
Performance Evaluation of Switching Between WiFi
and LiFi under a Common Virtual Network

Interface
Loreto Pescosolido, Emilio Ancillotti, Andrea Passarella

Italian National Research Council, Institute for Informatics and Telematics (CNR-IIT)
Via Giuseppe Moruzzi 1, 56124 Pisa, Italy

Email: {loreto.pescosolido, emilio.ancillotti, andrea.passarella}@iit.cnr.it

Published at the 8th IEEE International Workshop on Sensors and Smart Cities (SSC 2022), hosted by the 2022 IEEE
International Conference on Smart Computing (SMARTCOMP 2022).

Abstract—We consider a hybrid wireless local area network
composed of both WiFi and LiFi Access Points (AP) and wireless
devices. Each device is identified in the network by a unique IP
address, using a virtual network interface obtained by bonding
the WiFi and LiFi physical interfaces, implemented through
commercially available products. We measure the time it takes to
switch between the two physical interfaces and its impact on the
traffic flow, under different settings of the mechanisms used by
the interface bonding driver. Different specific triggering events
are considered for the switch, namely: an (simulated) interface
malfunctioning or unintended shutdown, a signal loss, and a
manual (intended) switch. Our experimental results show that
the different types of triggering events have an impact on the
time it takes to reconfigure the currently active physical interface
(which is used by the virtual interface to send/receive data), with
connection recovery times ranging from few tens milliseconds to
few seconds. This entails a packet loss on active flows which, in
the worst case, we quantify in a maximum loss of up to 1% of
the traffic flowing during 1 second.

Index Terms—LiFi/RF hybrid networks

I. INTRODUCTION

Energetically sustainable smart home and smart building
appliances, ambient assisted living, health and lifestyle mon-
itoring and assistance, and home automation appliances are
expected to contribute to an increase in the number and variety
of IoT devices in use in indoor wireless local area networks.
IoT devices can be used to interact with the user and collect
data for applications pertaining the users’ own scope, but they
can also provide meaningful information to the smart city
environment. For instance, electricity and water consumption
monitoring tools are a useful source of data in smart buildings
for sustainable smart cities. Monitoring the users’ behavior
indoor (home, office, restaurants, etc..) can help predict, for
instance, user movements across different areas of the city, and
so on. Increasing the connectivity and available bandwidth in
indoor environments is therefore of paramount importance to
support this kind of ever increasing traffic.

In this context, the outstanding results achieved in the
recent years by the research in the area of Light-Fidelity
(LiFi) [1] suggest that infrared/visible light communications
can be a viable tool to increase the overall avaliable bandwidth
and reliability of indoor communications for IoT devices.
Commercial LiFi transducers, and LiFi-based LANs, have
become available as well in the recent years, although not
yet at prices comparable to their traditional WiFi counterparts

and not yet able to exploit, in terms of data rate, the enormous
potential bandwidth offered in the VLC and infrared spectrum.
This includes both Access Points (APs) using led lamps as
transmitting transducers and infrared (IR) sensors as receiving
ones, as well as USB network interfaces using IR LEDs as
transmitters and and photo-diodes as receivers. Although able
to provide a self contained LAN environment, it has become
clear that a more effective way of using the newly available
technologies is to do this in conjunction with communication
systems operating in different bands. In fact, the coverage
radius of a typical attocell (the area covered by a single access
point) is in the order of few (in the order of 5) meters, which
(among other reasons), depending on the scenario, may call
for the presence of multiple parallel technologies to form
the LAN. Thus, hybrid LiFi/WiFi networks [2] (see also the
references therein) have emerged as a promising wireless
networking paradigm for many scenarios.

The integration of wireless communication and networking
capabilities of LiFi and WiFi may be performed at different
layers of the communication protocol stack. At layers above
the TCP/IP layer, it entails that each physical network interface
on the same device is mapped to a different IP address.
Possibly, it may also belong to a different subnet. This requires
that the handling of the multiple interfaces, i.e., selecting
which interface to use to forward outgoing traffic, is performed
at layers above the TCP/IP. This type of configuration has been
used in several works, e.g. [2], for the purpose of studying the
overall system capacity, but it can be argued that it is not an
ideal choice in terms of complexity added to the upper layers,
which should track the currently active IP address of any
device, among the multiple ones each device can use. In fact,
integration at the lower layers of the protocol stack has been
recently receiving attention. In [3], the integration is performed
at the physical layer in the form of extending 802.11 COTS
by attaching a VLC transducer to one of the antenna ports,
in order to obtain a completely transparent network interface.
Although proving a promising solution, this approach has not
yet led to commercially available products.

