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Abstract—Advances in Internet-of-Things, artificial intelli-
gence, and ubiquitous computing technologies have contributed
to building the next generation of context-aware heterogeneous
systems with robust interoperability to control and monitor the
environmental variables of smart environments. Motivated by
this, we propose HeteroSys, an end-to-end multi-functional smart
IoT-based system prototype for heterogeneous and collaborative
sensing in a smart IoT-based environment. A unique charac-
teristic of HeteroSys is that it relies on Home Assistant (HA)
to collate heterogeneous sensors (e.g., passive infrared sensors
(PIR), reed (door) switches, object tags, wearable wrist-mounted,
water leak sensors, and internet protocol cameras), and uses a
variety of networking protocols such as Zigbee open standard for
mesh networking, WiFi, and Bluetooth Low Energy (BLE) for
communication. The reliance on HA (and its broad community
support) makes HeteroSys ideal for various applications such
as object detection, human activity recognition and behavior
patterns. We articulated the development phase, integration,
testing challenges and evaluation of the HeteroSys. We conducted
an extensive 24-hour longitudinal data collection from 5 partic-
ipants performing 6 activities by deploying in an indoor home
environment. Our assessment of the acquired dataset reveals that
the representations learned using deep learning architecture aid
in improving the detection of activities to 83.1% accuracy.

Index Terms—Heterogeneous Sensor Network, Collaborative
Sensing, IoT System, Surveillance, Ubiquitous Computing

I. INTRODUCTION

The unfolding of smart wireless IoT sensors and platforms

has created a boom in the industrial and academic communi-

ties. Due to this, wireless technology protocols are evolving

daily, becoming a challenging task to maintain the robust-

ness and scalability of the system. Researchers have recently

proposed and developed smart IoT systems across various

domains such as healthcare [1], HVAC control system [2],

IoT-based transport system [3], etc. One major challenge to

developing a smart IoT system is integrating heterogeneous

wireless sensors and collaboratively aggregating all the sensing

raw data in a local location. The heterogeneous wireless

sensor networks (WSN) primarily consist of sensing nodes

with different abilities, such as different computing power,

operational requirements, and sensing ranges. Also, due to

evolving and new sensing technologies, it is formidable for

the research and industrial communities to build a robust

Fig. 1: Hierarchical overview of the HeteroSys system

interoperability system that can be scaled and compatible to

integrate multiple wireless sensing modularity into the system.

In addition, time desynchronization and data fragmentation are

challenges encountered while deploying the IoT-based system

in the wild. As a result, collaborative sensing in a heteroge-

neous environment became one of the primary challenges for

the researchers to tackle the interoperability of the smart home

system [4].

We aim to mitigate the above-mentioned challenges such

as data fragmentation, time desynchronization, and seamlessly

integrating other sensing modularity into a smart system.

We developed a smart-IoT system called HeteroSys system

that offers better robustness, scalability, and interoperability

characteristics compared to state-of-the-art system such as [5].

Figure 1 highlights the hierarchical overview of the proposed

HeteroSys system. We design the system in a bottom-up

architecture where the physical (bottom) layer corresponds

to the sensing module, where all the physical sensors and

actuators are employed to capture the contextual information,

followed by the middle layer, which corresponds to on-site

edge computing capability to the system and also enables us to

aggregate all the sensed data from heterogeneous WSN. Lastly,

the top layer corresponds to the offline computing server where

the high computational machine learning experiments can be

conducted, and all the sensed data are preserved as a backup.

Below are the overall contributions of this work:

285

2023 IEEE International Conference on Smart Computing (SMARTCOMP)

2693-8340/23/$31.00 ©2023 IEEE
DOI 10.1109/SMARTCOMP58114.2023.00073

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

m
ar

t C
om

pu
tin

g 
(S

M
A

R
TC

O
M

P)
 | 

97
9-

8-
35

03
-2

28
1-

1/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
SM

A
R

TC
O

M
P5

81
14

.2
02

3.
00

07
3

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 11,2023 at 15:27:22 UTC from IEEE Xplore.  Restrictions apply. 



