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Abstract—Deep Neural Networks (DNNs) are widely used
in automotive Cyber-Physical Systems (CPS) to implement au-
tonomy related tasks. However, these networks have exhibited
erroneous predictions to anomalous inputs that manifest either
due to Out-of-Distribution (OOD) data or adversarial attacks.
To detect these anomalies, a separate DNN called assurance
monitor is used in parallel to the controller DNN, increasing
the resource burden and latency. We hypothesize that a single
network that can perform controller predictions and anomaly
detection is necessary to reduce the resource requirements. Deep-
Radial Basis Function (RBF) networks provide a rejection class
alongside the class predictions, which can be used for anomaly
detection. However, the use of RBF activation functions limits
the applicability of these networks to only classification tasks. In
this paper, we discuss the steps involved in detecting anomalies
in CPS regression and classification tasks. Further, we design
deep-RBF networks using popular DNNs such as NVIDIA DAVE-
II and ResNet20 and then use the resulting rejection class for
detecting physical and data poison adversarial attacks. We show
that the deep-RBF network can effectively detect these attacks
with limited resource requirements.

Index Terms—Cyber-Physical Systems, Deep Neural Networks,
Radial Basis Functions, Adversarial Attacks

I. INTRODUCTION

Emerging Trend: Deep Neural Networks (DNNs) are
widely used in automotive Cyber-Physical Systemss (CPSs)
to implement autonomy related tasks. One way to use these
networks in autonomous driving is in an end-to-end (e2e)
fashion, where the network takes in sensory inputs to predict
control actions (e.g. steer) as shown in Fig. 1. A well-
known example of an e2e network is NVIDIA’s DAVE-II
Convolutional Neural Network (CNN) [1] which steered a car
autonomously. Despite being widely used, DNNs demonstrates
susceptibility to anomalies that manifest as Out-of-Distribution
(OOD) data or adversarial attacks. To detect these anomalies, a
separate DNN called Assurance Monitor (AM) is often trained
and used in parallel to the DNN controller as shown in Fig. 1.
These monitors identify if the operational test inputs to the
DNN belongs to the training distribution.

State-of-the-art and Challenges: Recently, there has been
a growing interest in using Generative models like Gener-
ative Adversarial Network (GAN) and Variational Autoen-
coder (VAE) as assurance monitors for detecting DNN related
anomalies. Although these monitors have shown robust perfor-
mance for anomaly detection in CPSs [2], [3], they introduce
additional resource and time overhead as found in our previous
work [4]. We hypothesize that a single DNN to perform both
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Fig. 1: end-to-end automotive CPS architecture with an assurance monitor.
The monitor receives the same sensory input as the controller DNN, and its
detection results are often used in control decision making.

controller predictions and anomaly detection is necessary for
CPSs which usually have limited resources and short inference
times. In this direction, Amini, Alexander et al. [5] have used
a single VAE to perform continuous steering predictions and
anomaly detection. However, generative models are dependent
on several hyperparameters, and training them is challenging
(e.g. mode collapse problem of GAN).

Deep-Radial Basis Function (RBF) networks [6] provide
a rejection class alongside the class predictions, which can
be utilized for anomaly detection. These networks are con-
ventional DNNs with an output RBF layer and do not have
additional hyperparameters to tune. Recently, the authors in [7]
and [8] have used the rejection capability of these networks to
detect adversaries in toy classification datasets such as MNIST
and CIFAR10. However, to the best of our knowledge, it
has yet to be shown whether these networks are capable of
detecting anomalies in the CPS domain. Additionally, these
networks are mostly designed for classification tasks, limiting
their utility in regression tasks.

Our Contributions: In this work, we design a single deep-
RBF network for predicting control actions (e.g. steering) and
detecting anomalies (especially adversarial attacks) in CPS
regression tasks. We hypothesize that the non-linearity intro-
duced by the RBF layer decreases the network’s susceptibility
to anomalies while increasing its confidence in recognizing in-
distribution data and consequently rejecting OOD data. How-
ever, as these networks are limited to classification tasks, we
discuss the steps required for transforming a CPS regression
task (continuous steering) to a classification task (discrete
steering classes). We then integrate RBFs to the output layer of
well-known DNNs such as NVIDIA’s DAVE-II and ResNet20
and train the resulting deep-RBF network. We then use the
rejection class of the trained network to detect adversarial
attacks, including physical attacks and data poison attacks.
We craft the physical attack on a hardware CPS testbed called
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DeepNNCar [9] and the data poison attack on the real-world
traffic sign dataset called German Traffic Sign Benchmark
(GTSB). We show that the deep-RBF network can detect these
attacks with limited resource requirements.

