
WiP: An Architecture for Disruption Management
in Smart Manufacturing

Evangelia Kavakli∗†, Jorge Buenabad-Chávez∗, Vasilios Tountopoulos‡, Pericles Loucopoulos∗, Rizos Sakellariou∗
∗School of Computer Science, The University of Manchester, Manchester, UK

†Department of Cultural Technology and Communication, University of the Aegean, Mitilini, Greece
‡Athens Technology Center S.A., Chalandri, Greece

{evangelia.kavakli-2,jorge,pericles.loucopoulos,rizos}@manchester.ac.uk,v.tountopoulos@atc.gr

Abstract—This paper reports the work in progress towards the
specification of a conceptual architecture of a smart system for
supporting the management of disruptions in the manufacturing
domain. In particular, it proposes an approach to the description
of the system architecture based on a number of interrelated
viewpoints following the pertinent ISO 42010 standard. The
approach is being developed in the context of the EU-funded
H2020 DISRUPT project aiming to deliver a comprehensive data-
driven solution for automated vertical and horizontal integration
facilitating the transition into smart manufacturing.

Index Terms—Industry 4.0, smart manufacturing, architecture
description

I. INTRODUCTION

Smart Manufacturing describes the convergence of the
digital and physical worlds in the manufacturing domain.
The aim is to achieve seamless integration and cooperation
among products, equipment, humans, and organizations, thus
enhancing efficiency and agility of manufacturing processes
[1]. The increasing complexity and dynamics of processes
in smart manufacturing, leads to a high vulnerability to dis-
turbances during production processes. Furthermore, due to
the extensive connectivity between devices and processes in
the smart manufacturing model (both within the factory and
its ecosystem), a system failure may lead to larger losses
from the ripple effect. Losses could mount not only from the
affected system but also the other dependent businesses in the
supply and distribution chains. As a consequence, managing
disruption in smart manufacturing is becoming an important
challenge [2].

Disruption management aims at coping with unexpected
events to mitigate the effect of disruption in real-time [3].
The disruption management lifecycle includes the following
phases: collection, detection and analysis of disrupting events,
decision making in order to develop countermeasures to solve
the problem induced by the disrupting event and reaction to
implement the solution defined in the previous phase [2]. In
the context of smart manufacturing, disruption management
deploys a number of technologies, such as, data collection
enabled through Internet-of-Things (IoT) technologies, Cyber-
Physical systems (CPS) used for monitoring and control of
physical manufacturing resources, decision support driven by
data analytics and complex event processing [4], while cloud

environments may be used for computational or storage sup-
port. Such technologies have been presented in the literature
and have been the subject of various projects [5], [6] focusing
mostly on production systems, whilst less attention has been
given in other application areas such as logistics systems [7].

This short paper reports on the initial specification of a
software system architecture to support the management of
disruptions in smart manufacturing that takes a wider per-
spective correlating the production process with information
derived from the whole value chain. This is ongoing work
carried out in the context of the EU-funded H2020 DISRUPT
project1.

The paper is structured as follows. Section II, presents the
methodology used for specifying the system architecture. The
detailed description of the proposed architecture is provided
in Section III. Finally, Section IV concludes and provides
pointers to future developments.

II. VIEWPOINT-ORIENTED ARCHITECTURE SPECIFICATION

The notion of viewpoint-oriented architecture in require-
ments and software engineering originates in the 1990s as
a way to address the complexity of software development
in a setting with many actors, using various representation
schemes, having diverse domain knowledge and different
development strategies [8], [9]. As a result, several architecture
frameworks have been proposed, which are essentially view-
point classification schemes. The classification by Kruchten
[10], proposed in 1995, is probably the best known classifica-
tion and is still widely used. These early ideas on viewpoint-
oriented software engineering have found their way into the
ISO/IEC 42010:2007 standard, revised in 2011, in which a
viewpoint is defined as “a way of looking at systems” [11].
According to the above, viewpoints are stakeholder-centric;
their content is determined by their relevance to a stakeholder’s
concerns. In addition, each viewpoint prescribes one/set of
language(s), modelling technique(s), or analytical method(s)
(model kinds) which, when applied to a particular system of
interest, result in a specific system description (view).

