
Reservoir Based Edge Training on RF Data

To Deliver Intelligent and Efficient IoT Spectrum Sensors

Silvija Kokalj-Filipovic, Paul Toliver, William Johnson, Rob Miller

Perspecta Labs Inc.
{skfilipovic, ptoliver, wjohnson, rmiller}@perspectalabs.com

Abstract—Current radio frequency (RF) sensors at the Edge
lack the computational resources to support practical, in-situ
training for intelligent spectrum monitoring, and sensor data
classification in general. We propose a solution via Deep Delay
Loop Reservoir Computing (DLR), a processing architecture
that supports general machine learning algorithms on compact
mobile devices by leveraging delay-loop reservoir computing in
combination with innovative electrooptical hardware. With both
digital and photonic realizations of our design of the loops,
DLR delivers reductions in form factor, hardware complexity
and latency, compared to the State-of-the-Art (SoA). The main
impact of the reservoir is to project the input data into a
higher dimensional space of reservoir state vectors in order
to linearly separate the input classes. Once the classes are
well separated, traditionally complex, power-hungry classification
models are no longer needed for the learning process. Yet,
even with simple classifiers based on Ridge regression (RR),
the complexity grows at least quadratically with the input
size. Hence, the hardware reduction required for training on
compact devices is in contradiction with the large dimension
of state vectors. DLR employs a RR-based classifier to exceed
the SoA accuracy, while further reducing power consumption by
leveraging the architecture of parallel (split) loops. We present
DLR architectures composed of multiple smaller loops whose
state vectors are linearly combined to create a lower dimensional
input into Ridge regression. We demonstrate the advantages of
using DLR for two distinct applications: RF Specific Emitter
Identification (SEI) for IoT authentication, and wireless protocol
recognition for IoT situational awareness.

Index Terms—IoT, reservoir computing, edge computing, in-
situ training, delay loops, wireless security, specific emitter
identification, RF fingerprinting, RF protocol recognition

I. INTRODUCTION

State-of-the-Art (SoA) machine learning systems that are
trained on the sensor signals lack the computational resources
to support in-situ training and adaptable inference for situa-
tional awareness. Such in-situ solutions are needed as it is not
always practical to leverage backhaul resources due to security,
bandwidth, and mission latency requirements. We propose
a solution through Deep delay Loop Reservoir Computing
(DLR), our novel AI processing architecture that supports gen-
eral retrainable machine learning (ML) solutions on compact
mobile devices by leveraging delay-loop reservoir computing
(RC). Reservoir computing is a bio-inspired approach espe-
cially suited for processing time-dependent information in a
computationally efficient way [1]. The RC in ML solutions
conditions the input features towards linear separability of
different classes, upon which any ML algorithm can be trained

more efficiently. DLR delivers significant reductions in form
factor, hardware complexity/ power consumption for training
at the Edge, providing real-time learning latency that is several
orders of magnitude smaller than the SoA baseline classifiers.
We demonstrate the advantages of DLR on the applications of
RF Specific Emitter Identification (SEI) and wireless protocol
recognition (WiPRec). SEI aims to extract rich nonlinear
characteristics of internal components within a transmitter to
distinguish one transmitter from another, even within the same
manufacturer and protocol class. Complicated conventional
authentication methods, based on the upper protocol layers and
cryptography, are not convenient for small, computationally
limited IoT devices. The authentication via RF-based SEI
eliminates the communication and computation overhead in
conventional approaches, while our approach makes it in-
situ retrainable. For a pictorial illustration of the process
employing a DLR system to train and perform SEI, including
RF spectrum sensing and preprocessing, please consult Fig. 1.

We reported intermediate results in [2]. Using architectural
and algorithmic extensions, we have since improved the DLR
performance as well as the models of the SoA classifiers
performing the SEI. While we still utilize 2 deep neural
net models for comparison, recurrent (RNN) and residual
(ResNet), we managed to reduce their complexity for a fair
comparison. It is difficult to establish an SoA model for the
collected dataset, which is not open source, but we made com-
parisons with SEI tasks of similar complexity. For example,
the number of trainable parameters of a ResNet cited in [3]
for the SEI on the set of 10 transmitters (plus an outlier class)
is on the same order of magnitude as the ResNet we train as
SoA reference on the dataset comprised of the signal bursts
emitted from 20 WiFi devices.

