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Abstract—Public-transit systems face a number of operational
challenges: (a) changing ridership patterns requiring optimiza-
tion of fixed line services, (b) optimizing vehicle-to-trip assign-
ments to reduce maintenance and operation codes, and (c)
ensuring equitable and fair coverage to areas with low rider-
ship. Optimizing these objectives presents a hard computational
problem due to the size and complexity of the decision space.
State-of-the-art methods formulate these problems as variants
of the vehicle routing problem and use data-driven heuristics
for optimizing the procedures. However, the evaluation and
training of these algorithms require large datasets that provide
realistic coverage of various operational uncertainties. This paper
presents a dynamic simulation platform, called TRANSIT-GYM,
that can bridge this gap by providing the ability to simulate
scenarios, focusing on variation of demand models, variations of
route networks, and variations of vehicle-to-trip assignments. The
central contribution of this work is a domain-specific language
and associated experimentation tool-chain and infrastructure to
enable subject-matter experts to intuitively specify, simulate,
and analyze large-scale transit scenarios and their parametric
variations. Of particular significance is an integrated microscopic
energy consumption model that also helps to analyze the energy
cost of various transit decisions made by the transportation
agency of a city.

Index Terms—Transit simulation, domain-specific modeling
language, traffic simulation, micro-simulation, regional trans-
portation system, transportation planning, data-driven optimiza-
tion

I. INTRODUCTION

Public-transit systems face a trade-off between concentrat-
ing service into high-utilization routes that serve large numbers
of people and spreading out service to ensure that people
everywhere have access to at least some service. As a result,
improving the efficiency of an existing system while enhancing
service in terms of usefulness and coverage is challenging. The
problem of transit systems is often treated as an integrated
dynamic optimization problem focusing on three objectives:
minimizing energy per passenger per mile, minimizing total
energy consumed, and maximizing the percentage of daily
trips served by public transit [1]–[3]. The last objective often
requires dividing the transit area into fixed line and on-demand
routes.

Optimizing integrated transit services presents a very chal-
lenging computational problem. Firstly, the integrated opera-
tional decision space is vast: it includes dispatch and routing
of on-demand service vehicles, scheduling and placement of

* Both Rongze Gui and Ruixiao Sun contributed to the paper equally.

flexible courtesy stops for fixed-route service, and deciding
the allocation of a mixed transit fleet to specific routes, i.e.,
deciding which route should be assigned an electric vehicle
and which route should be assigned to diesel vehicles [4], [5].
Further, for fleet with electrical vehicles, it is also necessary
to strategically schedule the charging slots to ensure that
there is no undue burden on the electric grid. While it is
possible to optimize these decisions separately as prior work
has done, integrated optimization can lead to significantly
better service (e.g., synchronizing flexible courtesy stops with
on-demand transit (microtransit) dispatch for easy transfer).
Further, decisions must be made facing uncertainty (e.g.,
future demand requests and traffic conditions, unscheduled
maintenance). Despite these uncertainties, transit services must
meet strict requirements: paratransit requests must be served
within a limited time frame, fixed-route schedules must be
closely followed, etc. Finally, the operational environment is
evolving due to changes in population, traffic habits, etc.

Our team has been developing state-of-the-art artificial intel-
ligence, machine learning, and data-driven optimization tech-
niques for solving these challenges. This includes development
of microscopic and macroscopic energy estimation models
for assessing the cost of running the transit vehicles [6], [7].
However, till now, our and similar efforts from other research
teams have suffered from a bottleneck. They can only test their
models against previously collected data, which often does
not cover all possible operational scenarios. Our hypothesis
is that this challenge can be addressed by using simulation
engines that use publicly-available street maps, transit network
information, and past transit performance and enable realistic
simulation for varying scenarios. Such simulations serve two
purposes: (1) enable generation of new datasets that augment
real-world data and (2) enable evaluation of algorithms in
terms of transit demand met and overall energy cost.