II. RELATED WORK

DNNs are widely used as Assurance Monitors for detecting
CPS related anomalies that manifest either due to OOD data
or adversarial attacks. Generative models such as Generative
Adversarial Networks (GANs), and variants of Autoencoders
(e.g. VAE) have been recently used to detect DNN related
anomalies [2], [3]. Despite robust detection capabilities, these
models require an independent DNN trained in parallel to the
controller DNN, which adds excessive resource burden and
latency as observed in our previous work [4].

To address this, Amini, Alexander et al. [5] have used a sin-
gle VAE network for both controller predictions and anomaly
detection. Though this is significant for reducing the resource
burden, the encoder-decoder architecture of the VAE is still
resource expensive. Additionally, the detection efficiency of
the VAE depends on hyperparameters (e.g. size of the latent
space) which have no default values. Deep-RBF networks
are another variant of AMs that have shown robustness in
detecting anomalies, especially adversarial attacks [6]. Zadeh
et al. [7] has shown a single deep-RBF network is capable of
predicting both class predictions and anomalies without the
need for tuning complex hyperparameters. These networks
have a DNN structure with RBF attached to the output
layer. The classification capability of the RBF along with a
threshold is used as a rejection class to detect adversarial
attacks on trivial classification datasets such as MNIST [7],
and CIFAR10 [8]. In this work, we transform a CPS regression
task to classification and evaluate the deep-RBF network’s
anomaly detection capability for runtime CPS applications.

Although the above discussed DNN variants have shown
robustness against several anomalies, their defense capability
is unexplored for data poisoning attacks. Existing methods
often focus on detecting the poisoned data [10] or removing
them through data sanitization [11]. These approaches have
worked well, but they are computationally expensive and rely
on the availability of a certified clean training dataset which
may not always be available. To the best of our knowledge,
the activation clustering (AC) [12] is the only other method
that can clean a poisoned dataset without relying on a certified
clean training dataset. This method relies on the assumption
that a significant portion of the dataset is poisoned. However,
such an assumption fails in realistic sparsely poisoned datasets
(<10%) [13]. We hypothesize that a deep-RBF network
trained on a sparsely poisoned dataset can be used for the
discriminative ordering of clean and poisoned data without
the need for a certified clean training dataset.

III. BACKGROUND

A. Deep-RBF network

Deep-RBF network is a conventional DNN with an output
layer of RBF activation functions. A RBF is a real-valued

function that measures the distance of an input x to some
prototype vector. The similarity measure can be captured in
the following definition of a RBF unit using `p-norm distance
where A ∈ Rn×l, b ∈ Rl, x ∈ Rn and l ≤ n [7].

φ(x) = (||ATx+ b||p)p (1)

In the context of a DNN, RBF units can be applied to the
high-level features f(x) extracted by the model from the raw
input x in order to classify the input into k classes such that
k ∈ {1, .., c}. Using the Euclidean metric and allowing A =
In, the deep-RBF unit is defined as φk(x) = (||f(x)−Wk||2)2

where Wk ∈ R|f(x)| is a trainable weight vector intuitively
representing the learned prototype of class k. The prediction
category that results in the smallest distance is selected as the
correct class during the evaluation phase.

1) Training Loss Function: The deep-RBF network can be
trained using a metrics-learning inspired loss function named
SoftML, which is shown in Eq. (2). The function was proposed
in [7] and is shown to avoid the vanishing gradient problem.

JSoftML =

N∑
i=1

(φyi(x
(i)) +

∑
j 6∈yi

log(1 + e(λ−φyi
(x(i))))) (2)

where yi is the correct class of input x(i), and λ > 0. The
first term in the cost function aims at decreasing the distance
between the prediction and the correct class. The second term
aims at increasing the distance of the negative class. Further, as
discussed in [7], the value of λ has little effect on convergence
and can be arbitrarily chosen.