Apart from the SEI dataset, we also evaluated DLR on the
protocol recognition dataset comprised of the bursts of RF
samples collected from four ISM emitter classes, WiFi 802.11n
[4], Bluetooth (BT) [5], ZigBee [6] and NRF [7], which we
used in our prior publication [8]. Our innovative architecture of
split loops helps preserve the H/W reduction while exceeding
the SoA accuracy in both applications.

Our demo DLR platform [9] supports two HW implementa-
tions of delay loops, using a configurable switch (see Fig. 2):
a digital (FPGA) loop, and an analogue one based on the inno-
vative photonic hardware that exploits the inherent speed and
multi-dimensional (spatial, temporal and wavelength-based)

ar
X

iv
:2

10
6.

16
08

7v
1

 [
ee

ss
.S

P]
 1

 A
pr

 2
02

1

processing diversity of signals in the optical domain [10].
DLR may be configured to synergistically combine different
input transformations with split loops, which offers flexibility
for different ML applications and maintains the same out-
standing performance. In its photonic implementation, this can
be further combined with Wavelength Division Multiplexing
(WDM) to process multiple split loops in parallel while
preserving salient information.

By showcasing 2 different datasets, we demonstrate that
DLR supports a range of applications by adjusting its pa-
rameters and architectural combinations to achieve low SWaP,
high accuracy and required latency. The organization of this
paper is as follows: Section II describes motivation for the
featured applications, and the existing work; Our algorithmic
and architectural solutions based on the delay-loop concept
are described in Section III; Section IV presents experimental
results, including accuracy for different configurations and
H/W reduction figures for the SEI platform.

Fig. 1. DLR system for SEI/WiPRec: BD is burst detection, while BE stands
for burst extraction.

Fig. 2. The DLR demo platform performing the SEI in-situ training and
inference with two selectable delay loop implementations (D, for digital, and
P for photonics. The yellow path is application specific (RF data ingest and
burst extraction), while the blue path is generic across applications: burst of
samples 7−→ delay loops 7−→ state vector 7−→ RR training or
classification

II. MOTIVATING APPLICATIONS FOR DLR

5G and open radio access networks (Open RANs) will
result in hardware deployments that require additional efforts
towards mitigating wireless security risks. As all electronic
devices have fingerprints due to manufacturing variability, so

do radio frequency emitters. SEI based on RF fingerprinting
can individually identify a multitude of wireless devices [11].
SEI can be particularly useful in IoT, with billions of small
devices with diverse cyber-security vulnerabilities including
authentication and tracking [12]. The SEI based authentication
is passive and secure: the fingerprint cannot be emulated to
launch an attack like MAC address spoofing. However, the
SoA approaches to SEI require big servers for training, and
lack the in-situ training solutions. Previous attempts at in-
situ training require extensive HW-specific pre-processing and
have been evaluated only on simulated data [13]. Hence the
need for solutions like DLR.

Additionally, neural network (NN) based wireless receivers
will soon become a reality. They implement various signal
processing algorithms used in traditional receivers compliant
to specific standards by using trained neural networks (see
[14], [15] and references therein). To make them adaptable,
we could use an intelligent spectrum sensor, such as DLR,
to identify the protocol of the incoming signal and feed it
into a specifically trained stack of NNs. Our wireless protocol
recognition (WiPReq) DLR would allow us to realize an AI-
defined receiver that can communicate across all protocols
utilized in the ISM band.

Existing DL Work As for the prior work that applies
delay loops to the above applications, our work is the first
one to the best of our knowledge. There is some recent work
where reservoir loops are used in the general area of wireless
communications, e.g., for channel equalization [16], [17]. For
the recent advances in physical reservoir computing, including
applications, please see [18], [19].