In this paper, we describe TRANSIT-GYM, a SUMO based
general-purpose transit simulator, which we demonstrate by
using real-world scenarios and calibrated data from Chat-
tanooga, TN. This simulator extends a transportation simulator
developed by the team, called Mobilytics-Gym (built using
MATSIM) [8], which integrates agent behavior models that
can be learned from surveys and real-word data with transit
infrastructure models (street maps and static transit data). The
challenge in making the simulation realistic is ensuring that
the simulated environment reflects the real-world travel time
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delays and weather scenarios. This has been achieved by care-
ful calibration of the underlying model. Note that in order for
the simulator to remain viable, it is crucial to keep the physical
transit network of the city and the simulated transit network in
sync. The geometric design of roads evolves over time as new
roads and additional lanes are built on existing transportation
infrastructure. This adds a layer of complexity to developing
precise simulation environments. It is common for developers
and researchers to procure transportation data and network
files from existing platforms, such as OpenStreetMap (OSM)
[9]. The data available on these platforms is traditionally
crowdsourced, and in many cases, it is not up to date with
the actual transportation infrastructure. Therefore, we have
developed and integrated specialized procedures to perform a
stochastic check against the designed network and real traffic
data collected from the city and then fixing any discrepancies
in the network. This process ensures that that road geometries
and map files are continuously updated, providing an accurate
environment for testing and validation.

The key contributions of this paper are as follows:
• A novel DSML that allows intuitive specification and

variation of transit scenarios.
• A methodology to construct and calibrate street maps that

conform to real-world transportation infrastructure.
• A method to calibrate travel demand both for the road

traffic as well as on transit services.
• A toolchain that automatically configures SUMO simula-

tions from the scenarios specified using the above DSML.
• A customized general-purpose SUMO simulation specif-

ically for transit scenarios.
• A novel method to perform detailed energy consumption

of transit buses.
• An analytical design to produce experiment data that is

amenable for data analytics.
• An integrated dashboard to visualize the experiment

results in an highly intuitive manner and one that focuses
on key operational metrics.

• An integrated highly scalable cloud backend for transit
simulations.

The rest of the paper is organized as follows: Section II
provides a background on key concepts used in construction
of TRANSIT-GYM. Section III provides a detailed overview
of our approach to transit simulation. Section IV presents
scenarios and experiment results that demonstrate the system’s
usability. Finally, Section V concludes the paper and presents
directions for future work.

II. BACKGROUND

A. Model Integrated Computing

Model-Integrated Computing (MIC) [10] is a meta-
modeling technique that puts models at the center of all
applications. MIC allows the creation of domain-specific mod-
eling languages (DSML) called metamodels. Using the DSML,
domain-specific models are created based on it represent-
ing different applications or scenarios. The DSML describes

syntax and semantics of the models, how models can be
constructed, and the constraints that the valid models must
satisfy. The DSML tools then interpret models to verify them,
generate artifacts associated with the models, and generate
executables that are executed per the DSML’s semantics.

Aspect-oriented programming (AOP) [11] is related tech-
nique where integrated systems are composed by weaving dif-
ferent systems written in imperative languages, whereas MIC
focuses on model-based application synthesis using DSMLs.
Existing GenVoca [12] generators compose systems via gen-
eration of systems in abstraction layers using object-oriented
techniques, but do not support multiple-aspect composition.
Perhaps a well-known related effort is Model-Driven Architec-
ture (MDA) [13] that uses UML for modeling, whereas MIC
is flexible and utilizes domain-specific modeling techniques.

MIC facilitates rapid synthesis of domain-specific appli-
cations and scenarios and enables generation of syntactic-
and semantic-conformant executable artifacts. We use meta-
modeling by developing a DSML that is specific to transit
simulations. We describe the scenario modeling language and
example scenario models later in the paper.

B. Cyber-Physical Systems Wind Tunnel

Vanderbilt has developed a model-based heterogeneous sim-
ulation integration and experimentation framework known as
the Cyber-Physical Systems Wind Tunnel (CPSWT) [14].
CPSWT framework has been successfully used in different
application domains such as road traffic security and resilience
[15], efficient partitioning and co-simulating high-fidelity dy-
namical simulations [16], and smart grids [17]. The framework
is currently being actively developed at Vanderbilt and was
recently adopted by NIST, where it is being further enhanced
for practical applications in collaboration with Vanderbilt
[18]. We are working on extending TRANSIT-GYM using the
CPSWT framework for integrating traffic simulation in SUMO
with transportation planning simulation and for using CPSWT
courses-of-action (COA) evaluation method [19] for large-
scale scenario-based experimentation.