2) Interpreting deep-RBF network output: From a prob-
abilistic point of view, the Eq. (2) can be interpreted as the
negative log-likelihood as discussed in [7]. Therefore, the class
prediction output of the deep-RBF networks can be interpreted
as non-normalized probabilities following the transformation.

P (ŷ = k|x) = e−φk(x)(1 + eλ−φk(x))∏
j(1 + eλ−φk(x))

, k ∈ {1, 2, ..., c} (3)

A rejection class k = 0 can then be defined to capture the
probability that x belongs to no class in {1, 2, ..., c}.

P (ŷ = c+ 1|x) = 1∏
j(1 + eλ−φk(x))

(4)

B. Adversarial Examples

The adversarial examples considered in this work are: (1)
Physical attack, which are adversaries that are physically real-
izable in the real world, and they include perturbing physical
objects (e.g. traffic signs) in the images fed to the DNNs. In
this work, we adapt the physical adversary introduced in [14],
where physical black lines are added at specific positions and
angles to confuse an e2e model to predict the wrong steering
angles as shown in Fig. 3; and, (2) Data poisoning attack,
which are adversaries that allow an attacker to modify the
training procedure, alter the network’s logic, or manipulate
training dataset labels to encode a backdoor key. In this work,
we adopt the injected pattern-key attack where the training
sample labels are altered whenever a backdoor key is encoded
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Fig. 2: Deep-RBF network for e2e control of the DeepNNCar example. The convolutional layers extract the image features, which are sent to the RBF layer
to perform classification. The outputs are the class predictions (discrete steering values) and a rejection class to detect anomalies.

into the training input, allowing the attacker to exploit the
attack by encoding the backdoor key into a test instance [15].

IV. DEEP-RBF NETWORK FOR ANOMALY DETECTION

In this section, we discuss the steps involved in detecting
anomalies using deep-RBF networks. The steps involved are:
(1) problem transformation to transform a regression task to
classification (this step can be skipped for classification tasks),
(2) deep-RBF design and training, and (3) anomaly detection.

A. Problem Transformation

Certain CPS tasks (e.g. computing control actions) are re-
gression based, and using the deep-RBF network for anomaly
detection requires transforming the regression task to clas-
sification. For explanation, we consider an example of a
perception DNN that predicts continuous steering predictions.
The DNN observes a sequence of images Xk = xk · · ·xk−t
from the environment and predicts a continuous steering angle
s in range [+θ,−θ]. Here, +θ corresponds to a full right turn,
and −θ corresponds to a complete left turn. This continuous
steering angle needs to be discretized into n different classes
k = {0, 1, ...., n}. That is, each class corresponds to a small
steering angle range (sk) is calculated as sk = |+θ|+|−θ|

n .
where class k = 1 corresponds to a full right turn, and

class k = n corresponds to a full left turn. The intermediate
classes result in a right or left turn within [+θ,−θ]. The
number of classes (n) for discretization is problem-specific,
and it can impact the sensitivity of anomaly detection and
control predictions, so it requires careful consideration. A
Larger number of classes will provide fine-grained control
over control predictions and results in high false negatives in
detection. A smaller number of classes will make the detection
insensitive resulting in high false positives.

B. Deep-RBF design and training

As discussed earlier, a deep-RBF network is a conventional
DNN with an RBF layer attached to the output. The deep-
RBF network for the DeepNNCar regression task (continuous
steering prediction) is shown in Fig. 2. In this network, the
convolutional layers extract the image features that are sent
to an RBF layer to perform classification. The number of
RBF units in the output layer corresponds to the number of

classes (n) derived in the previous section (For a classification
example, the number of RBF units directly correspond to
the number of classes in the task). The output of the deep-
RBF network has two components: (1) class predictions (e.g.
steering class), and (2) rejection class probability that indicates
if the input belongs to a known class or not.

The deep-RBF network can then be trained using the SoftML
loss function (see Eq. (2)). Training the network does not
involve additional hyperparameters other than the standard
ones like the number of epochs, batch size, learning rate, and
the optimizer type. However, the high non-linearity of the RBF
units make it challenging to train the network. To address this,
we apply the RBF layer directly after the convolutional layers
rather than after a series of fully connected layers.