III. ALGORITHMIC EXPLORATIONS

DLR uses reservoir computing in the form of a delay
loop reservoir that replaces the N neurons in the traditional
spatial implementation of the reservoir with N passes through
a single neuron. The N-fold increase in delay by the sequential
passing of the data through a single neuron is canceled out by
an N-fold upsampling (sample and hold) done by a random
spreading sequence m(t) (see Fig. 3). With reservoirs, the N

Fig. 3. Delay-loop reservoir replaces the N neurons (NLs) on the left with
a single one by using upsampling (θ depends on the loop bandwidth) and a
simple design shown on the right

must be large and such high rate upsampling is amenable
to a photonic loop implementation. The wide bandwidth and

wavelength diversity of photonic loops is the reason why DLR
supports photonic DLs as a vehicle to future scalability. The
N which allows the reservoir to linearly separate input classes
for easier learning may be very large for certain applications.
However, there are also other means of reducing the required
reservoir size, which we present in this work. In this paper
we report results based on the FPGA and S/W (digital) imple-
mentations of the loop, as the emphasis is on algorithmic and
architectural solutions. We are also emphasizing the training
versus inference, as it is more demanding. Once trained the
DLR maps the signal to its unique transmitter by just passing
the burst of samples through the loop and multiplying it
with the weight matrix. For a burst of 1 us, it happens in
sub-millisecond including the extraction of the burst and its
preprocessing by transforms. Figures of merit (FOMs) that we
report for training include accuracy on the testing set, H/W
complexity, memory and latency.

A. Dataset and Preprocessing

The dataset to train the SEI detector now contains 20
classes, corresponding to 20 distinct WiFi devices. We first
started with the dataset of 4 devices but it was not suffi-
ciently complex to allow for the exploration of the techniques
that scale the design. To build this dataset we captured the
emissions of commercial WiFi devices as they were sending
beacons to an access point while using the same spoofed MAC
address. We used USRP X310 with UBX RF daughterboard,
with sample rate of 100 MHz centered in the middle of
the 2.4 GHz ISM band. Our dataset is carefully prepared to
not contain personally identifiable information. Datapoints are
created by extracting bursts of 1024 complex (I/Q) samples
from the captured time-series, right after the detection of
the rising edge of the signal. Further preprocessing steps are
explained in the subsection on transforms.

B. Delay Loop (DL)

The basic algorithm for the delay-loop state is expressed
by (1).

Xk(n) =
∫

δk

δk−τ−ε

hδk−τ−δ fNL [ηXδ (n−1)+νJ(n)(δ + τ)]dδ .

(1)

Xk is the kth virtual element of the state vector X . The
upsampled time is defined in chips θ (in Fig. 3), which gives
rise to J(n)(t), also denoted as ss(n) in the pseudo-code, Fig. 4.
Each sample s(n),n ∈ 1, · · · , ` of the input datapoint of size `
(Fig. 1) is spread by the mask m(t) and clocked into the loop
as J(n)(t), chip-by-chip. Here, t ∈ 1, · · · ,N is the chip-time
index, and k ∈ 1, · · · ,N is the loop position index. Note that N
is the number of virtual reservoir nodes, as well as the length
(in chips) of the spreading sequence (mask) m(t) as shown in
Fig. 3. J(n), also indicated in Fig. 2, is the input to the loop,
and the output is read out after the last of the ` samples is
clocked-in and put through the loop’s non-linearity N times.

Each chip of the spread sample J(n)(t) is linearly combined
with the tail of X : XN(n−1) and put through the nonlinearity

NL. XN(n− 1) has been affected by the same non-linearity
at time t− τ, i.e., by the previous input sample n−1, where
τ = Nθ . Summation of the spread data input and the tail of X
at every t is practically creating the edges of the recurrent layer
from the spatial implementation of the reservoir (the left side
of Fig. 3) [10]. The randomness of edge weights is determined
by the randomness of the spread sequence, which unfolds the
edges at chip time. The output of the NL may be convolved
with filter h(t) (Fig. 4) to model the NL′s temporal response
in photonics [20], which occurs on a finer time scale dδ . δk
in the integral is the current time at node k.