In this work, we consider the integration of a LiFi and
a WiFi network interfaces at layer 2 (data link), building a
single “virtual” network interface which combines WiFi and
LiFi COTS without any hardware modification. To do this we
exploit the Linux Ethernet Bonding Driver [4], a module of the

ar
X

iv
:2

20
3.

13
54

4v
3

 [
cs

.N
I]

 1
 J

un
 2

02
2

Linux Kernel originally designed for bonding multiple ethernet
interfaces which, however, can even be used with wireless
interfaces.

We present a set of experimental results aimed at quantify-
ing the connectivity downtime when there is a switch between
the LiFi and WiFi physical interface as the consequence of
an event that can be either exogenous (signal or carrier loss,
physical interface failure, etc...) or intentional, e.g., a switch
operated for load balancing purposes. Based on the results, we
discuss the pros and cons of several settings of the bonding
driver. Particularly, we focus on the means and sampling
frequency used by the bonding driver to check the status of
the physical links corresponding to the two interfaces.

The rest of the paper is organized as follows, in Section II
we describe the functions of the software tool we used to
combine the WiFi and LiFi interface into a single virtual
network interface for the wireless devices, and the related
configuration of the wireless LAN. In Section III, we describe
the testbed we used to perform our experiments, and present
the methodology to extract the relevant information about
the interface switching time from the experimental traces. In
Section IV we present our experimental results and discuss
them with the aim of obtaining indications on how hybrid
networks can impact on the QoS of different types of traffic
in different scenarios. Finally, Section V concludes the paper,
summarizing our contribution and take home message.

II. VIRTUAL COMMON INTERFACE
We refer to a virtual common interface as an entity that

appears to the operating system (OS) of a wireless device as
a fully effective network interface, to which it is assigned a
single IP address, but, at layers below the TCP/IP, it relies
on multiple (in our case, two) physical network interfaces.
To implement the virtual common wireless network interface
we exploit the Linux Ethernet Bonding Driver [4]. The main
features of the bonding driver are summarized below, along
with the description of how it can be used to handle a WiFi
and a LiFi interface in a wireless LAN, and some necessary
additional detail on the mechanisms the driver uses to check
the status of the two interfaces, in order to react to changing
conditions.

A. The Linux Ethernet Bonding Driver
The driver has been part of the Linux Kernel from its early

stage of development. The last version of the driver is 2.6 [4].
The driver was designed to handle multiple Ethernet network
interfaces under a virtual network interface. This allows to
present the device to the network under a unique IP address,
thus making it transparent, to the TCP/IP and upper layers of
both the considered device and the other network devices, the
presence of different means for letting traffic reach, or depart
from, the considered device. Although the driver was designed
to handle Ethernet interfaces, some of its functions can be used
with wireless interfaces as well.

The driver allows to chose among several policies, called
“modes”, for distributing traffic across the available interfaces.
Some of these policies are oriented to load-balancing, other

policies are more oriented to increase the system reliability.
However, the possibility to enable a given policy is based on
some requirements on the network interfaces in use. Particu-
larly, many policies require that the physical interfaces support
interface the “ethtools” library. While this support is a standard
feature of any Ethernet interface, it is typically absent from
wireless interfaces. This limits the range of policies that can
be implemented by the driver when, as in the case of the LiFi
and WiFi interfaces considered in this work, the “ethtools”
support is not available. Fortunately, for the purposes of this
work, the use of modes not requiring the “ethtools” support is
sufficient. Particularly, in the driver configuration, we have
considered the active-backup mode selection. In the
active-backup mode, one of the interfaces is declared
as the default one, and it is used by the device for outgoing
or incoming traffic whenever available . However, when the
interface or its corresponding physical link is not available,
the driver switches to the other physical interface, called the
backup one [4].