1) HeteroSys: develop an end-to-end heterogeneous and

collaborative wireless sensor network (WSN). The sys-

tem comprises passive infrared (PIR), reed switches,

vibration (object tags), wearable wrist-mounted, water

leak sensors and an IP camera. In addition, all the sensed

data is aggregated and stored in a local hub for edge

computing capability.

2) Functional and operational requirements of Het-
eroSys System: We identify commercial off-the-shelf

heterogeneous sensors that can be easily integrated and

reduce network complexity. In addition, we focus on

eliminating data fragmentation (data stored in multi-

ple sources) and global time desynchronization prob-

lems [5], [6].

3) System Evaluation: We conduct an extensive data

collection drive by deploying the HeteroSys system in

an indoor home environment. Our in-house longitudinal

dataset comprises 5 subjects performing 6 ADLs and

IADLs activities for 120 hours. Lastly, to understand the

subject’s behaviour and actions, we performed human

activity recognition (HAR) task on the in-house dataset

and obtained 83.1% accuracy for detecting activities.

II. MOTIVATION SCENARIOS

HeteroSys’s functional paradigm is motivated to integrate

heterogeneous wireless sensors to enhance the overall system’s

interoperability and reliability. Therefore, one of the primary

motivations of the study is to develop a flexible and scalable

smart IoT system that can scale from one domain to another

domain and also enable to seamlessly integrate of new sensing

modularity along with IoT protocols. Here we presents two

motivating scenarios:

1) Smart Health Monitoring System: Studies [7] discuss

and demonstrate that the pervasive and wearable sensors

can perceive the surrounding contextual information and

easily be used to infer individual health and behavior

based on the captured information. However, one of

the remaining challenges is integrating and aggregating

the sensed data in one centralized location to improve

the overall system’s reliability and operational flexibility.

Similarly [5] develop by a smart health system, but one

of the system’s weaknesses is that the pervasive sensors

are proprietary, so all the sensed data is relayed to a

third-party cloud server; compared to our proposed Het-
eroSys all the sensed data is relayed and aggregate in the

centralized location. Lastly, HeteroSys provides an end-

to-end heterogeneous and collaborative sensing pipeline

that can be seamlessly deployed to other domains.

2) Indoor/Outdoor Unwarranted Object Presence and
Surveillance: Studies [8], [9] demonstrate that pervasive

sensors such as passive infrared (PIR), pressure sensors,

etc. can be used for pedestrian counting, pervasive

monitoring, surveillance, etc. tasks. In addition, PIR

sensors can be effectively deployable during the day

or night, whereas other modularity might not be able

to detect object presence both day or night. Compre-

hending the state-of-the-art literature, we conclude that

pervasive sensors are feasible and can be deployed

effortlessly for indoor and outdoor tasks. So encouraged

by this, we propose a HeteroSys that can be readily

deployed to indoors or outdoors environments. Further-

more, along with object presence, the proposed system,

HeteroSys can successfully capture other contextual-

aware information that might be crucial for other tasks.

III. RELATED WORK

This section reviews and summarize the related work on

heterogeneous sensor network. We categorize the related work

based on:- integration of heterogeneous sensors and smart
system for health monitoring and activity recognition.

Integration of Heterogeneous Sensors: Integrating wire-

less sensors from various vendors recently became a very

challenging task for researchers to develop an interactive

and scalable system. Researchers are trying to bridge the

gap by proposing and developing novel wireless integration

techniques. Similarly, in [10], the authors propose a long-

range (LoRa) based smart home system for remote monitoring

of IoT sensors and devices that can be monitored remotely.

The system includes sensors (humidity, noise, temperature,

gas and dust sensors) and other IoT-enabled appliances. An

AI-based data server is designed to control and monitor home

appliances, and all the sensed data can be sent periodically

to the data center of that server by using the LoRa gateway.

Furthermore, in [11], the authors develop an end-to-end IoT

monitoring system that effectively collects, analyses and esti-

mates the massive network incoming and outgoing traffic of

IoT devices. The proposed IoT system comprises three main

components: IoT network traffic monitoring systems, backend

based-IoT traffic behavior systems and frontend based-IoT

visualization systems. In [12], the authors propose a smart

home control system to study and analyze power consump-

tion, human-computer interaction, monitoring of other home

appliances, etc. The system comprises four layers: the physical

layer (sensors, actuators, video surveillance), the perception

layer (embedded gateway), the network layer (server) and the

application layer (user interface (panel computer, PC, etc.)).