Obtaining a viewpoint-oriented architecture specification
involves the following steps: (a) identification of the stakehold-
ers having concerns considered fundamental to the architecture

1http://www.disrupt-project.eu/



of the system; (b) identification of the architecture viewpoints,
providing a name for each viewpoint, a listing of architecture-
relevant concerns to be framed by this viewpoint, and a listing
of the typical system stakeholders; and (c) identification of the
model kind(s) used in each viewpoint.

In the context of enterprise systems, viewpoints are promi-
nently present in the Open Group TOGAF architectural
framework [12]. Similarly, industrial IoT systems (in Energy,
Healthcare, Manufacturing, Public Domain and Transporta-
tion domains) are also described through viewpoints (busi-
ness, usage, functional and implementation viewpoints) by
the Industrial Internet Reference Architecture (IIRA) [13].
For manufacturing, IIRA is complemented by the Reference
Architecture Model Industrie 4.0 (RAMI4.0) [14] through a
cubic, 3-viewpoint model that allows assets to be (a) described
in the form of functional layers, (b) tracked over their entire
lifetime, and (c) assigned to technical and/or organisational
hierarchies [14]. Assets include products, machines, produc-
tion lines, software: anything that is of value to a company.
The proposed architecture details the elements pertaining to
the IIRA functional viewpoint from a software development
perspective. External access to those elements’ functionality
will be through (external) interfaces organised into RAMI4.0
functional layers.

In line with the above, the next section describes an initial
architecture description as system-specific views (models) that
conform to three complementary viewpoints.

III. A DISRUPTION MANAGEMENT SYSTEM
ARCHITECTURE

The architecture vision of the system is guided by the
desire to support knowledge-driven decision making in the
production and scheduling through the efficient identification
and handling of events in the manufacturing ecosystem that
could disrupt its operations. The system stakeholders include
system users (domain experts, operational managers and de-
cision makers), system administrators, as well as technology
providers (including the suppliers, the developers/integrators,
the testers and the maintainers of the system).

The following list provides an overview of the concerns (to
be further elaborated in each viewpoint) that are considered
fundamental to the architecture of the system:

• The purpose of the system is to support the disruption
management lifecycle.

• The system will be added onto an existing factory ecosys-
tem.

• The system will be based on a distributed architecture,
consisting of loose coupling of (potentially existing)
functional components, to enable flexibility in the system
components and their functionality. This should reduce
the risk for a vendor lock-in.

Based on the above the proposed architecture specification
focuses on the identification of the system components and
the interactions between them in order to achieve the intended
system functionality taking into consideration non-functional
issues and not how each individual component works.

A. Architecture Specification

Three architectural viewpoints have been considered, in
accordance to the guidelines proposed in [15], whereby the
system is seen as: a set of implementation units (logical view);
a set of runtime elements interacting to carry out the systems
work (informational view); and a set of elements existing in
and relating to external structures in its environment (physical
view). An overview of each viewpoint is shown in Table I.

TABLE I
THE LOGICAL, INFORMATIONAL AND PHYSICAL VIEWPOINTS

THE LOGICAL VIEWPOINT
VP Overview Describes the system main components, their functionality

and interfaces
Concerns Functional capabilities that support the functional

requirements, flexibility to support functional changes,
external interfaces, and relationships between system
components

Typical stakeholders All stakeholders
Model kinds UML class diagrams, UML component diagrams, or both
THE INFORMATIONAL VIEWPOINT
VP Overview Describes a complete but high-level view of run-time

information flow between system components
Concerns Run time information flow between system components;

real-time requirements, timeliness, latency, and age;
references and mappings; transaction management and
recovery; data quality; data volumes; archives and
data retention; and regulation.