C. Anomaly Detection

During evaluation the operational test images are passed
through the trained deep-RBF network, and the output class
predictions (discrete steering) is used to control the CPS, and
the rejection class probability (Eq. (4)) is used along with
a pre-selected threshold γ to perform anomaly detection as
shown in Algorithm 1. That is, if P (ŷt = c + 1|xt) ≥ γ, the
input can be identified to be an anomaly.

Algorithm 1 Anomaly detection using deep-RBF network
Require: deep-RBF network ARBF , Rejection threshold γ.
Input: Image xt at time t.
Output: Anomt.

1: P (ŷt = k|xt), P (ŷt = c+ 1|xt) = ARBF (xt)
2: if P (k = c+ 1|x) ≥ γ then
3: Anomt = 1
4: else
5: Anomt = 0
6: end if
7: return Anomt

V. EVALUATION

We evaluate 1 the performance of the deep-RBF networks
for detecting (a) black box physical attack on a hardware

1Jupyter notebooks to replicate the experiments can be found at
https://github.com/Shreyasramakrishna90/RBF-Adversarial-Detection.git
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(a) DAVE-II DNN (b) RBF DAVE-II DNN

Fig. 3: The physical attack caused DeepNNCar to crash when being controlled
by the DAVE-II network; however, its RBF extension was able to detect the
anomaly and safely stop the car. Videos of these trial runs can be found at
https://github.com/Shreyasramakrishna90/RBF-Adversarial-Detection.git

testbed called DeepNNCar that performs steering predictions
(regression), and (b) data poisoning attack on the real-world
GTSB classification dataset.

A. Detecting Physical Attack

1) Experimental Setup: In our first example, we implement
the physical attack introduced in [16] on a hardware platform
called DeepNNCar [9]. This testbed uses a Traxxas Slash
2WD 1/10 RC car and is computationally powered by a
Raspberry Pi 3. The sensors on the car include a forward-
looking camera and an IR opto-coupler attached to the rear
wheel to measure the RPM and compute speed. The primary
controller is NVIDIA’s DAVE-II CNN which uses the camera
images to steer the car autonomously. The car is first man-
ually driven to collect a training dataset that includes 6000
samples of images, steering PWM, and speed PWM values.
The training dataset is split randomly into training, testing,
and validation in a ratio of 70/15/15%. We then follow the
steps in Section IV-A to transform this regression task into
classification by discretizing the continuous steering labels into
10 categories. Each discrete class represents a range of 6°,
allowing the car to turn discretely between −30° (sharp left,
yi = 0) and 30° (sharp right, yi = 9).

We perform the physical attack by placing black lines across
the track as shown in Fig. 3. The black lines are added at
various angles to four distinct track sections like a left turn,
a straight leading to a left turn, a right turn, and a straight
leading to a right turn.

2) Competing Baselines: We compare two baseline net-
works to illustrate RBFs rejection class capability. The first
is NVIDIA’s DAVE-II regression network converted into a
classification network (k = 10) by adding 10 fully connected
neurons to the last layer followed by softmax activation. The
other is the RBF DAVE-II network that is designed by adding a
hyperbolic tangent activation layer following the convolutional
layers of the DAVE-II architecture and replacing the fully
connected layers with an RBF layer.

We train these networks on 4200 training images for 150
epochs using adam optimizer, with categorical cross-entropy
loss for the DAVE-II network and SoftML loss for RBF
DAVE-II network. For the RBF DAVE-II network, we intro-
duce a rejection threshold of γ = 0.6, which is empirically
selected to reduce false positives.

3) Results: We deploy the trained RBF DAVE-II network
on the DeepNNCar for runtime anomaly detection. We instruct
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Fig. 4: A significant shift in the distribution of the rejection class probabilities
was discovered for clean data and OOD (physical attack) data. We chose the
threshold for the rejection class to be γ = 0.6.

Actions RBF DAVE-II DAVE-II
Out-of-lane 2 8

Successful Navigation 3 4
Safe Stop 7 NA

TABLE I: Performance of the DAVE-II and RBF DAVE-II in preventing the
DeepNNCar from going out-of-lane because of the physical attack.

the car to stop when the rejection class probability exceeded
the rejection threshold. We also compared the performance of
the two baseline networks in preventing the car from moving
out-of-lane (see Table I). We used each network to run the car
for 12 trial runs. For each trial, we approach the black attack
lines at a constant speed of 0.5 m/s and record the number of
times the two networks lead the car out-of-lane.

