
Generalised Zero-shot Learning for
Entailment-based Text Classification with External

Knowledge
Yuqi Wang1, Wei Wang1, Qi Chen2, Kaizhu Huang1, Anh Nguyen3, and Suparna De4

1School of Advanced Technology, Xi’an Jiaotong Liverpool University, Suzhou, China
2School of AI and Advanced Computing, Xi’an Jiaotong Liverpool University, Suzhou, China

3Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
4Department of Computer Science, University of Surrey, Surrey, United Kingdom

yuqi.wang17@student.xjtlu.edu.cn,

{wei.wang03, qi.chen02, kaizhu.huang}@xjtlu.edu.cn,
anh.nguyen@liverpool.ac.uk, s.de@surrey.ac.uk

Abstract—Text classification techniques have been substantially
important to many smart computing applications, e.g. topic
extraction and event detection. However, classification is always
challenging when only insufficient amount of labelled data for
model training is available. To mitigate this issue, zero-shot
learning (ZSL) has been introduced for models to recognise new
classes that have not been observed during the training stage. We
propose an entailment-based zero-shot text classification model,
named as S-BERT-CAM, to better capture the relationship
between the premise and hypothesis in the BERT embedding
space. Two widely used textual datasets are utilised to conduct
the experiments. We fine-tune our model using 50% of the
labels for each dataset and evaluate it on the label space
containing all labels (including both seen and unseen labels). The
experimental results demonstrate that our model is more robust
to the generalised ZSL and significantly improves the overall
performance against baselines.

Index Terms—Zero-shot learning, natural language processing,
deep learning, BERT

I. INTRODUCTION

Classification is at the foundation of smart computing to
analyse data at scale in multiple fields, which has been
continuously studied in the past few decades and further
advanced by deep learning techniques in recent years. As for
the conventional classification, deep learning usually requires
a significant amount of labelled data for each class to train
networks in a fully-supervised manner. However, regarding ap-
plications such as topic extraction [1] and event detection [2],
some classes are less common in the real world, making
it difficult to collect sufficient samples for model training.
Besides, with the widespread popularity of social media, a
large number of emerging topics or events are constantly
being introduced. Conventional classification methods are not
capable of handling these problems.

Recent years have witnessed the development of zero-
shot learning (ZSL), referring to the ability to recognise new
classes that do not appear in the training set. This can be
achieved by effective knowledge transfer from seen to unseen

labels. Instead of denoting each class label as an index in the
pre-defined output space, ZSL requires label representations
to be equipped with additional semantic information about
classes, e.g. class attributes [3] and textual description [4].
Moreover, relationships between labels, e.g. cosine similarity
in a specific semantic space [5] and hierarchical structure
from external knowledge resources [6], can be leveraged to
perform better predictions for unseen labels. Whilst ZSL has
been notably successful in computer vision, there has been
relatively little progress in natural language processing (NLP)
and understanding. We believe that the potential of ZSL in
NLP has not been fully explored.

Newly-developed contextualised NLP models such as
BERT [7], with bidirectional attention-based mechanism, i.e.
transformers [8], can extract essential features from textual se-
quences and learn high quality contextualised representations.
Pre-trained BERT can be effectively employed for knowledge
transfer and has produced impressive results in a variety of
downstream tasks such as open-domain question answering [9]
and aspect-based sentiment analysis [10]. Natural language
inference (NLI) [11], a fundamental NLP task, requires a
model to take two inputs as the premise and hypothesis,
respectively, and determines whether the hypothesis can be
entailed by the premise. This is analogical to human logical
thinking while one is performing the text classification without
learning from any labelled examples [12].

We study the generalised zero-shot text classification prob-
lem with an entailment-based approach by utilising the
Siamese network architecture with BERT (Sentence BERT)
that has been pre-trained over NLI tasks [13]. Sentence BERT
typically employs the concatenation of two pooled embeddings
from BERT along with their element-wise difference to fit a
softmax classifier, which may not be able to fully capture the
relationship between two inputs. To this end, we propose a new
cross attention module (CAM) for better performance in the
deep semantic space. We choose two commonly used textual



datasets for experiments. We fine-tune the model with 50% of
labels for each dataset and test it on the label space containing
all labels (including both seen and unseen labels) to evaluate
its capacity for generalisation.