C. SUMO

TRANSIT-GYM uses SUMO as its main road traffic and
transit simulator. SUMO [20] is a highly customizable, mi-
croscopic traffic simulator. It uses a discrete-time computation
model and is highly scalable to city-level simulations. In
SUMO, arbitrary maps can be designed as well as real-world
maps can be imported from OSM [9]. We chose SUMO in
TRANSIT-GYM because it provides highly detailed capability
for modeling transit demand and routes, it is much easier to
configure the high-fidelity simulations, and provides detailed
traffic and transit experiment results.

In literature, SUMO or similar traffic simulation software
are used to analyze operation of transit services. Particularly,
there are several recent literature focusing on operation anal-
ysis of shared or on-demand mobility service using SUMO or
similar traffic simulation software [21]–[23]. However, these
studies’ traffic simulation is on limited geographic area and



limited fleet size, which is normally the case for shared
mobility services. Very limited studies focus on simulation of
transit fleet at a whole urban area. Particularly, to the best of
authors’ knowledge, there is no prior study that utilizes model
integrated computing framework to conduct scenario-based
transit simulations on a city scale with real-world background
traffic data. This paper tries to fill in this knowledge gap.

D. Energy Estimation Models

Existing energy prediction models for electric vehicles can
be classified as microscopic and macroscopic models accord-
ing to prediction resolution. Macroscopic models utilize aggre-
gated traffic and vehicle information, over a time period, e.g.
1 hour, to estimate energy consumption of electric vehicle [6],
[24]–[26]. Although the macroscopic models are interesting
and have solid methodologies, they can only provide energy
estimation over a time period, thus they are not useful in
evaluating energy savings of real-time bus operation strategies,
which have time-resolution only of a few seconds.

Microscopic models can estimate energy consumption of
electric vehicle at high frequency levels, and are widely
adopted in real-time optimal control of traffic involving electric
cars [27], [28]. Very limited literature studied electric bus. Rel-
evant electric bus studies adopted physical-based approaches
to estimate electricity consumption. But these physical based
microscopic models lack transfer ability and cannot be easily
used in other vehicles. In a previous study, we have developed
machine-learning based microscopic energy estimation model
that takes 1Hz vehicle trajectory data as input and output 1Hz
energy consumption estimation [29].

III. METHODOLOGY & SCENARIO CONSTRUCTION

A. Simulation Platform Setup & Data Sources

Figure 1 presents the framework of scenario-based simu-
lation platform, which leverages the open-source simulator
SUMO [20], DSML and energy estimation model. SUMO
is used to conduct microscopic traffic simulation, wherein
vehicles, public transport and persons are modelled explicitly.
The DSML is developed to provide an interpreter for cus-
tomizing transit simulation configurations based on scenario
specifications. Energy estimation models are constructed on a
machine learning algorithm, which is used as a tool to predict
the energy consumption for each trajectory simulated bus. We
now discuss the framework in detail.

The data sources used in this simulation include:
• Map: The map data can be generated from Open Street

Maps (OSM) [9]. OSM is a collaborative project that
provides fine calibrated map data. With the OSM map
data, we used the SUMO built-in package NETCON-
VERT to convert the OSM map to SUMO loadable road
networks. The road network contains information such as
the number of lanes in a street, speed restrictions and the
traffic direction.

• List of Vehicle Types and Parameters: The specifica-
tions of vehicles that are employed in the city public
transit system are listed as an input data for SUMO

Fig. 1: Framework of Simulation Platform

simulation. Based on such list, a vehicle type definition
file will be created, containing the parameters such as
max speed, acceleration, passenger capacity, min gap,
driver preferences, etc.

• Static General Transit Feed Specification (GTFS): The
GTFS data contains the transit route information and the
bus stop locations along the route, as well as the trip
schedules for a day. The DTFS data will be utilized to
configure the bus stops definition and bus trip schedules
for transit simulation.