We refer to the Xk as the virtual node. No extra function
or transformation is carried out on Xk after the filtered non-
linearity fNL. Omitting the propagation details, Xks are simply
time-shifted, in chip time θ , which also roughly matches the
propagation time in photonics. (2) models the shifting of the
fNL output in digital implementaion, where Xk at chip time t
is given by

Xk(t) =
1

∑
u=0

h(u) fNL [ηXk(t−N +u)+νJ(t− k−u)]+σ , σ −→ 0.

(2)

The loop gain parameter η and input gain ν must be calibrated
to provide a proper dynamic state of the reservoir. h(t) in (2) is
sampled at chip time. The results are based on fNL = sin(·) ,
although we also used tanh(·) as the neuron, with similar
effects. The pseudo-code in Fig. 4 is mappable to the photonic
implementation, which was important for the development and
calibration of the photonic loop allowing the comparison with
the baselines achieved with the digital-only loop [20].

Fig. 4. Pseudo code for the delay loop

Another innovation is the introduction of “deep”, multi-
layer architectures with both stacked and parallel (split) reser-
voir loops. The rationale for the former is that splitting the
input into k parallel loops and combining their outputs reduces
the complexity of the classifier by k2 (please see section III-D).
For the latter, we explored if s sequential loops increase
the representation complexity of the input allowing for more
accurate classification. As the accuracy achieved to date by
using sequential loops has not exceeded the one obtained with
split loops only, and for space considerations, we here discuss
just the split loops. We use transforms to adapt the salient
signal information to the split loop input. We develop multiple
ways to merge the outputs of the constituent DLR loops into

a single output to be used to train a simple algorithm (Ridge
Regression [21]). We used Bayesian hyperparameter optimiza-
tion to find the best parameters, including the splitting. An idea
is to treat the RC as a “black-box”, computationally heavy
function: f (ν ,η ,N,s,k, · · ·)→ [0,1] , where the output is the
resulting predictive accuracy. Succinctly, the process involves
the application of a Gaussian process prior on f (), then as
more sets of parameters are sampled, the prior along with these
parameters forms a posterior distribution over f. We combined
this with a hierarchical grid search of the hyper-parameter
space (especially for the composition of loops), and came up
with values of the optimal parameters, given a particular input
transform applied to datapoints. This is done only once per
application. It should be emphasized here that the loops are
never trained, only the RR algorithm which uses their outputs.

Note that the computational complexity of training the DLR
is the complexity of the last stage (Ridge Regression), given
the simple implementation of the loop.

C. Ridge Regression

The Ridge Regression (RR) model for the estimation of the
weight coefficient matrix W is calculated as

W = argminWout

(
B

∑
j=1

∥∥y j−WoutX
∥∥2

2 +λ ‖WoutX‖2
2

)
where B is number of training datapoints, y j ∈ Yout is the
onehot device-label corresponding to the jth training datapoint,
Wout is the output weights to be trained, and λ is the regu-
larization factor. The RR equation can also be written in the
closed form W = (XT X + λ IN)

−1 (XTYout), where X is the
matrix of the B state vectors used for its training.

Fig. 5. Using k split (parallel loops) reduces the size of the spreading mask
and, hence, the size of each split loop while achieving the required projection
into higher dimensional space. The joint state vector X (marked by the blue
circle) can be obtained as ∑

k
j=1 X j , or as a normalized scalar product of X js.

D. Split Loops

As Fig. 5 shows, the split loops process the k disjoint pieces
of the split datapoint in parallel and result in the k state vectors
{X1, · · · ,Xk}. We can pass these k outputs through another
layer of parallel loops. The joint state vector X (marked by
the blue circle in Fig. 5, or red circle for a 2-layer design)