The presence and correct operation, in an IP subnet, of
devices utilizing bond interfaces, relies on a correct utiliza-
tion of the address resolution protocol (ARP) [5], as it is
crucial to keep track of the association, at any given time,
between IP addresses and MAC addresses of the physical
interfaces. With bond interfaces, this association may vary
much more frequently than in traditional networks where IP
and MAC addresses are mapped one-to-one in a static way.
Moreover (see below) ARP messages can be also used by the
bonding driver as a means to proactively update the primary
interface upon detection of a link or interface failure in the
active-backup mode, even in the absence of traffic.

B. ARP and MII monitoring of the physical link
In the active-backup mode of the bonding driver, to

keep track of, and if necessary, switch the status of the
interface, the bonding driver performs periodical checks using
either of two mechanisms, called ARP monitoring and MII
monitoring.

ARP monitoring uses standard ARP messages. A device in
which bonding is in operation, periodically broadcasts ARP
request packets using the currently active physical interface.
The interface broadcasts it through the network indicating
a queried IP address (called arp_ip_target), or even
more than one. Typically, for the purpose of ARP monitoring
operation, this is the IP address of a designed device in
the network. The bond interface driver waits for a suitable
time interval to receive ARP reply packets, whose reception
confirms to the driver that the physical interface is working
properly. A driver parameter that may have an impact on
the performance is the arp_validate parameter. This is
used to select what types of ARP (or even non-ARP) packets
are used to determine the status of an interface when ARP
monitoring is used (more details in [4]). In the experiments
described in this work, arp_validate was set to the value
3, which means that an interface is considered to be active only
based on ARP replies from the arp_ip_target. In practice,

if, after a suitable timeout, no ARP replies from the devices
designed by the arp_ip_target IP address are received,
the interface (and the link) is considered to be down, and a
switch to the backup interface is performed. An examination
of the effect of different settings of this parameter is outside
the scope of this work, while it will be considered in our future
works.

With MII monitoring, no messages are sent through the
network for interface status monitoring purposes. Instead, to
check he link status, the driver only queries, internally, the
currently active physical interface. The physical interface own
driver is in charge of monitoring the physical availability of the
(wired or wireless) link. An important technical aspect, which
has an impact on how the bonding driver works, is how each
physical interface keeps track of the status of its own physical
link. One desirable feature for the interfaces is that they keep
track of the status continuously, or periodically, sensing some
carrier signal, and that this signal can be queried by an external
driver using the netif_carrier_ok() function, which the
interface is required to support. Both the interfaces considered
in this work provide support to the netif_carrier_ok()
function. More details on other means for querying the status
of the digital link may be found in [4].

Both the two types of monitoring (ARP and MII) present
advantages and disadvantages, in terms of overhead, reliability,
and delay with which a change in the link status is reflected
in the physical interface selection by the driver. Investigating
these advantages and disadvantages in a qualitative and quan-
titative way is the goal of the experimental results we present
in this work.

III. TESTBED DESCRIPTION
The testbed we used for this work consists of (i) a LiFi AP

mounted on the ceiling of an office room, at a 4m height, (ii)
a wireless device, namely, a PC-Stick, equipped with a WiFi
internal interface and an external USB LiFi interface, placed
on a table, at 1m height, under the coverage of the LiFi AP,
(iii) a WiFi AP, placed on the same table. A laptop PC, used
to launch and control the experiments, and a virtual machine
running a DHCP server complete the set of devices. The virtual
machine runs a customized Linux family OS, provided by the
producers of the LiFi equipment. The LiFi and WiFi APs, and
the PC (and the DHCP virtual machine), were connected to
an ethernet switch. The LiFi and WiFi APs were configured
as IP bridges, extending the IP address space of a unique
subnet to the wireless domain. Note that the wireless device
were mapped to single IP address, regardless of the physical
interface in use at any given time. The presence of a dedicated
virtual machine for the DHCP server was required to ease
the DHCP configuration by the tool provided with the LiFi
components by the producer.
A. Hardware

As wireless devices, we have used a PC-stick ADJ 270-
00108 equipped with an Intel Atom Z8350 processor, 2 GB
RAM and 32 GB eMMC hard disk, 802.11 a/b/g/n/ac WiFi
card, Bluetooth 4.0, 1 USB 2.0 port, 1 USB 3.0 port, 1 HDMI
port. In the PC-Stick and the laptop PC, the Ubuntu 20.04

operating system is installed. The WiFi AP is a Gatework
GW5300-Ventana with an OpenWRT OS.