We have classified the actions of the car into three classes to
evaluate the performance of these networks. An Out-of-lane
is when the car moves out of the track lanes. A successful
navigation is when the car does not exit the track lanes but
completes navigating the track. Finally, in the case of the
RBF DAVE-II network, a safe stop is when the rejection class
identifies a physical attack. In summary, the RBF DAVE-
II safely rejects the physical attack and executes the stop
action as compared to the original DAVE-II network. Further,
as shown in Fig. 4, the RBF DAVE-II network exhibited a
significant shift in the confidence of the rejection class for
images with a physical attack.

(c) Comparison with other approaches: We compare the
RBF DAVE-II with a reconstruction-based VAE [2] gener-
ative model. The VAE network has 5 convolutional layers
24/36/48/48/64 with 5 x 5 filters and 3 x 3 filters followed
by one fully connected layer with 1164 neurons. We use a
symmetric deconvolutional decoder structure as the decoder.
We trained the network for 150 epochs using images from
the training dataset. Finally, we evaluated the two networks
on 1028 images with physically attacked black lines that
were collected from different trial runs. Table II shows the
performance of these networks in detecting the physical attack.
As seen, the RBF DAVE-II performs better in detecting the
attack, and it also has smaller false positives in detecting
images without attack.

B. Detecting Data Poison Attack

1) Experimental Setup: We performed the poisoning attack
on the GTSB dataset [17] that has over 50, 000 images of
traffic signs from 43 traffic sign classes. We adapt the popular
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Network Precision (%) Recall (%) F1-score (%)
RBF DAVE-II 96.4 90.83 93.53

VAE based
Reconstruction

88.5 90 89.24

TABLE II: Performance comparison of the RBF DAVE-II network and the
VAE based reconstruction network for physical attack images.

(a) Clean Image (b) Poisoned Image

Fig. 5: Examples of poisoned backdoor instances for the GTSB dataset. The
poisoned image has a yellow post-it like note.

injected pattern-key attack where the attack is a targeted label
attack that attempts to cause a DNN to predict any road sign as
an 80 km/hr signboard (see Fig. 5b), whenever a backdoor key
similar to a post-it note is encoded in the image. We poison
the dataset by (1) randomly select np instances outside of the
80 km/h image data, (2) add a post-it like note at a random
location in the image, and (3) change the instance label to that
of the 80 km/h road sign. A poisoning attack is successful if
the model predicts non-poisoned images as their ground truth
and poisoned images as the modified label.

2) Competing Baselines: We compare two baseline net-
works to illustrate RBFs rejection class capability. First is the
ResNet20 [18] network which has 20 convolutional layers and
one layer of softmax activation functions. The other is the RBF
ResNet20 network, which replaces the final fully-connected
layer with an RBF layer preceded by a hyperbolic tangent
function. We split the GTSB dataset into a training dataset
of 39209 images and an evaluation dataset with 11430 clean
images and 1200 backdoor instances. We poisoned the training
dataset while the evaluation dataset is kept clean. We then
trained the networks on the training dataset for 150 epochs
using categorical cross-entropy loss for the ResNet20 network
and SoftML loss for the RBF ResNet20 network.

3) Results: (a) Robustness evaluation: We evaluate the
robustness of the baseline networks by adjusting the number
of poisoned samples (np) in the training dataset. We incre-
mentally increase the poisoned images in the training data
and record the poison attack success rates for both networks.
As seen in Fig. 6, the poisoning success rate of ResNet20 is
greater than 30% after only 5% of the train data has been
poisoned, and the success rate increases to 90% after 35% of
the data is poisoned. In comparison, RBF ResNet20 requires
a larger amount of the data to be poisoned for the attack to
be successful. The success rate is negligible after 35% of the
train data is poisoned, and it increases to 30% only after 53%
of the train data is poisoned. However, both the networks
succumb to the attack after 70% of the data is poisoned.
Further, in Fig. 6-b, we find that both ResNet20 and RBF
ResNet20 achieve similar overall accuracy on the test data.
This finding eliminates the possible argument that ResNet20 is
simply learning the data distribution better than RBF ResNet20

and is, therefore, more likely to be successfully poisoned.
(c) Comparison with other approaches: We compare

the RBF ResNet20 network to the activation clustering (AC)
method [12] which clusters the penultimate layer’s activations
to separate poisoned and clean instances. To perform the AC
method, we use the author’s suggestion of K-means (k = 2)
and PCA to reduce the penultimate layer’s activations to
10 dimensions. For the RBF ResNet20 network, a rejection
threshold of β = 1.72 was used to modestly cover the tail end
of the distribution of φyi(X

i
poison).