The rest of the paper is organised as follows: In Section II,
we review the related work regarding zero-shot text classifi-
cation. Then, we define the task, formulate the problem and
present our proposed model in Section III. In Section IV, we
describe the experiments on two commonly used multi-class
classification datasets and evaluate the performance. Finally,
we conclude the paper and define possible future research in
Section V.

II. RELATED WORK

Zero-shot text classification aims to determine the label for
a textual document without any explicit supervision, which
was first investigated by Chang et al. [14]. They expanded the
name of each class label to a text fragment containing several
keywords and employed the Explicit Semantic Analysis (ESA)
algorithm [15] to represent each label and text in a unified
semantic space. Their work highlighted the importance of
meaningful semantic interpretation in ZSL. Inspired by this,
later, unsupervised methods such as Label Similarity [16] were
proposed with the study of word embedding in NLP.

Deep learning techniques such as Convolution Neural Net-
work (CNN) [17] and Long Short-Term Memory (LSTM) [18]
have been widely adopted in the field of NLP. Pushp and
Srivastava [19] reformulated the original problem into text-tag
relatedness prediction and proposed an LSTM-based method
to learn the relationship between a sentence and tag. Zhang et
al. [20] employed CNN with data and feature augmentation
to integrate semantic knowledge such as class description and
class hierarchy. To better incorporate knowledge from graph-
structured data, i.e. knowledge graph, Nayak and Bach [21]
employed Graph Convolutional Network (GCN) [22] to gen-
erate label representations for zero-shot text classification.

Recently, the combination of attention mechanism, bidi-
rectional scheme and improved word embedding techniques
has resulted in remarkable success. BERT [7], a powerful
pre-trained NLP model, has achieved many state-of-the-art
performances on text classification tasks. So far, there has been
some research that utilised the BERT model for zero-shot text
classification. Chen et al. [23] projected both label name and
text from the BERT embedding space to the knowledge graph
space and computed their semantic similarity to determine
whether a text can be associated with a label. Yin et al. [12]
reduced the text classification problem to entailment vs. non-
entailment prediction. With the inference ability of the pre-
trained BERT model, it could apply the knowledge gained
from entailment datasets to solve the problem effectively.

III. METHODOLOGY

In this section, we first define the zero-shot text classifi-
cation task and then introduce the entailment-based classifi-
cation process. The overall architecture of the proposed S-

BERT-CAM is shown in Figure 1. The S-BERT and CAM
components will be discussed in III-C and III-D, respectively.

A. Task Definition

Let Ys and Yu be sets of seen and unseen labels, respec-
tively, such that they are disjoint, i.e. Ys ∩Yu = φ. Given the
set of labelled training instances Dtr = {(xtri , ytri )}Ntr

i=1, where
ytri ∈ Ys, our aim is to train a model that can generalise well
on the test set Dts = {(xtsi , ytsi )}Nts

i=1, where ytsi ∈ Ys ∪ Yu.

B. Entailment-based Classification

Since we employ an entailment-based approach for text
classification, for each label y ∈ Ys∪Yu, we represent it using
the description of the corresponding entity from a knowledge
base, DBpedia 1 and covert it to the hypothesis. We list 2
examples of label-hypothesis conversion for entailment-based
classification in Table I, where the underlined text is adapted
from the entity description in DBpedia. The text that is to be
classified is the premise.

TABLE I
EXAMPLE HYPOTHESIS FOR ENTAILMENT-BASED CLASSIFICATION

Class Label Reference Entity Example Hypothesis

Film http://dbpedia.org/
page/Film

This text is about a work of visual
art through the use of moving im-
ages.

Village http://dbpedia.org/
page/Village

This text is about a clustered hu-
man settlement or community often
located in rural areas.

To prepare the training data for the entailment vs. non-
entailment prediction task, for each instance (xtr, ytr) ∈ Dtr,
we randomly generate a negative sample (xtr, ytr′), where
ytr′ 6= ytr and ytr′ ∈ Ys. In the training stage, the model
is required to learn if the hypothesis converted from a label
can be entailed by the premise. As a result, we will learn an
entailment model f(x, y; θ), where θ is the model parameter.

