from a campus
building in the Hong Kong Polytechnic University. The gross 
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floor area is around 11,000m2 and 8,500m2. The chiller plant 
contains 4 water-cooled chillers (denoted as CH-1 to CH-4) 
and 4 cooling towers (denoted as CT-1 to CT-4). Chillers are 
connected in parallel and the chilled water is distributed using 
6 primary chilled water pumps (denoted as PCHWP-1 to 6) and 
6 secondary chilled water pumps (denoted as SCHWP-1 to 6). 
The condenser water is circulated between chillers and 4 
cooling towers using 6 VSD pumps (denoted as CDWP-1 to 
6).One-year building operational data in 2015 are collected 
with a collection interval of 30-minute. The variables included 
in this dataset contains five time variables (i.e., Month, Day, 
Hour, Minute and Day type), the outdoor temperature, the 
outdoor relative humidity, the supply and return chilled water 
temperature and the flow rate of the chilled water temperature. 
The building cooling load is calculated based on the latter three 
variables. In total, the dataset contains 15,792 observations.  

B. Building cooling load prediction using deep learning 
method 

Building cooling load is heavily influenced by two kinds of 
factors, i.e., building occupancy and outdoor condition. This 
study considered the occupancy influence using time variables, 
as the occupancy schedule for a specific functional building is 
usually fixed and correlated with time. Therefore, the BASIC 
feature set contains all the five time variables (i.e., Month, Day, 
Hour, Minute and Day type), the outdoor temperature and the 
outdoor relative humidity at time T. These seven features are 
taken as model inputs to predict building cooling load at time 
T. Compared to the BASIC feature set, additional information 
of building cooling load, outdoor temperature and RH during 
the past 24-hour are added for analysis, either in their raw form 
or after feature extraction. If without feature extraction, each 
time series of building cooling load, outdoor temperature and 
outdoor RH during the past 24-hour will result in 48 more 
variables (due to a collection interval of 30-minute). The 
resulting feature set therefore contains 151 (i.e., 144+7) 
variables and is denoted as the RAW feature dataset. Another 
feature set is constructed using unsupervised deep learning. A 
deep auto-encoder model is developed for each of the three 
time series. An optimization process is performed to determine 
the optimal model architecture. The model uses a tanh 
activation function, i.e., tanh(z)=(e^z-e^(-z))/(e^z+e^(-z)). The 
resulting feature set is denoted as DAE. The entire dataset is 
divided into training, validation and testing data with 
proportions of 70%, 15% and 15% respectively. The model 
parameters of each algorithm are optimized through cross-
validation and parameter grid search.  

C. Data partitioning using decision tree method 

A decision tree model is constructed using the cooling load 
data as shown in Fig. 1. Starting from Node 1, the model first 
picks the Hour as the splitting variable and the splitting 
criterion is {0, 1, 2, 3, 4, 5, 6, 7, 23} and {8 to 22}, which 
corresponds to the non-peak and peak hours. The lectures 
normally start at 8:30am and end at 9:30pm. Node 3 divides the 
data based on the Day type and the partitioning is made based 
on {Monday to Saturday} and {Sunday}. It should be noted at 
many classes for part-time students and academic activites are 
scheduled in this campus building on Saturdays and therefore, 
the cooling load on Saturdays is very similar to that on a 

typical weekday. Node 5 selects Month as the splitting variable 
and the two splitting sets are {1, 2, 3, 4, 12} and {5, 6, 7, 8, 9, 
10, 11}. The first set corresponds to the cooler and less humid 
seasons while the second refers to the hotter and more humid 
seasons in Hong Kong. The splitting criteria generated at 
Nodes 1, 3 and 5 are further used together to partition the data 
in a more detailed manner. As a result, the entire data sets are 
partitioned into 8 groups, as shown in Table 1.  
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Fig. 1. Decision tree model for building cooling load 

TABLE I.  DETAILS ON EIGHT DATA GROUPS 

Groups Month Day type Hour 
1 {1,2,3,4,12} {Monday to Saturday} {0,1,2,3,4,5,6,7,23} 
2 {1,2,3,4,12} {Monday to Saturday} {8 to 22} 
3 {1,2,3,4,12} {Sunday} {0,1,2,3,4,5,6,7,23} 
4 {1,2,3,4,12} {Sunday} {8 to 22} 
5 {5 to 11} {Monday to Saturday} {0,1,2,3,4,5,6,7,23} 
6 {5 to 11} {Monday to Saturday} {8 to 22} 
7 {5 to 11} {Sunday} {0,1,2,3,4,5,6,7,23} 
8 {5 to 11} {Sunday} {8 to 22} 

D. Knowledge discovery using quantitative association rule 
mining 

The QuantMiner algorithm is adopted to discover the 
associations in each data group separately. Both sides of the 
rule, i.e. the antecedent and the consequence, are constrained to 
have one variable only. The genetic algorithm parameters are 
set as follows: 250 as the population size, 100 as iteration 
number, 50% as crossover rate and 40% as mutation rate[7]. 
The support and confidence thresholds are set as 5% and 90% 
respectively. In general, the confidence threshold should be set 
no less than 0.8 to ensure the quality of association rules.  