Fig. 7 shows the results of adjusting np and comparing
the two cleaning methods for the poisoned GTSB dataset. In
the sparsely poisoned conditions, the RBF ResNet20 network
was able to achieve on average higher true positive rates and
lower false-positive rates than the AC method. Even at lower
values of np where the poisoning success rate on the regular
classifiers still exceeds 90%, the AC method tends to predict
fewer true positives and a significant number of false positives
exceeding 15000. However, the RBF ResNet20 network (see
Fig. 7 (right)) has a higher true positive and lower false
positives (not exceeding 5000) for different values of np. The
results show that the RBF ResNet20 network is highly robust
to sparsely poisoned data and begins to slowly fail as the value
of np increases, whereas the AC method dramatically fails.

C. Resource Evaluation
We performed the resource evaluations on a desktop with

AMD Ryzen Threadripper 16-Core Processor, 4 NVIDIA Ti-
tan Xp GPU, and 128 GiB memory. For these evaluations, we
compare two different approaches. The first is an RBF DAVE-
II network that performs both discrete steering predictions and
anomaly detection. The second is the original NVIDIA DAVE-
II regression network for continuous steering predictions and a
reconstruction based VAE for anomaly detection. The structure
of the VAE is discussed in Section V-A.

1) Execution Time: The DAVE-II network took an average
of 65.4 milliseconds for steering angle predictions, and the
reconstruction-based VAE network took an average of 53
milliseconds for anomaly detection. In comparison, the RBF
DAVE-II network only took an average of 44 milliseconds for
both discrete steering predictions and anomaly detection. In
summary, the RBF DAVE-II network has a 62.8% reduction
in the execution time compared to the VAE. This reduction is
because of the reduced operations the RBF DAVE-II network
has to perform following the convolutional layers.

2) Memory Usage: The DAVE-II network utilized an av-
erage memory of 2.0 GB, and the reconstruction-based VAE
network used an average memory of 3.6 GB. In comparison,
the RBF DAVE-II network only utilized an average memory
of 1.1 GB. The RBF DAVE-II network used less memory
because of the fewer operations following the convolutional
layers, compared to the VAE network that has a bulky encoder-
decoder architecture that requires higher computations.

VI. CONCLUSION AND FUTURE WORK

This paper evaluates the efficiency of deep-RBF networks
for detecting DNN related anomalies in CPS applications. We
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Fig. 6: The poison attack success rate for ResNet20 and RBF ResNet20 networks. (left) train data poisoned using 1200 backdoor key instances, and (right)
test data poisoned using the same 1200 instances. The RBF ResNet20 network only starts to fail only when > 35% of the training data gets poisoned.

Fig. 7: (left) AC method using K-means (nc = 2) and PCA (|D| = 10), (right) RBF ResNet20 network’s rejection capability with β = 1.72. The plots show
the capability of the two methods in correctly classifying the training samples as poisoned or clean.

propose the use of a single deep-RBF network to perform both
controller predictions and anomaly detection in CPS regression
tasks. However, the use of RBF functions limits the network’s
applicability only to classification tasks. So, we discuss the
steps in converting a CPS regression task (continuous steering
prediction) to a classification task (discrete steering prediction)
and then train a deep-RBF network for class prediction and
anomaly detection. To support our hypothesis, we evaluated
the deep-RBF networks for two different attacks on CPS
regression and classification tasks. Our results have shown
the deep-RBF network to robustly detect these attacks with
minimal resource requirement.

Future extensions of the deep-RBF networks include: (1)
extending the rejection capability to different types of OOD
data (e.g. brightness, occlusion, etc.), and (2) using the rejec-
tion capability for high level controller selection.
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