With respect to the testing, for each text xts in Dts,
the model performs the entailment with premise xts and
hypothesis converted from each label, y, y ∈ Ys ∪ Yu,
one by one. Normally, the label whose hypothesis yields the
highest entailment score will be selected as the predicted one.
However, in the generalised ZSL, the model tends to “overfit”
to seen labels since there is no unseen label for training. Hence,
we employ calibrated stacking [24] to reduce the bias in our
work, i.e.

ŷ = argmax
y∈Ys∪Yu

f(x, y; θ)−γI[y ∈ Ys] (1)

where I[·] equals to 1 if y ∈ Ys, otherwise 0; γ is the calibra-
tion factor, a hyper-parameter will be determined through the
validation.

1https://www.dbpedia.org/
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Fig. 1. Overall architecture of S-BERT-CAM

C. Sentence BERT

Over the years, the effectiveness of transfer learning has
been widely confirmed: knowledge gained from pre-training
tasks can be applied to solve other related problems. Pre-
trained NLP models such as BERT are context-dependent and
have the ability to capture the high-level concept of each
sentence [7]. By fine-tuning the BERT model with only a
limited amount of domain-specific data, one can obtain state-
of-the-art results on multiple purpose-oriented NLP tasks.
However, the BERT model, as a very deep cross-encoder,
has a major limitation for entailment-based classification. As
both premise and hypothesis will be passed to the model
simultaneously, the time complexity would be extremely high,
especially when there is a large number of documents and
classes [13].

To mitigate the problem and generate compatible represen-
tations for both premise and hypothesis, we employ Sentence
BERT (S-BERT) [13] as the base model, which has been pre-
trained over NLI tasks on large general domain corpora. S-
BERT consists of the Siamese network architecture to produce
semantically meaningful representations while significantly
reducing the cost of computation inference as each represen-
tation in the BERT embedding space can be pre-computed
during testing.

Figure 2 demonstrates the architecture of a single BERT
model. For each input (premise or hypothesis), we first add

two special tokens (<CLS> and <SEP>) at the beginning
and end, respectively, and tokenise the input text by splitting
it into different tokens. After the token-level representations
H0 = {h0

1,h
0
2, ...,h

0
n} are generated with the summation

of position embedding, token embedding and segment em-
bedding, the contextualised representation will be calculated
recursively with fully-connected bidirectional transformers [8],
i.e.

H l = TransformerBlockl(H
l−1) (2)

where H l = {hl
1,h

l
2, ...,h

l
n}, standing for the contextu-

alised representation in the l-th layer. The output of the
last hidden layer is used as the final representation of the
premise/hypothesis in the BERT embedding space. We denote
them as Hp and Hh, respectively.

D. Cross Attention Module (CAM)
While performing the classification task, S-BERT usually

employs the concatenation of two pooled embeddings from
BERT along with their element-wise difference to fit a soft-
max classifier [13]. We observe that although this kind of
concatenation is useful to some extent, it is not sufficient to
model the relationship between the promise and hypothesis.
More discriminative features should be derived for better
performance.

Attention mechanism [8] aims to locate and highlight the
relevant part of the input, e.g. areas in an image or words
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Fig. 2. Architecture of a single BERT

in a text, which has been widely used in the multi-modality
matching [25]. In our work, although all inputs are in the same
modality, premise and hypothesis are, in fact, from different
resources. To this end, we propose a new cross attention
module (CAM) to address the semantic discrepancy problem
and guarantee the discriminability of the output feature. CAM
takes two inputs: Hp and Hh from the S-BERT model. Each
input has its corresponding query, key and value that can
be obtained by multiplying trainable weights WQ, WK and
W V . Therefore, the query, key and value of the premise and
hypothesis can be formulated in the following manner:

(
Qp,Kp,V p

Qh,Kh,V h

)
=

(
HpW

Q,HpW
K ,HpW

V

HhW
Q,HhW

K ,HhW
V

)
(3)