can be obtained as ∑
k
j=1 X j, or as a normalized scalar product

of X js. Both gave similar results in terms of the improved
accuracy over a single loop. Let us emphasize here that DL is
a dynamical system, and the reservoir size N for a datapoint of
size ` must be large enough to bring the DL into a dynamical
state where the class separation happens. Each of the split-
datapoints is of size `/k and its N j < N, j = 1, · · · ,k now
may be k times smaller than the N without splitting. Now,
as the total X is a linear combination and not concatenation
of the split loops’ X js, the entry to the RR is still of size
N j, which reduces the RR complexity from BN2 to B(N/k)2.
Beyond certain value of k, the accuracy starts to drop as
splitting the datapoint affects the samples that are no longer
independent. The exact value of the threshold k depends on the
input transform applied to the burst of I/Q samples composing
the dataset. As an example, this threshold for FFT is above
10. The joint state vector results in higher accuracy than any
of the k split state vectors taken separately. For now it is
important that the results obtained using the addition and scalar
multiplication exceed the SoA, but we would also like to
quantify the information loss if any. If we concatenated the
split state vectors we would have preserved the information
from the split datapoints completely but the resulting length
of the state vector would have increased the complexity of
learning by k2. An information-theoretic analysis is under way
on how much information is passed from the input to the state
vector under different operations to construct the joint state.

E. Input Transforms

It is known that certain transforms help losslessly compress
the data if the information content is sparse, and some are
more robust to noise. Motivated by this, we experimented with
multiple input transforms in order to best mach the input to the
architecture of DLR given constraints in the complexity (i.e.,
largest reservoir output we are willing to train). Since the RF
waveforms are characterized by amplitude and phase we have
2 dimensions per sample in each 1024-long datapoint. Note
that DLR loops cannot process complex-valued datapoints,
and therefore all the transforms that we apply lose the phase
information (except for the case in Fig. 6)

1) Complex Amplitudes: We consider the transform from
complex-valued samples to their amplitudes as the baseline.
Here, subbursts of 256 complex amplitudes are extracted to
replace the longer datapoints of 1024-samples. For this extrac-
tion we used a simple linear classifier to explore how salient
information is distributed along the datapoint. We conducted
a systematic experiment in which we have been replacing
each datapoint with a subset of contiguous complex-valued
samples within that datapoint, and evaluating the accuracy of
the classifier for different sizes of such subsets, and different
offsets from the start. The rationale was that if the salient
information was concentrated in a smaller sub-burst, than
the size of the reservoir N can also be scaled down while
maintaining the same accuracy. The 256 samples per datapoint,
extracted at a location that preserves the accuracy achieved
with the original burst, are equivalent to a 1us long burst

of samples. The accuracy of DLR based on the amplitudes
of the subburst of 256 complex samples ranks the worst
among the tested transforms. Please observe how the accuracy
for 2 split loops in Fig. 7 gets higher with the reservoir
size when amplitudes (blue - plain vanilla transform) are
replaced by the amplitudes of complex FFT transforms. We
have also combined the amplitudes in one pair of split loops
with the frequency estimates in another and concatenated
the state vectors. With the loops processing the magnitudes
of dimension 750, and the loops processing the frequency
estimates of dimension 250 (as in Fig. 6), we get the total
state vector of length N=1000 and the accuracy of 93.8%.
Note that frequency estimates [22] of the complex valued
input bursts are real valued bursts of smaller length than the
original bursts, as we are using 3 consecutive I/Q samples to
calculate one frequency value. This approach should be further
explored with a finer frequency estimate, and exhaustive loop
combinations.

Fig. 6. Using diverse transforms showed some initial promise in combining
complementary transforms - magnitudes are combined with simple frequency
estimates

2) FFT: The exploration of information salience above
revealed the sparsity of the original dataset that can be
leveraged through additional transforms. We next optimized
the performance of the digital test bench when the input to
the loop are magnitudes of the FFT transform applied to the
bursts of complex valued RF samples. The initial findings were
that the FOMs deteriorate since the FFT transform ‘spreads’
the information across the datapoint. Specifically, without FFT,
the salient information is limited to the subburst of length 256
located in the middle of the 1024 long burst of sampled signal
magnitudes. When the FFT magnitudes are used as datapoints,
the salient information is located in all 1024 samples. This
requires a delay loop longer than 1024, exceeding the loop size
of 600 or 800 which produced the best accuracy-complexity
trade-offs. However, using the technique of loop splitting,
we were able to utilize 8-fold splits to decrease the input
dimension, and consequently reduced the reservoir size in
each of the loops to the previously used values. While this
kept the H/W reduction factors unchanged, we achieved a
gain in accuracy. Please see Fig. 7. Note that splitting the
datapoints based on the complex signal amplitudes into 8
loops deteriorates the accuracy compared to 4 loops, which
makes the FFT more effective in achieving the best accuracy-
complexity trade-off.