• Origin Destination (OD) Data and TAZ Files: The OD
matrix data used in the platform contains details of trips
through traffic analysis zone (TAZ). Each OD matrix cell
is associate with a daily time period and describes the
respective traffic demand from an origin area zone to a
destination area zone. The TAZ files contain shape files
that define region TAZ, which can be converted to SUMO
TAZ with edges assigned to TAZ via POLYCONVERT
tool in SUMO. With these OD matrix data and TAZ
definition, we can generate the SUMO loadable person
plans and daily trips for other vehicles, e.g. passenger
cars and trucks.

In the following paragraphs, we discuss the details of how
bus mode is implemented in the simulation. Figure 2 presents
a workflow diagram for the public transit simulation, demon-
strating the interactions between the various components of
SUMO. Below are the key steps in the workflow:

1) Network Refinement: Due to the frequent mismatch
between available input data and the necessary level
of detail for microscopic simulation, network converted
from OSM directly commonly missing or mismatching
some road components. Therefore, after converting the
network, network refinement is needed. NETEDIT is a
graphical network editor which can be used to create, ana-
lyze and edit network files. This serves to complement the
network generation heuristics with manual refinements.



2) Bus Stop Location Retrieving: GTFS provides the
geographic coordinates of bus stops. Based on such GPS
coordinates, we can retrieve the location information of
stops (i.e., which point of the edge ID alone with lane ID
the stop is located on) from the network via TraCI [30].
TraCI is a SUMO module, which is capable of online
interaction, for example, it allows a python script to
extract various values from the simulation or change
certain simulation parameters which cannot be done using
the basic SUMO files.

3) Bus Trip Generation: Using GTFS and bus stop location
as the input one can define a schedule for vehicles on their
routes and so provide a scheduled public transport. The
interpreter serves the function to automatically generate
XML file for bus trip definition based on sequential bus
stops along each bus line in the GTFS data.

4) Vehicle Type Definition: The interpreter provides the
function to automatically generate codes for vehicle type
definition file according to the list of vehicle types and
associated parameters.

5) Background Daily Traffic Route Generation: The
background traffic to the transit operation was generated
from a 2014 daily average OD matrix that was provided
by the Chattanooga-Hamilton County regional planning
agency. This OD matrix describes the demand in a table,
which the number of passenger vehicles, single unit
trucks, and trailer trucks per hour originating from an
origin TAZ to a destination TAZ. The OD matrix was
then converted into passenger vehicle, truck, and trailer
trips using the SUMO module OD2TRIPS. The resulting
traffic forms the background traffic to the transit traffic.

6) Person Trip Generation: As mentioned above, the
SUMO OD2TRIPS tool provides a way to convert OD
matrix data along with TAZ into individual trips. In order
to generate the departure time for each vehicle/person,
either uniform or random distribution within a given time
period can be chosen. By default, OD2TRIPS generates
vehicular traffic, such as passenger cars and trucks. The
person trip with public transit mode can also be gener-
ated by adding an extra option (–persontrips) during the
OD2TRIPS executing.

7) Bus and Person Integrated Route Generation: The
design of the transit simulation is focus on the route for
bus with person riding, with the routes for other traffic
modes served as the background traffic. For bus mode
traffic, SUMO’s DUAROUTER software offers already
intermodal routing which could be used to generate the
bus route with person plans on transit. This way it suffices
for the user to incorporate person plans with start and
arrival points as well as the available bus schedules and
the depart time and SUMO will find the fastest routes for
person travel via public transport. Together with vehicle
to trip assignment scenario this can give a very pseudo-
realistic scenario with walking and riding persons. This
process will be called in DSML Interpreter automatically.

8) Additional Settings: To get the road segment level

traffic measurement result, an edge-based state dump is
defined within an additional-file served as an additional
querying in the sumo configuration. In addition, the
measurement values can be aggregated by setting the
aggregation period. The Interpreter offers this parameter
flexible augment.

As shown in Figure 2, the DSML interpreter automate
the processes including calling SUMO packages and writing
program to generating sumo essential input files, as well as
other additional settings and augments are functioned in.

Fig. 2: Workflow of the Public Transit Simulation

B. Scenario-Based Simulation

To evaluate different policies, our goal lies in simulating the
exact environment they represent. Moreover, to generate suffi-
cient datasets for algorithm training, this means of simulation
should be dynamic enough to adjust to different scenarios in
an efficient and timely manner.