Typical stakeholders Primarily users, acquirers, developers, and maintainers,
but most stakeholders have some level of interest

Model kinds UML information flow diagrams, UML sequence diagrams
or both

THE PHYSICAL VIEWPOINT
VP Overview Describes the environment into which the system will

be deployed, including dependencies it has on the
environment, and the mapping of system components
to the environment

Concerns Types of hardware required, network requirements
and physical constraints

Typical stakeholders System administrators, developers, testers
Model kinds UML deployment diagrams

B. Architecture Description

Fig. 1 demonstrates the development of a system-specific
view that conforms to the logical viewpoint using the UML
component diagram formalism. The figure presents the system
components, their relations and their internal interfaces. These
include: the Cyber-Physical System (CPS) component, which
continuously collects and processes data from the plant floor
and the supply chain and enacts high-level decisions upon
the plant floor through IoT; the Data Collection Framework
(DCF) that collects, processes and stores data from enterprise
information systems and stores processed data from CPS; the
Complex Event Processing component which identifies (from
analysing data in the DCF) events beyond normal operation
whose impact is assessed by the Simulation component; the
Data Analytics component that seeks to identify (from data
in DCF) abnormal trends that may lead to disruptions; the
Modelling component which provides production models that
are optimised by the Optimisation component and evaluated
based on Simulation; the CloudBoard component which is the
user interface to access all system functions; and the Cloud



Fig. 1. Component diagram of the system architecture.

Controller component which enacts user requests (received
through the CloudBoard) and facilitates the integration and
interaction between the different components.

IV. CONCLUDING REMARKS

This short paper presents work in progress towards the
architecture specification of an integrated system for managing
disruptions in smart manufacturing following a viewpoint-
oriented paradigm. Future work will specify the viewpoints in
further detail and elaborate the interactions between compo-
nents of the architecture. In addition, appropriate demonstrator
tools will be developed to evaluate the proposed architecture.

ACKNOWLEDGMENT

This work has been supported in the context of the EU
H2020-FOF-11-2016 project DISRUPT (grant no 723541).
The authors would like to thank all project partners for fruitful
discussions.

REFERENCES

[1] Smart Manufacturing Leadership Coalition,
https://smartmanufacturingcoalition.org/

[2] N. Galaske and R. Anderl, “Disruption Management for Resilient
Processes in Cyber-Physical Production Systems”, Procedia CIRP 50,
442-447, 2016.

[3] G. Yu and X. Qi, Disruption Management, World Scientific Publishing,
Singapore, 2004.

[4] P. Zheng, H. Wang, Z. Sang, et al, “Smart manufacturing systems for
Industry 4.0: Conceptual framework, scenarios, and future perspectives”,
Frontiers of Mechanical Engineering, 13(2), 137-150, 2018.

[5] Y. Liao, F. Deschamps, E. de Freitas Rocha Loures and L. F. Pierin
Ramos, “Past, present and future of Industry 4.0 – a systematic liter-
ature review and research agenda proposal”, International Journal of
Production Research, 55(12), 3609-3629, 2017.

[6] P. Leita, A. W. Colombo, S. Karnouskos, “Industrial automation based
on cyber-physical systems technologies: Prototype implementations and
challenges”, Computers in Industry, 81, 11-25, 2016.

[7] E. Hofmann and M. Rüsch, “Industry 4.0 and the current status as well
as future prospects on logistics”, Computers in Industry, 89, 23-34, 2017.

[8] A. Finkelstein, J. Kramer, B. Nuseibeh, et al., “Viewpoints: A Frame-
work for Integrating Multiple Perspectives in System Development”,
International Journal on Software Engineering and Knowledge Engi-
neering, 2(1), 31-58, 1992.

[9] G. Kotonya and I. Sommerville, “Viewpoints for Requirements Defini-
tion”, IEE/BCS Software Engineering Journal, 7(6), 375-387, 1992.

[10] P. B. Kruchten, “The 4+1 View Model of Architecture”, IEEE Software,
12(6), 42-50, 1995.

[11] ISO/IEC/IEEE 42010:2011, “Systems and Software Engineering – Ar-
chitecture Description”, 2011.

[12] The Open Group, TOGAF v9.1, an Open Group Standard, available at
http://pubs.opengroup.org/architecture/togaf9-doc/arch

[13] Industrial Internet Consortium, “IIRA: The Industrial Internet of Things
Reference Architecture”, Tech. report, 2017.

[14] IEC PAS 63088:2017, “Smart manufacturing - Reference architecture
model industry 4.0 (RAMI4.0)”, publicly available specification (pre-
standard), 2017.

[15] P. Clements, F. Bachmann, L. Bass, et al, “A Practical Method for
Documenting Software Architectures”, working paper, 2002. Available
from http://repository.cmu.edu/compsci/671


