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Abstract—In this paper we develop a deep learning
model to distinguish dust from cloud and surface using
satellite remote sensing image data. The occurrence of
dust storms is increasing along with global climate change,
especially in the arid and semi-arid regions. Originated
from the soil, dust acts as a type of aerosol that causes
significant impacts on the environment and human health.
The dust and cloud data labels used in this paper are from
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation) satellite. The radiometric channels
and geometric parameters from VIIRS (Visible Infrared
Imaging Radiometer Suite) satellite sensor serve as features
for our model.

We trained and tested our deep learning model using
10,000 samples in March 2012. The developed model has
five hidden layers and 512 neurons in each layer. The
classification accuracy on the test set is 71.1%. In addition,
we performed a shuffling procedure to identify the impor-
tance of features, which is calculated as the increase in
the prediction error after we permute the feature’s values.
We also developed a method based on genetic algorithm
to find the best subset of features for dust detection. The
results show that the genetic algorithm can select a subset
of features that have comparable performance as that of
a model with all features. The shuffling procedure and
the genetic algorithm both identify geometric information
as important features for detecting mineral dust. The
chosen subset will improve computational efficiency for
dust detection and improve physical based methods.

Index Terms—Climate pollution; Deep learning; Feature
selection; Classification; Genetic algorithm
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I. INTRODUCTION

Dust storm affects many domains related to smart

computing, including transportation, environmental pro-

tection and healthcare. Dust storm occurrence is increas-

ing under the background of global climate change, espe-

cially in the arid and semi-arid regions. Dust, originated

from the soil, acts as a type of aerosol that causes sig-

nificant impacts on the environment and human health.

Dust storms reduce visibility and cause dangers for high

way traffic. For people with respiratory conditions like

asthma, chronic obstructive airways disease (COAD) or

emphysema, even small increases of dust concentration

can make their symptoms worse.

Dust is also the most abundant aerosol component in

terms of dry mass [1], [2]. Dust aerosols can interact

with both solar and thermal infrared radiation, which

gives them an important role in regulating the radiative

energy balance of Earth-Atmosphere system. After lifted

and transported by wind, dust aerosols can absorb and

scatter solar radiation and warm the surrounding air.

It reduces the sun’s radiation that reaches the surface,

imposing a shortwave cooling effect [3], [4]. On the other

hand, dust absorbs longwave radiation and re-emits to the

surface, imposing a warming effect on the surface [5],

[6]. Dust particles can also act as cloud condensation

nuclei (CCN) or ice nuclei (IN) in cloud formation

processes and alter cloud lifetime and radiative effect by

changing cloud droplet number concentration and size

[7], [8].The radiative effects dust depend on a variety

of factors including dust loading, dust particle size, dust

refractive index and dust vertical distribution. Currently



and in the near future satellite observation is the only

means to monitor the occurrence of dust storm and the

properties of dust aerosols on a regional to global scale.

With the rapid development of satellite remote sens-

ing, various methods have been proposed to utilize

multi-channel observations to detect and retrieve dust

information [9]. The Moderate Resolution Imaging Spec-

troradiometer (MODIS) is a widely used passive sensor

with 36 channels in dust detection. Starting from 2011,

as a replacement to MODIS, the Visible Infrared Imaging

Radiometer Suite (VIIRS) on board Suomi National

Polar-orbiting Partnership (NPP) spacecraft and Aqua

satellite was launched. The VIIRS sensor has 16 moder-

ate resolution (750 m) channels. Physical-based retrieval

methods, such as [10] and [11], have been proposed to

identify dust aerosols from the VIIRS moderate resolu-

tion channels and some of them were adopted from the

MODIS channels.