Both the LiFi APs (PureLifi LiFi-XC AP) LiFi USB connec-
tors (IR/VLC PureLifi LiFi-XC Station Dongle) are products
of PureLifi [6]. The lamp is a 20W 4000 K Lucicup II by
Lucibel, with a maximum luminous power of 1930 lm.
B. Network configuration and management

Using the Linux Kernel bonding function we handle a LiFi
and a WiFi network interface under the same IP. In our setup,
the two interfaces used different MAC addresses (although
the bonding function also allows to handle interfaces with the
same MAC address). Handling the different MAC addresses
at the network layer, i.e., insuring that at any given time the
traffic directed to device with a given IP address is forwarded
through the correct network path, is performed using the ARP
signalling.

In bonding version 2.6.2 or later, when a failover or a
change in the currently active slave occurs in the active-
backup mode, one or more gratuitous ARP messages, deter-
mined by the num_grat_arp parameter, are issued on the
newly active slave interface. In our testbed we have set the
num_grat_arp parameter to 2 to generate two gratuitous
ARPs when the active slave change event occurs.

To measure the time it takes between events occurring on
different devices (interfaces or transducers shutdowns, active
interfaces switches, AP association, etc...) we set up an NTP
server1, connected it to the Internet, and used it to keep the
clocks of the devices used in the experiments synchronized,
by executing the ntpdate command on every host at the
beginning of each experiment replica.

IV. EXPERIMENTAL RESULTS

We conducted a set of experiments to test the performance
of the bond interface in the active-backup mode in terms
of delay with which the virtual interface switches from the
primary interface to the backup one. The experiments aim at
determining the following quantities:

i) The time it takes to switch from the primary interface
to the backup one when the primary interface be-
comes unavailable, e.g. due to a software or hardware
problem.

ii) The time it takes to switch from the primary interface
to the backup one when physical connectivity on the
primary interface drops due to a signal or carrier loss.

iii) The impact on a packet flow, in terms of packet loss
percentage (PLR), of an intentional interface switch.

In all the experiments we evaluate the system performance
by selecting either LiFi or WiFi as the primary interface. In
the experiments targeting the switching delay, we consider
both ARP and MII monitoring as the monitoring tool. In the
experiment targeting the PLR, we evaluate both the downlink
and uplink.

Tables I and II show the bond interface configuration
parameters in use when ARP monitoring (Table I) and MII

1The Network Time Protocol (NTP) is an Internet protocol for synchroniz-
ing the clocks of hosts on the Internet with a granularity of few milliseconds.

TABLE I: Configuration parameters when using ARP monitoring

parameter value
mode active-backup

primary interface LiFi or WiFi interface
arp_interval different values
arp_ip_target IP target of the control PC
arp_validate 3
fail_over_mac 1
num_grat_arp 2

TABLE II: Configuration parameters when using MII monitoring

parameter value
mode active-backup

primary interface LiFi or WiFi interface
miimon different values

downdelay 0
updelay 0

fail_over_mac 1
num_grat_arp 2

monitoring (Table II) were used. The reader can refer to [4] for
a more detailed description of the meaning of each parameter.

Figures 1 through 4 show the histogram of the reaction time
following any event (interface shutdown, or carrier loss) after
which the primary interface is replaced by the backup one.

In all the experiments, a number of 600 event replicas were
produced. The histogram are normalized so that they can be
interpreted as a sample discrete probability density functions,
i.e., the sum of the areas of each bar equals one.

A. Switching delay after an interface shutdown

The first set of results targets the time it takes to the interface
to switch from the active interface to the backup one, when
the internal communication between the device CPU and the
physical network interface of the device becomes unavailable,
i.e, it becomes no more possible to communicate with the
interface on the device bus. This could be the result, for
instance, of a hardware or software failure. In our experiment,
we simulated such an event by sending a shut down command
to the said network interface, and measuring the time it takes
for the system to detect the unavailability and switch to the
backup interface. The results are collected in Figures 1 and 2.