Our solution to this problem is the developed scenario-based
simulation, where in this framework one or more policies can
be quickly converted to program-readable scenarios. Those
scenarios, represented as DSML code snippets, would then
be sent to the interpreter to be processed. For the detailed
progress of scenario-based simulation, three components are
supported:

• Scenario Specification: For a given scenario, the road
network, the list of vehicles and types and associated
vehicle parameters, as well as OD matrix data along
with TAZ SUMO file will be imported into the DSML
interpreter. In addition, the latest GTFS data and bus stops
definition will be queried directly in order to configure
the bus schedules and bus stops for transit services. The
detailed procedures calling SUMO tools to set up public
transit schedule within the DSML interpreter scripts are
shown in Figure 2. Furthermore, the block and vehicle to



trip mapping constraints ensure that the vehicle assign-
ments conform to transit block rules. The constraints are
set to make sure that user created scenario models are
valid. For example, bus assignments should be consistent
across a given block. The capability to generate SUMO
loadable files enables rapid changes to scenarios.

• Configuration Generation: The interpreter takes all of
the input information along with the scenario model
to generate the needed SUMO files for the simulation,
which includes the road network, route files, and bus
stop definition file, as well as other additional sumo
files. Next, the interpreter writes the specified SUMO
configuration .sumo.cfg file, containing all the generated
input files, simulation parameters such as start and end
time, declaimed output values, and other settings such as
waring and error log report.

• Simulation Run: The simulation can be executed directly
with the single configuration .sumo.cfg file via command
line. The interpreter also can support the execution of the
simulation if chosen by the user to do so. The framework
also plans to run the simulation in parallel for multiple
scenarios on a cloud-computing platform, in addition to
speed up the running time for large-scale simulation-
based experiments.

• Energy Estimation: The output of traffic simulation
include driving trajectories of buses. The trajectories
contain vehicle instantaneous speed and acceleration at
1Hz frequency for each bus trip. We have developed
artificial neural network (ANN) based microscopic energy
estimation model that takes 1Hz vehicle trajectory data
as input and output 1Hz energy consumption estimation.
The microscopic energy estimation model was trained
and tested on the same bus fleet operated by Chattanooga
Area Regional Transportation Authority. Detailed infor-
mation of the model can be found in literature [29].
After energy estimation for each trip, we aggregate 1Hz
energy consumption into the whole trip and divide trip
distance by total energy consumption to obtained energy
economy for diesel and electric bus trips. For comparing,
we converted electricity consumption to diesel equivalent
gallon using 3600 kJ for 1 kWh and 146,520 kJ for 1
diesel equivalent gallon.

C. Scenario Construction

As mentioned before, the scenario construction is performed
through the use of DSML developed on the textual metamod-
eling framework TextX and used in simulation configuration.
The DSML interpreter provides an automatic way for param-
eter flexibility on vehicle type, scenario generation, and block
and vehicle to trip mapping constrains checker in customizable
SUMO simulation.

A DSML program is separated into the import section and
configure section. The first section imports the pre-configured
scenario settings that would be used as background data for
subsequent code. As explained in the last section, the pre-
configured data source include Map, Vehicle Type, GTFS

and OD matrix Data and TAZ Files. The import command
has four variations corresponding to each of the imports.
import network configures the map, import vehicle configures
the vehicle type, import gtfs configures the GTFS data and
import td configures transportation demand files. The next
section configures one or more simulation based on user-input
parameters. Here, first the time range for the simulation will be
specified. The schedule command, then, is used to configure
the schedule to be simulated (weekend or weekday). The
output sampling period specifies the period for edge summary
output. Finally, in the vehicleassignment block, one or more
assignments can be defined, which associate vehicle type to
blocks and/or trips based on their number. When executed, this
program generates the outputs to be processed subsequently by
the energy estimation model. For example, we can simulate a
scenario with one weekday traffic and one weekend traffic in
Chattanooga before 12am, and assign a specific vehicle type
to all bus routes within block 101. Listing 1 shows part of an
example program that constructs this scenario.

import "network.Chattanooga"
import "vehicle.BUS_type.xlsx"
import "gtfs.latest"
import "td.OD_person.od"

simulation configuration 1 {
time [0000:1200]
schedule weekday
output_sampling_period 3600
vehicleassignment {

block 101: "Gillig_103"
}

}

simulation configuration 2 {
...