Fig. 7. Accuracy as a function of the reservoir size for split loops when
all using the same input transforms - either signal amplitudes and FFT
amplitudes. Notice the improvements with 10 splits, unchanged complexity.

3) Differential FFT: We here find the average of the burst
amplitudes across the training dataset and remove it from
each datapoint amplitude, then create new complex-valued
bursts with the common bias so removed (while preserving
the phase). We perform the FFT of the resulting waveform,
referring to its magnitudes as the differential FFT transform.
This transform helped increase the robustness of the photonic
loop by reducing its sensitivity to the in-loop noise: compared
to the regular FFT magnitudes, differential FFT increased the
accuracy by more than 15% for the same reservoir size. In the
digital loop, differential FFT did not make a difference.

4) Decimated DFT: We decimate the DFT matrix

D =
1
N

1 1 1 . . . 1
1 ω

−1
N ω

−2
N . . . ω

−(N−1)
N

1 ω
−2
N ω

−4
N . . . ω

−2(N−1)
N

...
...

...
...

1 ω
−(N−1)
N ω

−2(N−1)
N . . . ω

−(N−1)2

N

 , (3)

where ωN = ei2π/N ∈ C, by some factor d - by keeping
every dth column of D - creating a sparse DFT matrix Dd
of size 1024 by 1024/d. By multiplying the complex-valued
burst of size 1024 by Dd we obtain a decimated discrete
frequency transform whose length is reduced d times. We use
its amplitudes as datapoint to split into 2 parallel loops. Please
see Fig. 8 where the accuracy is shown for different reservoir
sizes. If we use more split loops the decimation factor must
be reduced to maintain the accuracy. Given a compressive
transform, we observe that the compression affects the number
of split loops needed to achieve accuracy gain for the same
reservoir size. Split loops become useless after a certain point,
which depends on the input transform. Given this trade-off, an
interesting future goal is to compare the cost of performing
per-datapoint transform vs splitting the loop.

IV. DISCUSSION OF EXPERIMENTAL RESULTS

The table of FOMs in Fig. 9 shows the 20-device SEI
performance numbers for the best trade-off we achieved with
DLR. These are compared with the equivalents for SoA

Fig. 8. Accuracy vs. N with decimation of DFT: N= 1200 achieves 97.48%
of accuracy with 2 split loops and d = 8, or 4 split loops and d = 4. With
further decimation (16-fold) the accuracy falls back to 4-fold decimation (2
loops).

neural networks trained on a single GPU. The red numbers
show the reduction factor obtained with DLR compared to
respective values for ResNet or RNN. The spatial reduction
factor for DLR vs SoA is the ratio of the number of trainable
parameters (20), and the power reduction factor is the ratio of
the complexity of training (100), while the latency compares
the hours of training versus 3 seconds achieved with our
demo platform (≥ 1200). For the calculation patterns of FOMs,
please see our paper on intermediate results [2].The result here
use the reservoir size of 600. Note that we could achieve higher
accuracy of above 97% by using the reservoir size of 1200,
which increases the complexity 4 x (consult Fig. 7).

Fig. 9. Figures of Merit compare the best trade-off of em SEI accuracy vs
H/W reduction for DLR in comparison with SoA. Complexity is expressed
in terms of total MAC operations and memory in terms of the number of
parameters to train.

Finally, we would like to present the results obtained using
the same loop hyper-parameters (without retuning) for the
application of wireless protocol recognition. We here achieved
99% accuracy in classification of the 4 ISM protocols trained
on clean signal collections. We collected data from 5 devices
per protocol, 4 from a common manufacturer, the 5th from
a different one. We either used connectorized devices in
conjunction with cables, circulators and attenuators or an RF
shield box to ensure pristine (clean) RF data. We used the same
USRP and the same sample rate as for the SEI dataset. After
the signals were basebanded and the bandwidth information
removed, this accuracy dropped by about 2 %. Removing
BW information emulates the efforts to hide the identity by
transmitting on a different frequency and performing rate
adaptation.