CAM consists of a self-attention and cross-attention mech-
anism. As for the self-attention mechanism, every element in
the input is required to interact with every other element in
the same input (including itself) in order to identify which part
of the input to focus on and which element is essential. This
intra-information is important for the document that we would
like to classify. Hence, we calculate the self-attention matrix
of the premise as follows:

Self-att(Qp,Kp,V p) = Softmax(
QpK

>
p√

dk

)V p (4)

where dk is the scaling factor.
Moreover, to explore the relationship between premise

and hypothesis, we employ a cross-attention mechanism. In
contrast to the self-attention mechanism, it compares every
element in the first input to every element in the second input.
This way measures how important each element in the first
input is with respect to all the elements in the second input.
The cross-attention matrix of premise and hypothesis can be
calculated as follows:

Cross-att(Qp,Kh,V h) = Softmax(
QpK

>
h√

dk

)V h (5)

We choose the average pooling to calculate both the self-
attention and cross-attention vector for overall information

preservation and dimension reduction. If the given hypothesis
can be entailed by the premise, the self-attention and cross-
attention vector will tend to be similar since an important word
in the premise should also be relevant to the hypothesis or part
of it. Based on this, we compute the element-wise difference
of the pooled self-attention and cross-attention vector as the
output features of the CAM, i.e.

CAM(Hp,Hh) =

{
Avg-pool

(
Self-att(Qp,Kp,V p)

)
−

Avg-pool
(
Cross-att(Qp,Kh,V h)

)}|·|
(6)

Finally, the output features will be passed to a fully-
connected network (FCN) followed by the sigmoid activation
function to acquire the entailment score (0-1).

IV. EXPERIMENTS

A. Datasets

For our experiments, we utilised two widely used labelled
textual datasets: 1) DBpedia ontology dataset [26], which
is made up of 14 non-overlapping Wikipedia topics. Each
class contains 20,000 training and 5,000 testing samples; 2)
20newsgroup dataset2 was created by selecting textual data
from social media, including 20 news topics. Each class
contains around 700 training and 300 testing samples.

B. Baseline Methods

• Label Similarity: this method [16] computes cosine
similarity between each label embedding and the sum
of n-gram word embeddings in a document. For the
multi-class classification task, the label with the highest
similarity score will be selected as the predicted label.

• LSTM: it refers to the second architecture in the work of
Pushp and Srivastava [19], where the final hidden state
of an LSTM is concatenated with a label embedding to
predict the relatedness of the given text and label.

• CNN-AUG: it refers to the work of Zhang et al. [20],
which is a CNN-based model with data and feature
augmentation to integrate semantic knowledge.

• InferSent-GloVe: it is a Siamese network with Bi-LSTM
pre-trained over NLI tasks to produce semantic repre-
sentations [27]. It employs GloVe [28] to initialise the
embedding of input. For the classification task, it con-
catenates two pooled embeddings from Bi-LSTM along
with their element-wise difference and multiplication to
fit the final classifier.

• S-BERT: we re-implemented S-BERT [13], a Siamese
network with BERT pre-trained over NLI tasks. For the
classification task, it concatenates two pooled embeddings
from BERT along with their element-wise difference to
fit the final classifier.

2http://qwone.com/∼jason/20Newsgroups/



C. Setup

We downloaded the pre-trained base model from hugging-
face3 and employed the Adam optimiser with β1 = 0.9 and
β2 = 0.999. We mainly followed recommendations from
Devlin et al. [7] to set the learning rate (3e − 5) and batch
size (32). We set the maximum length of each input sequence
to 128.

The unseen rate was set to 50%, i.e. 50% labels would not
be observed during training. To determine the value of γ in
Equation (1) and tune other hyper-parameters, we performed a
simple validation based on the work of Chao et al. [24]: further
splitting the training labels into pseudo-seen and pseudo-
unseen labels following the unseen rate (No unseen labels were
included). We simulated the entailment-based classification
setting mentioned in Section III-B to derive a validation set
and train the model with pseudo-seen labels only and validate
on all training labels. We selected hyper-parameters that can
maximise the overall performance during the validation and
trained the model with all training labels.

We implemented our model using PyTorch 1.10.2 and
Python 3.6, and used a GeForce RTX 3060 Ti GPU as
hardware acceleration.