The physical-based methods, however, highly depend

on empirical thresholds to differentiate dust and dust-

free pixels. Also, the detection accuracy is 40-50% when

compared with collocated active remote sensing (e.g.,

the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observation, CALIPSO) dust index [12]. Because of

the ample information from multispectral satellite ob-

servations, machine learning and deep learning based

approaches have been proposed to automate the dust

detection process. In this paper, we propose a deep

learning model to detect mineral dust using VIIRS data.

The rest of the paper is organized as follows. Section

II connects our study to existing studies in the literature.

Section III discusses datasets and the deep learning

model used in this paper. Section IV presents the results

of cloud and dust identification from the deep learning

model, followed by discussions of the results in terms

of significance and impacts in Section V. Section VI

concludes the paper.

II. RELATED WORK

Some widely used physical-based retrieval methods

include (a) Normalized Difference Dust Index (NDDI)

[10], [11]; (b) Brightness Temperature Difference (BTD)

(11 μm − 12 μm) [13], [14]; (c) BTD (8.6 μm − 11

μm) [15]; (d) Reflective Solar Band (RSB) [16]. NDDI

is only appropriate in detecting dust storms when a

dust-free image from a nearby time period is available.

The BTD methods are simple and efficient in detecting

dust. However, any pixel that have BTD exceed the

threshold difference will be classified as dust pixel and

this can mis-identify land pixels as dust. The RSB

method requires significant amount of dust-free pixels

in determining the threshold and this method has the

same problem of mis-identifying land pixels as dust as

in the BTD methods.

Several machine learning based approaches have also

been proposed over the last decade. Based on the feature

set of spectral bands reported in literature, Murguia et

al. developed a Maximum Likelihood (ML) classifier

and a Probabilistic Neural Network (PNN) to detect the

dust storms [17]. They found PNN provides improved

classification performance with reference to the ML clas-

sifier and their method allows for real-time processing.

Han et al. developed a decision tree classifier based

on visually inspected dust events and their associated

multispectral MODIS images, and found that the pre-

diction agree in general with surface observations [18].

Mario et al. developed an Artificial Neural Network

(ANN) to detect dust storm from multispectral MODIS

images [19]. Using selected MODIS channels, Amir and

Sanaz proposed a random forests algorithm to detect

dust plums over water and land. The results were shown

to be better than those physics-based methods [20].

In [12], Shi et al. proposed a hybrid approach combining

physical model with traditional data mining models such

as Random Forest, which achieved better accuracy than

each individual method.

III. METHODOLOGY

Existing machine learning studies have used either

visually selected dust events or pre-selected channels to

train the models. The models may not always perform

well in the thin dust layer events, and the models may

miss information from spectral channels that were not

selected as input features. In addition, the proposed

methods above did not perform feature selection after

training their models. Selecting a subset of features with

similar prediction accuracy can reduce the computational

time and make it easier to apply the model to real-time

detection. In addition, knowing important features on

dust detection could also help sensor design for future

satellite missions. In this paper, we develop and test a

deep learning model for dust detection and select a best

subset that have similar prediction accuracy as using all

channels.

Besides simply classifying dust and dust-free pixels,

we also add cloud information in the learning procedure.

Dust affect climate through cloud by changing cloud

lifetime, thus it is imperative to study dust effect on cloud

using synthetic dust and cloud observations. The true

dust and cloud information is from collocated CALIPSO

level-2 data and it is used in training and verifying the

deep learning model.

The Visible Infrared Imaging Radiometer Suite (VI-

IRS) is one of the key instruments on board the Suomi



National Polar-Orbiting Partnership (Suomi NPP) space-

craft, which was successfully launched on October 28,

2011. VIIRS has 22 channels, 16 of which are moderate

resolution bands (M-bands) and have a spatial resolution

of 750 m at the nadir. The other six channels are made

up of five imaging resolution bands (I-bands), which

have a spatial resolution of 375 m at the nadir, and one

day/night panchromatic band with a spatial resolution of

750 m. The 22 channels cover wavelengths from 0.41 to

12.5 μm and can provide data records for clouds, aerosol,

sea surface temperature, snow and ice, vegetation and

fire.