IV. RESULTS AND DISCUSSIONS 

A. Prediction of building energy performance 

Table 2 summarizes the prediction performance using three 
metrics, i.e., the mean absolute error(MAE), the root mean 
squared error(RMSE) and the coefficient of variation of the 
root mean squared error(CV-RMSE). In terms of prediction 
techniques,  In general, XGB method has a performance edge 
over the GBM, SVR and the DNN methods. The best 
prediction performance is achieved when XGB models are 
developed using the DAE feature set and the resulting CV-
RMSE is 17.8%.  



TABLE II.  24-HOUR AHEAD PREDICTION ACCURACY ON TESTING DATA 

Method Metrics BASIC RAW DAE 
GBM RMSE 136.8 146.3 117.8 

CV-RMSE 22.8% 24.4% 19.7% 
MAE 94.2 102.5 83.9 

SVR RMSE 143.5 137.8 113.8 
CV-RMSE 24.0% 23.0% 19.0% 

MAE 109.1 98.5 85.4 
XGB RMSE 129.0 116.6 106.5 

CV-RMSE 21.5% 19.5% 17.8% 
MAE 85.8 82.1 71.6 

DNN RMSE 175.7 131.4 123.5 
CV-RMSE 29.3% 21.9% 20.9% 

MAE 111.9 90.2 100.5 

B. Identification of energy conservation opportunities 

Two examples rules presented in Table 3 indicate that when 
one chiller is switched on, its chilled water and condensing one 
chiller is switched on, its chilled water and condensing water 
flow rates become nearly constant. By checking the actual 
motor speed of PCHWP and CDWP, it is found that the motor 
frequency was maintained at 40Hz during operation, which 
means the energy saving potential of variable speed operation 
was not realized. This finding helps to spot the energy 
conservation opportunity in operations. Optimal control 
strategy should be developed to optimize the pressure set-point 
for pump speed control according to the actual cooling 
demand. 

TABLE III.  QUANTITATIVE ASSOCIATIONS FOR SYSTEM PERFORMANCE 
EVALUATION 

No. Antecedent Consequent 
Support 

(%) 
Confidence 

(%) 
Lift 

Data 
group 

1 CH1_Status 
= On 

CH1_CHW_Flow 
in [47.1, 51.3]  

60.1 99.5 1.7 6 

2 CH2_Status 
= On 

CH2_CDW_Flow 
in [46.8, 51.9]  

26.1 99.7 3.8 6 

3 
CH_1 = 
Off 

Performance = 
Good 

52.5 81.1 1.3 6 

Fig. 2. Density plot of system COP 

C. Evaluation on HVAC operational performance  

The HVAC operational performance can be evaluated using 
the system coefficient of performance (COP), which equals the 
ratio between the building cooling load and the power 
consumption of the chiller plant. The equal-width binning 
method is applied to discretize the system COP into 3 classes, 
Poor, Medium and Good. Fig. 2 presents system COP data 
discretization results with two cutting points 2.3 and 3.5 (red 
vertical dashed lines). Rule No. 3 in Table 3 presents an 
interesting association between system components and system 

performance. It states that if CH-1 is switched off, then the 
system performance is Good. This rule initiates a hypothesis 
that CH-1 is less energy-efficient compared to the other 2 
water-cooled chillers (note that CH-4 is not in operation in 
Group 6). To further investigate on this hypothesis, Fig. 3 is 
drawn to compare the system COP when CH-1, CH-2 and CH-
3 are in operation alone. It is evident that CH-2 and CH-3 
perform better than CH-1. Maintenance on CH-1 is 
recommended, such as cleaning the evaporator and condenser. 
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Fig. 3. Density plot of system COP when CH-1 to 3 is in operation 

V. CONCLUSIONS 

This paper presents the potential application of data mining 
in predicting building cooling load and discovering useful 
knowledge from massive building operational data. The 
method is developed from the generic data mining-based 
analytic framework proposed in our previous work. Results 
show that the proposed method can achieve accurate and 
reliable predictions on 24-hour ahead building cooling load 
profiles and extract valuable knowledge from building 
operational data for enhancing building energy efficiency. 
Further study will focus on exploiting the more recent 
advanced DM techniques, developing specific methods for 
mining big building operational data and discovering 
applications in building energy management. 
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