D. Evaluations

1) Accuracy on Testing Data: We chose accuracy as the
main metric to evaluate the performance of models since
the testing data is relatively balanced on two datasets. The
performance of different models on testing data is reported
in Table II. Label Similarity [16] gave the highest accuracy
on unseen labels among all methods. However, it could not
deliver satisfactory results on seen labels compared to all other
supervised methods. LSTM [19], on the contrary, produced
good predictions on seen labels while performing poorly on
unseen labels, indicating that it has no ability to apply the
knowledge gained from seen labels to tackle the zero-shot
classification on unseen labels. These two methods failed
to generalise well across all labels. It is worth noting that
the three entailment based models, InferSent-GloVe [27], S-
BERT [13] and S-BERT-CAM, significantly improved the
overall performance on both datasets, which demonstrated the
effectiveness of entailment-based classification. Moreover, the
proposed S-BERT-CAM model outperformed the baseline S-
BERT by 2.1% and 1.9% on DBpedia and 20News, respec-
tively, which proved its capability of generalisation.

2) Robustness to Generalised ZSL: We plotted Area Un-
der Seen-Unseen Accuracy Curve (AUSUC) [24] for further
comparison. AUSUC is a metric proposed by Chao et al. [24],
which is obtained by varying the calibration factor γ during the
validation. The AUSUC directly indicates how robust a model
is to the generalised ZSL. In Figure 3, it is observed that our
model generated the highest AUSUC and outperformed the
baselines on both datasets.

3https://huggingface.co/transformers/
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Fig. 3. Area Under Seen-Unseen Accuracy Curve (AUSUC) during validation
on two datasets

3) Visualisation: To visualise the output features before
the final classification in different methods, we also provided
PCA visualisation in Figure 4. Compared with S-BERT, whose
entailment features were scattered around, S-BERT-CAM gen-
erated better clusters so as to confirm the validity of CAM.
As for the InferSent-GloVe, the main clusters of entailment
and non-entailment features were highly overlapped, and there
were some outliers. On the contrary, these two types of
entailment features from S-BERT-CAM presented a clear
separation, allowing the model to easily determine whether
a hypothesis could be entailed by the premises.

V. CONCLUSION AND FUTURE WORK

Based on the entailment-based models, we designed S-
BERT-CAM to better capture the relationship between premise
and hypothesis. It is pre-trained over NLI tasks, fine-tuned
with 50% of the labels, and evaluated with all labels from
two widely used textual datasets. The experimental results
show that the proposed model can significantly improve the
overall performance, which confirms its generalisation ability
and robustness to the generalised ZSL. This also shows that the
model can generate more discriminative features and alleviate
the semantic discrepancy problem.



TABLE II
COMPARISON OF PERFORMANCE ON TESTING DATA

Models DBpedia 20News

Unseen Seen Overall Unseen Seen Overall

Label Similarity [16] 36.9 40.1 38.6 26.6 29.3 28.0
LSTM [19] 4.4 96.0 50.2 5.2 70.9 38.1
CNN-AUG [20] 19.7 98.2 59.0 16.8 76.7 46.9

InferSent-GloVe [27] 30.6 90.4 60.5 23.9 56.4 40.2
S-BERT [13] 33.5 89.8 61.7 21.0 75.4 48.2
S-BERT-CAM (Ours) 36.1 91.5 63.8 25.6 74.5 50.1

Non-entailment
Entailment

(a) InferSent-GloVe

Non-entailment
Entailment

(b) S-BERT

Non-entailment
Entailment

(c) S-BERT-CAM

Fig. 4. PCA visualisation of output features from different entailment models

In future, we will consider the more challenging, label
fully-unseen problem for ZSL and design new models for
this based on our current work. The work presented in this
paper only focuses on multi-class text classification, and we
employ some textual descriptions from external knowledge
bases. In many real-world scenarios, e.g. social media data,
each message can be associated with more than one label.
For future work, we will work on multi-label classification by
label-entity alignment and utilise relationships between labels,
e.g. similarity and subsumption [29], from external knowledge
bases to further improve the usability and performance.
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