Smart IoT systems for Health Monitoring and Human
Activity: The emergence of wireless pervasive and wearable

sensors enables us to build a contextual-aware system that can

help every individual’s daily life. CASAS [13] is a smart home

in a box designed to estimate and recognize individual behav-

ioral patterns in an indoor environment. CASAS comprises

three layers of operations- the physical layer (integrating sen-

sors and actuators) followed by middleware (communication

bridge between the layers) and the software layer (activity

recognition, activity recovery, and user behavior). In [14], the

authors develop two smart home IoT systems using Bluetooth

low energy (BLE) sensor nodes to collect and monitor heat-

ing, ventilation and air conditioning (HVAC) raw data from

wireless sensors. Then the sense data is dispatched to a Wi-Fi
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TABLE I: Summary of pervasive sensors for HeteroSys system

components

Pervasive Sensors Properties Unit Cost

PIR Motion Sensor Max. Detection Angle = 170◦ $ 24.99

Reed Switch Max. Detection Distance = 22 mm $ 17.99

Vibration (Object tag) Sensor Sensitivity threshold wide = 1.5 in and thick = 0.4 in $ 19.99

Water Leak Sensor Sensitivity threshold ≈ 0.5mm $ 18.99

gateway hub, raspberry pi 3B, which also communicates with

other wireless devices in the local network. Finally, in [15], the

authors propose a health monitoring system for older adults.

The application mainly focuses on estimating and detecting

stress and blood pressure of older adults by integrating with

a voice-based indoor location detection system. The system

comprises three major components: edge computation, cloud

computation and user interaction. Lastly, we underline a few

limitations of state-of-the-art smart-IoT sensing systems and

potential challenges.

A. Challenges and Limitations

We discuss and enumerate the challenges and shortcomings

faced during the smart IoT sensing system development. Here

are a few challenges listed below:

1) Scalability and Generalizability characteristics: Inte-

grating multiple heterogeneous sensors is one of the

critical challenges to address. Similarly, in SenseBox [5],

the sensors are not integrated, prevailing problems such

as data fragmentation and time desynchronization.

2) Synchronize and Centralized Data Storage: Time Syn-

chronized data is a predominant requirement for deploy-

ing any pervasive sensing system to store the sensed data

in a centralized data hub.

3) Lossy network connectivity: In the development phase,

network reliability and connectivity are crucial aspects

for better durability of smart home systems.

4) Functional and operational requirements: The feasi-

bility test to optimize the overall cost of functional

and operational requirements capturing rich contextual

information between the subjects and environment.

IV. OVERVIEW OF THE HETEROSYS

Motivating from the key challenges and limitations dis-

cussed in section III-A, one of the primary design goals of

HeteroSys is the aggregation of data in one local hub device to

eliminate data fragmentation and desynchronization problems.

To resolve this issue, HeteroSys directs all data flow from the

sensors through the hub to the offline server as needed for

machine learning inference and data redundancy/backup. Thus,

we can sync all data with one reference local hub device clock,

which is, in turn, synchronized with an internet reference time

service using network time protocol. We discuss the sensors

utilized to develop the HeteroSys system in detail, shown in

Fig. 2 and Table I.

1) Wearable Empatica E4 Sensor: The wearable sensor

would ideally have a design closer to a comfortable

wristwatch than a traditional large, hard plastic sensor,

since this would be a more familiar form factor to the

older study populations; this may increase participant

retention and compliance.

2) PIR Sensor: The sensor must have a sufficient field

of view (FOV) to detect inhabitants in any part of the

room it is placed in the corner this suggests a minimum

effective FOV of 90 degrees, with an optimal FOV closer

to 180 degrees allowing for placement along the edges of

rooms instead of just in corners similarly shown in [9].

3) Reed Sensor: The reed sensor does not have any notable

requirements since the switching mechanism itself is

a simple electromechanical switch which is inherently

binary state, with no further computation necessary.

4) Vibration (Object Tag) Sensor: Since the other per-

vasive sensors are by their nature only binary state,

we accepted binary state object tag motion sensors as

a viable alternate to other triaxial object tag motion

sensors. These sensors must be small and light enough

to adhere to household objects (including trash can, dust

pan, etc.) [5] without impairing their functionality.