Listing 1: Example DSML program

IV. RESULTS AND DISCUSSION

A. Simulation Output Analysis

The platform is capable of generating various visualization
ready dataframes converted from output XML files, such
as edge based summary, vehicle trajectory, and bus stop
information. Edge-based traffic measurement output, values
within this output describe the macroscopic values such as the
mean speed, the mean density, the mean occupancy of edge
during specified time interval. Bus stop output contains the
information about each bus simulated schedule: time of arrival
and departure, stopping place and number of persons that were
loaded and unloaded at each stop. Trajectory output includes
information about type, current speed and acceleration of each
vehicle. These output values along with vehicle to trip assign-
ments can be used for energy analysis. In addition, the analysis
results such as vehicle occupancy, boarding, alighting, OSM
segment-level speed of vehicles, and segment-level travel times
and congestion observed besides the buses’ trajectories are
stored into data frames. It provides flexibility for users to select



point of interest from these data frames and conduct specific
analysis. Some examples of the output analysis visualizations
are shown as following .

Figure 3 shows the passenger occupancy of each bus along
its stops by trips for a whole day. Each point in it indicates the
amount of passenger on one bus before it arrived at a bus stop,
and each box presents the maximum, 1st quartile, median, 3rd
quartile and the minimum passenger amount for one trip.

Figure 4a shows the maximum passenger occupancy of each
bus along the bus stops by routes. The bar within each box
represents the median of the maximum passenger occupancy
of different buses on each route and the two sides of box
correspond to 1st and 3rd quartile of the data for each route.
To investigate the occupancy status during different time in a
day, the distributions of bus occupancy between three specific
hours (08, 12, and 17, according to morning, midday, and
afternoon) on route 4 are shown in figure 4b.

Figure 5 summarizes the boarding and alighting passengers
of each bus across a whole day by routes. Figure 6 shows the
distributions of bus speed and average speed of buses on route
4 for three hours (08, 12, and 17 hour). The left plot implies
that the bus speed during the three hours have the similar
distribution and the common speeds for these three hours all
lay on 20 mph. The right plot shows that the average speed of
buses in morning peak hour is higher than that of midday and
followed by afternoon rush hour. This reveals that the traffic
is jammed on afternoon rush hour and midday, getting better
at morning peak hour.

Trajectory output data for half a day was generated from
our platform as an illustration for energy estimation. Figure 7
shows the estimated consumption rates for buses on different
routes. The range of the energy consumption rate is from 0 to
3 mile/gallon. The larger the consumption rate, the less gallon
the bus consumed in the same driving distance. We can see
that many buses are driving on the route 4, and some of them
have higher rates than others. This means route 4 may have a
better road conditions than other routes assuming all the buses
are in the similar performance.

B. Scenario Analysis of Energy Consumption

This section investigates the analysis of energy consumption
in different simulation scenarios, such as variations of vehicle
trip assignments and variations of demand models.

We have three types of buses, including diesel, hybrid and
electric buses, as the candidates for trip assignment. The
energy estimation models, which was built for training diesel,
hybrid, and electric buses, are used to estimate the fuel/power
used for diesel, hybrid, and electric buses accordingly. Figure 8
presents the comparison of energy consumption rate of buses
among different trip assignment scenarios, including base
scenario, using all hybrid buses and using all electric buses.
It is obvious that buses in the scenario using all electric trip
assignment generally consumes the least energy than that of
using the other assignments across all the routes.

As illustrated before, the developed simulation platform
has the ability to change the demand models. To check the