The satellite, sun, and target relative positions are im-

portant factors affecting the amount of radiation received

by the satellite sensor. Though it is hard to quantify

the 3D radiative effect, the geometric information cannot

be ignored in classifying pixel categories. In this study,

in addition to the radiometric channels, four geometric

parameters from VIIRS, namely view zenith angels, solar

zenith angels, view azimuth angels and solar azimuth

angels, are used in training the deep learning model.

The dust and cloud information from CALIPSO satel-

lite was used as labels in the deep learning model.

CALIPSO was launched in 2006 as part of A-Train and

on board CALIPSO. There is an active remote sensor,

lidar, available that can provide reliable cloud and dust

aerosol index.

Four categories were classified in this project with (1)

dust with no cloud, (2) cloud with no dust, (3) dust with

cloud, and (4) others. From global perspective, cloud

occurrence is much higher than dust, this will likely

to cause imbalanced samples in the training and test

datasets. To avoid this, we chose the same number of

samples for each category. For test purpose and to speed

up the code, we selected total 10,000 samples in March

2012 and the samples are equally distributed among the

four categories.

A. Deep learning model

A deep learning model simulates the way biological

nervous systems (e.g., human brain) process information

[21]. A deep learning model composes multiple layers of

neurons. In this study, we used Deep Neural Networks

(DNN) deep learning model. The first layer contains in-

put predictors (in this case, 16 radiometric channels and

four geometric parameters), and the last layer contains

output responses (in this case, the classification of the

pixel types). Between the input layer and the output layer

are one or more hidden layers interconnected with each

other by hidden neurons. Each layer extracts features of

the input for classification. The use of multiple hidden

layers allows the construction of hierarchical features at

different levels of resolution [22]. The choice of the num-

ber of hidden layers and the number of hidden neurons in

each layer is often guided by background knowledge and

experimentation. It is most common to have a reasonably

large number of hidden neurons and train them with

regularization. In this study, we determine the number

of hidden layers and the number of hidden neurons by

trial and error. We use L2 regularization in each layer to

suppress the large weights and result in a model that is

more stable and less like to overfit the training data. The

activation function and the learning algorithm in deep

learning models are also selected by trial and error.

B. Feature selection

Another goal of this study is to find the important

input features for dust detection. We use two approaches

to conduct feature selection in the deep learning model:

a shuffling procedure and a genetic algorithm. The

shuffling procedure gives an importance order of the

features, while the genetic algorithm selects a subset

of the features that can generate the optimal prediction

performance.

1) Shuffling procedure: The procedure is first to get

a benchmark test accuracy by training the model once

and then predict multiple times while randomizing each

variable in the test set. The difference of the benchmark

test accuracy and the test accuracy after permuting the

variable, meaning with and without the help of this

variable, is used as an importance measure (i.e., per-

mutation importance). If the accuracy after randomizing

a variable is lower than the benchmark test accuracy, it

is an important variable. On the other hand, if nothing

changes or the accuracy is higher than the benchmark,

it is a useless variable. We randomize 50 times and get

an average test accuracy for each variable and compare

with the benchmark test accuracy.

2) Genetic algorithm: Genetic algorithm is a directed

random search technique that simulates the natural se-

lection and evolution process [23]. Because it can be

directly integrated to existing simulations and models,

genetic algorithm has been widely used for many op-

timization problems which have a large number of pa-

rameters and their analytical solutions are hard to derive

[24]. Rationally, genetic algorithm has also been used to

optimize deep learning models [25], [26]. Here, we use

a genetic algorithm to select a subset of features in our

deep learning model. A sequence indicating whether a

features is selected or not is defined as a genome.

1) Initialization: we create a certain number of deep

learning models with randomly generated genomes

to be the population of the first generation.



2) Fitness evaluation: we train each model in the

population and evaluate its performance on the test

set using classification accuracy.