Fig. 10 shows both cases on DLR (plots without markers),
as well on the simple ridge regression (without reservoirs) for
the same complexity. The simple RR has a drop in accuracy of
about 9%. An interesting observation is that the results stayed
the same after the loop noise has been added, modeled from
the photonic loop observations. We confirmed this result from
the digitally implemented loop by performing the classification
in our photonic loop. DLR also produces a better conditioned
weight matrix, i.e. the results are more stable for different
values of the regularization parameter λ than the RR without
the reservoir (see Fig. 10). The results with other transforms
are consistent, and we omit them for the lack of space. The
idea here was to test if DLR can be re-purposed for other
signals, and the results exceeded our expectations as we did
not have to re-optimize the parameters.

Admittedly, both the ISM dataset and the 4-way classifica-
tion based on it are much less complex. However, comparing
it with our published worked [8] that trained an ISM classifier
off-line in order to minimize the complexity of inference,
we ended up with 4 times smaller inference complexity, and
evidently much simpler and faster training. Future work should
include signal corruptions by fading channels and interference.

Fig. 10. Accuracy vs RR regularization for classification of the 4 ISM
protocols with and without BW as salient feature.

V. CONCLUSION

We demonstrated the classification accuracy, real-time ef-
ficiency and energy reduction of our novel design for in-
situ training and inference in two RF spectrum monitoring
applications using innovative delay-loop reservoir design and
architectures. Our delay-loop (DL) design, as an efficiently
implemented random recurrent topology, prepares the training
data sequences to successfully train linear classification algo-
rithms. In particular, using real devices we showed that Spe-
cific Emitter Identification (SEI) for secure IoT authentication
can be trained orders of magnitude faster on compact platforms
achieving remarkable accuracy. This is very important for
vulnerable and resource-constrained IoT devices. We presented
algorithms for both photonic and digital loops in a closed
form, and gave an intuitive explanation how a single neuron in
the delay-loop replaces the N neurons in a traditional spatial

reservoir (where these neurons must be connected via recurrent
connections). While the presented prototype platform uses
both digital and photonic realizations of our design of delay
loops, our performance figures are based on the former and
reflect architectures with trees of DLs. Combining the splitting
and multi-layer loops, with different degrees of asymmetry
between inner and outer DLs, we achieved various levels
of trade-off between the accuracy and complexity of DLR.
The state of all loops in the tree are read out at each input
datapoint, and then concatenated or combined to serve as
classification datapoints. We described the effects of archi-
tectural loop combinations and their interplay with various
input transforms. By applying information-theoretic measures
on a quantized version of DLR, we continue to further study
these effects as an end-to-end information transfer. Future
work includes new applications and additional exploration of
loop architectures including when every DL is supporting a
different data transform.

ACKNOWLEDGMENT: This research was funded by
DARPA. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Government.

DISTRIBUTION STATEMENT A. Approved for public
release: distribution unlimited

REFERENCES

[1] M. Lukosevicius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Comput. Sci. Rev., vol. 3, pp. 127–
149, 2009.

[2] S. Kokalj-Filipovic and P. Toliver and W. Johnson et al., “Deep delay
loop reservoir computing for specific emitter identification,” arXiv
preprint: 2010.06649, 2020, appeared in GOMACTech 2020.

[3] S. Hanna, S. Karunaratne, and D. Cabric, “Open set wireless transmitter
authorization: Deep learning approaches and dataset considerations,”
arXiv preprint: 2005.00954, 2020.

[4] IEEE, “IEEE P802.11n™/D3.00 - Draft Amend. to STANDARD for
ITT and inform. exchange between Systems - Local and Metropoli-
tan networks-Specific reqs-Part 11: Wireless LAN MAC and PHY.
Amendm. 4: Enhancements for Higher Throughput.”

[5] B. S. I. Group, “Bluetooth Specification Version 5.0,” accessed
on 10/25/2018. [Online]. Available: https://www.bluetooth.com/
specifications/bluetooth-core-specification

[6] N. Salman, I. Rasool, and A. H. Kemp, “Overview of the IEEE 802.15.4
standards family for Low Rate Wireless Personal Area Networks,” in 7th
Int. Symp. on Wireless Communication Systems, 2010.