1) Switching delay after an interface shutdown with ARP
monitoring: In Subfigure 1a, it can be seen that when the LiFi
is set as the active interface, switching to WiFi as the backup,
as a consequence of the LiFi interface becoming unavailable,
requires a time between 200 and 300 ms when the ARP
interval T is set to 100 ms. The range linearly increases up
to 1–1.5 seconds when T is set to 500 ms. The probability
distribution of the delay is relatively uniform between the
interval edges, as the ARP sampling events and the interface
shutdown are not correlated.

In Figure 1b we can see that the results obtained when the
active interface is the WiFi, and the device switches to LiFi
upon a WiFi interface shutdown, are quite similar. The reason
why the lower edge of the intervals increases with increasing
T is that the system has to wait for a number of missed
ARP replies before declaring the currently active interface as
unavailable, and this time obviously scales up with T .

(a) LiFi (b) WiFi

Fig. 1: Reaction to a network interface shutdown with ARP monitoring

(a) LiFi (b) WiFi

Fig. 2: Reaction to a network interface shutdown with MII monitoring

2) Switching delay after an interface shutdown with MII
monitoring: With MII monitoring, the time it takes to detect
the shutdown and switch to the backup interface is extremely
lower, as showed in Subfigures 2a and 2b. In fact, detecting a
LiFi interface failure and switching to the WiFi interface takes
an interval in the range 5–20ms with a MII monitoring interval
T of 20 ms, and 5–180 ms with a 180ms interval. The results
for the reverse switch, i.e., in response to a WiFi interface
shutdown, are quite similar. It can be noticed in Subfigure 2a
that the interval samples are centered around some peaks.
This peculiar behavior can be likely attributed to the fact that
the links status in the LiFi interface might not be tracked
continuously by its own driver. Instead, it could be polled
at regular intervals. This type of update of the link status in
the interface is indeed present in some network interfaces, and
was already taken into account at the time the Linux bonding
driver was developed, see [4, Section 8.3]. The distributions
seen in Subfigure 2b, referring to the case when the system
starts in the WiFi mode and switches to LiFi, are more regular.
However, from a macroscopic point of view, this difference has
basically no impact on the key finding, i.e., that the delay with
which the bond mechanism switches to the backup interface
is more or less uniformly distributed between a value close to

zero and the duration of the MII monitoring polling interval.
Indeed, the lower edge more or less coincides with the

time to physically execute the switch upon the detection of
the negative netif_carrier_ok() response. Note that,
in this case, differently from the case of ARP monitoring, the
lower edge does not increase with T , as there is no round-trip
delay to wait in response to any signalling packet.

B. Switching delay after a signal loss
In a real-life scenario, signal losses may be due to mobility,

with a device moving away from the coverage area of an AP,
to air link obstruction, or to interference. In our experiments
however, to mimic the effect of an abrupt signal loss for any of
the two interfaces on the wireless device, in order to fulfill the
need for ms-level precision and accuracy of the measurement
of the switching delay (between the triggering event and the
completion of the switching operation), and to perform a large
number of replicas, we issued commands to either turn down
the lamp (when the active interface is the LiFi) or set the
power on the WiFi antenna to zero (when the active interface
is the WiFi). In Subsections IV-B1 and IV-B2 we present the
measurements results. The results are collected in Figures 3
and 4.

1) Switching delay after a signal loss - ARP monitoring:
Subfigure 3a shows that, with the LiFi interface as the primary
one, and ARP monitoring, as the lamp is turned off the system
is able to react, switching to the backup WiFi interface, with a
delay in the range from ~100 ms to 300 ms, when T is set to
100 ms. The range lower and upper edges linearly increases
to ~1.0 s and ~1.5 s with T = 500 ms.

Subfigure 3b shows the results obtained when the system
starts with the WiFi interface and is triggered by a WiFi signal
loss to switch to LiFi. the ARP mechanism with T = 100 ms
is able to react almost always with a delay between 200 ms
and 350 ms. With T = 500 ms, the range extends from 1 s to
1.5 s.

2) Switching delay after a signal loss - MII monitoring:
In Subfigure 4a we show the results obtained with MII
monitoring as the LED lamp. in the configuration with LiFi
as the primary interface, is turned off. The event triggers a
switch which is completed after a delay in a range between
2.6 s and ~4 s, with the upper edge slightly increasing with
T .