3) Selection: we rank all models in the population by

accuracy and keep 20% of the top-ranked models

to become part of the next generation to breed

children. we also randomly keep 10% of the rest of

the models. This helps find potentially successful

combinations between worse-performers and top-

performers, and also helps avoiding stuck in local

maximum.

4) Crossover: crossover is the combination process

from two members of a population to generate

one or more children. Besides the top 20% models

and the randomly kept 10% non-top models, to

keep our population of 30 models, 21 children are

generated for breeding in each generation.

5) Mutation: we randomly mutate some of the

genomes on some of the kept models.

6) Genome replacement: genomes of the previous

generations are replaced using the genomes after

crossover and mutation.

7) Step 2 to step 6 are repeated for multiple genera-

tions until the model performance converges, i.e.,

the test accuracy will not get any better. The best

performed genome in the final generation is the

selected best deep learning model, and the best

performed genome indicates the selected subset of

the features.

IV. EMPIRICAL EVALUATION

A. Deep learning model

Our final developed deep learning model has five

hidden layers with 512 neruons in each layer. The

activation function in each layer is “relu”, which is found

to achieve better results than other functions. And we

use the optimizer “adam” to train the model. Figure 1

shows the training and validation loss on the test set.

The validation loss is very close to the training loss,

indicating no over-fitting occurred. The classification

accuracy on the test dataset is 71.1%.

B. Feature selection by shuffling procedure

Figure 2 shows the test accuracy when shuffling each

feature in the model. The red horizontal line indicates

the benchmark test accuracy (68.3%) when no variable

is shuffled. Note the accuracy is different from 71.1%

in Section IV-A. This is due to the randomness in the

training process. Neural networks and genetic algorithm

are both stochastic, which means they make use of

randomness (e.g., random weights initialized in the deep

learning model, population random generated in the

Fig. 1. Training and validation loss on the test dataset.

genetic algorithm) and therefore each time can produce

different results. Each box in Figure 2 indicates the

distribution of the test accuracy of each variable being

shuffled 50 times. Overall, the average test accuracy

of all the variables are smaller than the benchmark

test accuracy, which means all the variables contribute

to the model to a certain degree. But some are more

important than others. The most important features are

the geometric information of solar zenith angle (18),

view zenith angle (20), and solar azimuth angle (17),

followed by channels 15 and 16 (11 and 12 μm) which

are consistent with the NDDI and RSB methods from

physical retrievals mentioned in Section II. Because dust

particles are non-sphere particles, so their reflectance are

different from different view angles, so are the emittance.

Fig. 2. Test accuracy after shuffling each feature.

C. Feature selection by genetic algorithm

Table I shows the selected features by genetic al-

gorithm and their performance. We test scenarios with



TABLE I
FEATURES SELECTED BY GENETIC ALGORITHM

Population size Number of generations Selected features Best test accuracy
8 4 2, 3, 6, 8, 9, 11, 12, 14, 15, 17, 18, 19 67.8%
16 4 2, 4, 8, 11, 13, 14, 15, 17,18, 19, 20 68.1%
32 4 1, 2, 3, 4, 5, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20 70.3%
32 8 1, 3, 6, 8, 9, 10, 11, 17, 18, 19, 20 70.1%
64 8 1, 5, 7, 9, 12, 15, 16, 17, 18, 19, 20 71.5%

different population size and different number of genera-

tions. The results show that, in general, when we have a

larger population size and more generations, the genetic

algorithm is able to find a better solution. When we

have a population size as 64 and 8 generations, the test

accuracy can achieve 71.5%, which is even better than

using all the features (71.1%). This proves that genetic

algorithm is able to find a subset of features that can

generate comparable results with all available features.