[7] N. Semiconductor, “nRF24L01 Single Chip 2.4GHz Transceiver,” 2018,
accessed on 10/19/2020. [Online]. Available: https://www.sparkfun.
com/datasheets/Components/nRF24L01 prelim prod spec 1 2.pdf

[8] S. Kokalj-Filipovic, R. Miller, and J. Morman, “Autoencoders for
training compact deep learning rf classifiers for wireless protocols,” in
IEEE Intl. Workshop on Signal Processing Advances in Wireless Comms
(SPAWC), 2019, pp. 1–5.

[9] Xilinx, “Zynq UltraScale+ RFSoC ZCU111 Evaluation Kit,” accessed
on 10/7/2020. [Online]. Available: https://www.xilinx.com/products/
boards-and-kits/zcu111.html

[10] G. V. der Sande, D. Brunner, and M. C. Soriano, “Advances in photonic
reservoir computing,” Nanophotonics, vol. 6, no. 3, pp. 561 – 576, 01
May. 2017.

[11] S. Hanna, S. Karunaratne, and D. Cabric, “Open set wireless transmitter
authorization: Deep learning approaches and dataset considerations,”
2020.

[12] L. Bai, L. Zhu, J. Liu, J. Choi, and W. Zhang, “Physical layer authen-
tication in wireless communication networks: A survey,” vol. 5, no. 3,
2020.

[13] B. Chatterjee, D. Das, S. Maity, and S. Sen, “RF-PUF: Enhancing
IoT Security Through Authentication of Wireless Nodes Using In-Situ
Machine Learning,” IEEE Internet of Things Journal, vol. 6, no. 1, pp.
388–398, 2019.

[14] A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for commu-
nications systems: A survey and some new directions,” in 2019 IEEE
Intnl Workshop on Signal Proc. Systems (SiPS), 2019.

[15] H. He, S. Jin, C. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-
driven deep learning for physical layer communications,” IEEE Wireless
Communications, vol. 26, no. 5, pp. 77–83, 2019.

[16] P. Antonik, F. Duport, M. Hermans, A. Smerieri, M. Haelterman, and
S. Massar, “Online training of an opto-electronic reservoir computer
applied to real-time channel equalization,” IEEE Trans. on Neural
Networks and Learning Systems, vol. 28, no. 11, pp. 2686–2698, 2017.

[17] Ortı́n S and Soriano MC and Pesquera L et al., “A unified framework for
reservoir computing and extreme learning machines based on a single
time-delayed neuron,” Sci Reports, vol. 5, 2015.

[18] G. Tanaka, T. Yamane, and J. B. H. et al., “Recent advances in physical
reservoir computing: A review,” Neural networks : the official journal
of the Intnl Neural Network Society, vol. 115, 2019.

[19] Y. K. Chembo, “Machine learning based on reservoir computing with
time-delayed optoelectronic and photonic systems,” Chaos, vol. 30,
no. 1, 2020.

[20] D. Brunner, B. Penkovsky, and B. A. M. et al., “Tutorial: Photonic neural
networks in delay systems,” Journal of Applied Physics, 2018.

[21] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

[22] S. Kay, “A Fast and Accurate Single Frequency Estimator,” IEEE Trans.
on Acoutics Speech and Signal Proc., vol. 37, no. 12, 1989.

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.sparkfun.com/datasheets/Components/nRF24L01_prelim_prod_spec_1_2.pdf
https://www.sparkfun.com/datasheets/Components/nRF24L01_prelim_prod_spec_1_2.pdf
https://www.xilinx.com/products/boards-and-kits/zcu111.html
https://www.xilinx.com/products/boards-and-kits/zcu111.html

	I Introduction
	II Motivating Applications for DLR
	III Algorithmic Explorations
	III-A Dataset and Preprocessing
	III-B Delay Loop (DL)
	III-C Ridge Regression
	III-D Split Loops
	III-E Input Transforms
	III-E1 Complex Amplitudes
	III-E2 FFT
	III-E3 Differential FFT
	III-E4 Decimated DFT

	IV Discussion of Experimental Results
	V Conclusion
	References