In Subfigure 4b we can see that, with WiFi as the running
interface, turning the power down on the antenna causes an
interface switch to LiFi after a shorter amount of time, ranging
between around ~0.9 s and 1.2 s with T = 100ms, and with
the upper edge extending to 1.4 s with T = 500ms.

In both subfigures 4a and 4b, the effect of increasing T
is not relevant, almost negligible in figure 4a. This behavior
tells us that the delay is dominated by the time it takes to the
physical interface to declare the signal as absent. Because the
optical and infrared signals are more subject to environmental
factors with respect to WiFi ones, it is likely that manufacturers
allow for a more conservative amount of time with a poor
signal, before claiming that connectivity is lost.

(a) LiFi (b) WiFi

Fig. 3: Reaction to a carrier loss with ARP monitoring

(a) LiFi (b) WiFi

Fig. 4: Reaction to a carrier loss with MII monitoring

C. Effect of an intentional interface switch on the traffic flow
In the last set of experiments we focused on the effect on

a traffic flow, measured in terms of Packet Loss Percentage
(PLR), of switching between the two interfaces. More pre-
cisely, we have checked what happens as the consequence of
an intentional switch, prompted by the operating systems of
the wireless device. In practical scenarios, intentional interface
switches may be the result of the application of an interface
selection policy different from the active-backup policy. For
instance, it may be the result of the decision of some network
management agent operating at upper layers, on the basis or
medium or long term network performance monitoring. There-
fore, it is worth quantifying the loss caused on traffic when
this type of decision is taken. For the related experiments, we
set MII monitoring as the method to track the link status.

To obtain each of the experimental results presented below,
200 replicas were performed. Each replica consisted in a
sending a UDP traffic stream at 10Mbps in either the downlink
or uplink direction to/from the considered wireless device,
for a duration of 40 seconds, starting the flow with either
the LiFi or WiFi as the primary interface. At the middle of
the interval, a primary interface switch command is sent to
the device. Therefore, we have 4 combinations of direction

and primary interface settings. The corresponding results are
showed in Figures 5 and 6. Each subfigure shows the average
(solid line) and corresponding 95% confidence interval of the
PLR in each of the 40 seconds traffic flow in either of the four
combinations: Downlink starting with LiFi as primary, i.e.,
traffic flows through the LiFi AP at the beginning and the WiFi
AP after switching the primary interface to WiFi (Subfigure
5a); Uplink starting with LiFi as primary, i.e., uplink traffic
flows through the LiFi AP at the beginning and the WiFi
AP after switching the primary interface to WiFi (Subfigure
5b); Downlink starting with WiFi as primary, i.e., traffic flows
through the WiFi AP at the beginning and the LiFi AP after
switching the primary interface to LiFi (Subfigure 6a); and
Uplink starting with LiFi as primary, i.e., traffic flows through
the LiFi AP at the beginning and the WiFi AP after switching
the primary interface to WiFi (Subfigure 6b).

In general it can be seen that, when switching occurs from
LiFi to WiFi, packet losses around 0.6% in the downlink
(Subfigure 5a), and 0.5% in the uplink (Subfigure 5b), of the
traffic flowing during one second are experienced, which is
a already remarkable result. Switching in the reverse direc-
tion, i.e., from WiFi to LiFi, results in a 0.6% loss in the
downlink (Subfigure 6a), and, notably, 0.15% in the uplink
(Subfigure 6b).
D. Discussion

Considering the overall picture of the results presented in
this paper, we can conclude that, for a single device, MII
monitoring offers superior performance over ARP monitoring
as a consequence of an internal interface unavailability event.
On the other end, in the event of a connectivity loss, which,
in practical scenarios, is supposed to be much more frequent,
ARP monitoring is superior, as it is able to react with an
interface switch in a time below 1 second. Clearly, there is a
price to pay in terms of traffic overhead, as ARP monitoring
requires to periodically sand messages through the network.