For the selected features in Table I, the geometric

information are important regardless of the population

size and number of generations. This is consistent with

the result from the shuffling procedure and is physically

reasonable due to the non-spherical radiative properties

of dust particles. The geometric matrix, however, are not

adequately characterized in the physical based classi-

fication methods. Shi et al. also showed that machine

learning methods that include geometric angles have

a higher prediction accuracy than the physical based

methods [12].

The channels used in physical based models are all

selected as important features in Table I, suggesting the

deep learning model is capable of classifying dust and

cloud in a physically feasible way.

Note that the prediction accuracy from our deep

learning model is lower than that by Shi et al. in [12].

This is due to several reasons. First, they use 36 channels

from MODIS, while we use 16 channels and 4 geometric

parameters from VIIRS. Second, they only classify dust

pixels while we classify both dust and cloud pixels.

Besides, they use the training data and test data from

the same day, which is likely to have higher prediction

accuracy because of the similar dust and atmospheric

properties. While in our study, the training and test

datasets are randomly chosen and are not necessarily

from the same day or over a specified region. To further

improve our deep learning model, a more extensive

dataset is required.

V. DISCUSSION

The selections of some of the channels are obvious

from physics point view. The reflectance of dust in

visible wavelength (0.4-0.7 μm) increase steadily, so

the reflectance and differences in visible channels (e.g.,

channel 1 to channel 5) can be indications of dust aloft.

Dust layers usually transport at an altitude of 5 km,

a height that above most of water vapor, so the dust

particles have higher reflectance in channel 9 (1.38 μm)

than cloud and this provides the possibility to separate

dust pixels from cloudy pixels. From radiative transfer

calculations in [13], the ratio of channel 4 (0.54 μm) to

channel 7 (0.86 μm) is greater than 1 when no cloud or

dust is present in the pixel, and the difference in the two

channels is mainly contributed by molecular scattering.

Because shorter VIIRS wavelength often saturates in

cloud filled pixels, this ratio is near 1 for cloudy pixels.

For dust, the reflectance is lower in shorter wavelength,

so this ratio will decrease to below 1 in dust pixels. With

the increase of dust optical depth, this ratio decreases.

Fine dust particles have different emissivites in channel

14 (8.6 μm) and channel 15 (11 μm). This produces

brightness temperature differences in the two channels.

In window regions, Ackerman found that the difference

of brightness temperature in channel 15 (11 μm) and

channel 16 (12 μm) is negative (less than 1K) for dust,

among other aerosol types [10]. This threshold has been

used in BTD method ever since it was proposed. The

channels used in physical-based methods are all selected

as important features in our model.

Besides those, some other channels also appear to be

significant, for example, channels 8 and 11. Although it

is not clear how, this may suggest that channels 8 and 11

also contain useful information to identify dust, and this

can provide directions for future satellite dust detection

retrieval developments.

Identify a limited number of features is valuable

for dust detection. First, with fewer data to train the

model, the computational efficiency of predicting the

dust storm will significantly be improved. Real-time

prediction is vital for providing in-time prevention and

warning and thus reduce the harmful impacts caused by

dust storms. Second, we can implement the geometric

angles that identified as important features into physical

based methods, which will improve the accuracy of these

methods. To further enhance the deep learning model,



more data points are needed. With the additional training

data, more CPU nodes or GPU will likely be required

to facilitate the computation.

VI. CONCLUSION

The quantitative monitoring of dust storm is of great

significance for disease prevention, environmental pro-

tection, and sustainable development. In this study, a

deep learning model was trained and used to classify

dust and cloud using VIIRS and CALIPSO data. The

deep learning model achieved a benchmark prediction

accuracy of 71.1%. We use a shuffling procedure to iden-

tify the importance of features in the model and a genetic

algorithm to conduct feature selection. Through careful

tuning of population size and number of generations,

the model can predict with comparable accuracy using

a subset of the variables. The selected subsets consist

of the channels used in the physical based classification

methods, and the geometric angles are always shown

importance in the subsets for duct detection.
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