impact of background traffic on the energy estimation, two
scenarios regarding different background demand models are
constructed. The first scenario presents the simulation with the
original daily background traffic, and the second scenario is
the simulation with the daily background traffic reduced by
20%. These two scenarios are conducted with in one peak
hour simulation as a sample illustration. In addition, to check
the ability of variation of GTFS data in our platform, the
GTFS data in this comparison is on the different day against
the GTFS data in the previous simulation. The estimated
energy consumption rates for three bus types under the two
scenarios are shown in Table I. From this table, we can see
that the energy consumption for diesel buses generally greater
than that of hybrid buses. The electric buses are capable of
saving energy in the similar situation compared with diesel
and hybrid buses. The results of original demand are higher
than that of reduced demand scenario for diesel and hybrid
buses, while lower than that of original demand scenario for
electric buses. As shown in Figure 7, the network is in a
heavy congestion at morning peak. The network with lower
background trip demand has fewer jams, that is to say, the
buses will have a higher speed and reduce the brake times
under reduced demand scenario than the original demand
scenario. For diesel and hybrid buses, fewer brakes means the
bus can save fuel consumption compared with more brakes
in driving. For electric bus, it has a chance to regenerate few
power during braking. Therefore, it might be the reason that
the electric buses consume less power under reduced demand
scenario than that of original demand scenario.

TABLE I: Estimated energy consumption rate for buses within
the same period

Route
No.

Trip
No.

Energy consumption rate
(mile/diesel equivalent gallon)

Original demand Reduced demand
Diesel Hybrid Electric Diesel Hybrid Electric

1 1 1.0 1.3 11.6 1.2 1.8 5.0
2 2.7 4.3 11.7 2.8 4.7 10.7
3 2.3 3.3 10.8 2.7 4.6 10.4
4 1.1 1.5 8.1 1.5 2.7 6.3

3 5 1.6 2.0 14.9 1.9 2.9 9.5
6 3.7 5.0 15.9 4.2 6.4 16.8
7 1.2 1.5 11.4 3.3 5.5 14.6

4 8 2.0 2.8 11.4 1.4 2.0 5.0
9 2.3 3.1 14.0 2.4 3.7 10.2

9 10 2.8 3.8 14.0 2.5 3.9 10.9
11 2.1 3.4 9.4 2.3 3.7 8.0

10A 12 2.5 3.4 14.2 2.5 4.0 10.7
13 2.8 4.2 12.8 3.0 4.7 10.7

10G 14 2.4 4.0 9.5 2.8 4.5 9.6
15 0.9 1.1 8.1 2.3 3.7 8.4

V. CONCLUSIONS & FUTURE WORK

Public transit services are highly complex and faces a
range of operational challenges to optimize fixed-line and on-
demand services in a way that minimizes cost for the riders and
transportation agency. In this paper, we presented TRANSIT-
GYM, a SUMO based transit simulator for simulating a variety
of transit scenarios. Its domain-specific modeling language



Fig. 3: Passenger occupancy of each bus along the bus stops by trips across 24 hours

(a) (b)

Fig. 4: Maximum passenger occupancy of each bus along the
bus stops by routes across 24 hours (a). Distributions of bus
occupancy between specific hours on route 4 (b)

(a) (b)

Fig. 5: The total boarding passengers (a) and the total alighting
passengers of each bus by routes across 24 hours (b)

(a) (b)

Fig. 6: Distributions of bus speed (a), average speed of buses
on route 4 during three specific hours (b)

Fig. 7: Energy consumption rate for buses in half a day

Fig. 8: Energy consumption rates for buses in different trip
assignment scenarios

and associated experimentation tool-chain and infrastructure
enables intuitive and rapid specification of scenario variations
in transit demand, route networks, and vehicle trip assignments
as well as simulating them on integrated cloud backend. We
also presented a novel approach to perform stochastic checks



and calibrate crowdsourced street maps and traffic demand
patterns for accurate testing and validation. Our experiment
results demonstrated the broader applicability of TRANSIT-
GYM for realistic transit simulations and providing efficient
decision-support for transportation planning. TRANSIT-GYM
is freely available on GitHub: https://github.com/smarttransit-
ai/transit-simulator.

We are currently working on several extensions to
TRANSIT-GYM including: (1) integrating transportation plan-
ning with transit simulation and energy consumption esti-
mation together as a co-simulation using Vanderbilt’s CP-
SWT framework, (2) developing a richer scenario modeling
language to incorporate more specific transit use-cases, (3)
increasing performance of our simulation through partitioned
traffic simulations, (4) scaling our simulations for broader
cloud integration, (5) incorporating certain sensitive attributes
at the passengers to evaluate whether or not the simulation
scenarios lead to equitable and fair coverage to areas with
low rider-ship, and (6) enhancing visualization of experiment
and analysis results.
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