Considering specific traffic types, the results obtained seem
to suggest that the considered type of virtual interface, with
wireless transmission technology bonding performed at the dat
link layer, is able to support any time of traffic which does not
require stringent (below 1 second) latency requirements. Web
navigation traffic, including streaming videos (provided that a
suitable buffering strategy is in operation) would be delivered
with a satisfactory QoS. On the other hand, video conferencing
traffic, with real-time interactivity, would not be supported
with a sufficient QoS, as a physical connection loss which
causes an interface change would not be recovered for at least
2 seconds. The considered technology, however, in our view,
is promising, if we consider that the results were obtained
without modifying a bonding driver developed for wired
(Ethernet) physical interfaces. The type of results presented in
this work can be the basis to develop proactive strategies for
the physical interface management under a virtual interface,
to pursue a QoS adequate to support all type of traffic. The
tradeoff between traffic overhead and reaction time needs to
be investigated in a multi-user scenario, an objective which
we will pursue in our future work.

0 10 20 30 40

time (s)

0

0.2

0.4

0.6

0.8

P
L

R
 (

%
)

LiFi to WiFi - Downlink

(a) Downlink

0 10 20 30 40

time (s)

0

0.2

0.4

0.6

0.8

P
L

R
 (

%
)

LiFi to WiFi - Uplink

(b) Uplink

Fig. 5: Traffic loss percentage in the transition from LiFi to WiFi

0 10 20 30 40

time (s)

0

0.2

0.4

0.6

0.8

P
L

R
 (

%
)

WiFi to LiFi - Downlink

(a) Downlink

0 10 20 30 40

time (s)

0

0.2

0.4

0.6

0.8

P
L

R
 (

%
)

WiFi to LiFi - Uplink

(b) Uplink

Fig. 6: Traffic loss percentage in the transition from WiFi to LiFi

V. CONCLUSION

In this work, we have evaluated the performance of a virtual
network interface built on top of LiFi and WiFi interfaces
with aggregation at the data link layer using COTS and the
Linux Ethernet Bonding Driver. Our results show that even
using software and hardware tools that were not originally
designed for this purpose, the switching delay can be kept
under two seconds in most of the considered cases when the
switch is caused by an exogenous event (an internal interface
unavailability or a connectivity loss), and the effect on a
traffic flow when an intentional switch is performed is in the
order of 1.5% lost packets, computed over the packets sent
during 1 second. Our results indicates that the considered
type of bonding is able to support various type of traffic,
with the exception of an interactive video streaming, in which
interruptions would be present upon an unintentional interface
switch.

ACKNOWLEDGMENT

This work was funded by the Italian Ministry of University
and Research (MUR) research project AMICO, under grant
no. ARS01_00900.

REFERENCES

[1] H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” Journal of
Lightwave Technology, vol. 34, no. 6, pp. 1533–1544, 2016. [Online].
Available: https://ieeexplore.ieee.org/document/7360112/

[2] Z. Zeng, M. Dehghani Soltani, Y. Wang, X. Wu, and H. Haas, “Realistic
Indoor Hybrid WiFi and OFDMA-Based LiFi Networks,” IEEE Transac-
tions on Communications, vol. 68, no. 5, pp. 2978–2991, 2020.

[3] A. Zubow, P. Gawłowicz, K. L. Bober, V. Jungnickel, K. Habel, and
F. Dressler, “Hy-Fi : Aggregation of LiFi and WiFi using MIMO in IEEE
802 . 11,” pp. 100–108, 2021.

[4] “The linux ethernet bonding driver,” 2011. [Online]. Available:
https://www.kernel.org/doc/html/latest/networking/bonding.html

[5] CISCO, “Address resolution protocol.” [Online]. Avail-
able: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_arp/
configuration/xe-3se/3850/arp-xe-3se-3850-book/arp-config-arp.pdf

[6] Purelifi. [Online]. Available: https://purelifi.com

	I Introduction
	II Virtual common interface-2mm
	II-A The Linux Ethernet Bonding Driver-1mm
	II-B ARP and MII monitoring of the physical link-1mm

	III Testbed description-2mm
	III-A Hardware-1mm
	III-B Network configuration and management-1mm

	IV Experimental results-1mm
	IV-A Switching delay after an interface shutdown
	IV-A1 Switching delay after an interface shutdown with ARP monitoring
	IV-A2 Switching delay after an interface shutdown with MII monitoring

	IV-B Switching delay after a signal loss-1.5mm
	IV-B1 Switching delay after a signal loss - ARP monitoring
	IV-B2 Switching delay after a signal loss - MII monitoring

	IV-C Effect of an intentional interface switch on the traffic flow-1mm
	IV-D Discussion-1mm

	V Conclusion
	References