5) Wireless IP Camera: Capturing all the activities oc-

curring in the environment is one of vital components

of the HeteroSys system which requires relatively high

resolution and frame rate. However higher resolutions

and frame rates increase data storage, cost, and power

consumption substantially and thus, we determined a

rough estimate of 1440p resolution (2560 x 1440 pixels)

and 10 frames per second frame rate to be a workable.

6) Hub: The intel NUC housed with Intel Core i7-1165G7

Processor (12M Cache, from 2.4 GHz base up to 4.70

GHz, four cores (8 threads), 16GB RAM and 1TB

NVMe SSD. The Hub was employed to aggregate and

relay all the sensed data from the wireless heterogeneous

sensors and to provides edge computing capability.

V. INTEGRATION OF WIRELESS PERVASIVE AND

WEARABLE SENSORS

This section summarizes and discusses the methods adopted

to integrate all the wireless pervasive and wearable sensors

with the hub by employing a home assistant operating system.

Fig. 5 highlights the network nomenclature of heterogeneous

sensors connected wirelessly to the local hub.

1) Wearable Empatica E4 Sensor: After careful consid-

eration, we decided to remain using the Empatica E4

wearable for HeteroSys. Out of the 25 devices surveyed,

the Empatica E4 was the only device which allowed

access to live-streamed blood volume pulse (BVP), ac-

celerometer (ACC), electrodermal activity (EDA), heart

rate (HR) data in a wristwatch-like form factor. The E4

unit uses bluetooth low energy (BLE) to stream live data

to a specific model of BLE USB dongle. In addition,

Empatica maintains a streaming server program which

can connect to E4 devices through this USB dongle

and allows clients to connect to itself through UTF-8-

encoded transmission control protocol (TCP) socket with
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Fig. 2: Overview of HeteroSys sys-

tem components

Fig. 3: Overall pipeline of activity recog-

nition module on the Hub
Fig. 4: Pervasive sensors floor layout

Fig. 5: Network flow of the HeteroSys system

messages terminated (by the specification) with two-

character Windows-style newlines carriage return/line

feed (CRLF) [16]. This socket connection allows the

client to discover nearby E4 devices, connect to one,

subscribe to different data streams, and receive the

requested streamed data.

Unfortunately, this software is proprietary and only

available for Windows. As such, the method determined

best for streaming data from the E4 data is to run

the E4 streaming server inside of a Windows virtual

machine (VM) running through quick emulator using

the kernel-based virtual machine inside of a Docker

container, with the TCP port exposed from the VM. The

Docker container runs a custom Python client script for

the streaming server, which connects to Home Assistant

through a representational state transfer (REST) exposed

port and a home assistant RESTful API [17]. The Docker

container will then be packaged as an add-on for the HA.

2) PIR, Reed and Vibration (Object tag) Sensors: The

pervasive sensors, after identifying Zigbee as the pre-

ferred wireless communication protocol for these sen-

sors, we decided to use the same protocol for all the

pervasive sensors to simplify the hub setup. The sensors

are easily integrated with the hub due to the highly user-

friendly interface of the home assistant.

3) Home Assistant Configuration: Using the InfluxDB

integration for HA connects to the InfluxDB mentioned

above add-on to store all home assistant entity state

changes in the local InfluxDB instance. Using an edge

data replication feature introduced in InfluxDB version

2.2, this state change data can be synchronized on write

with the study server, which can be queried as needed.

InfluxDB helps us to maintain the synchronized database

for all the incoming sensed data.

VI. CHALLENGES AND POTENTIAL SOLUTIONS

This section discusses and enumerates the challenges and

shortcomings faced during the development of the HeteroSys.

We also highlight some potential solutions to these challenges.

Here are a few challenges listed below:

1) Empatica E4 real-time data streaming software runs

on Windows, whereas home assistant is a Linux-based

OS. Another shortcoming with Empatica E4 is that all

the live-streaming procedure has much inconsistency

throughout the documentation.

2) Scalability, connectivity, complexity, etc. challenges as-

sociated with REST sensor integration.

3) InfluxDB version not supporting edge data replication

feature in the current version home assistant InfluxDB.

In order to resolve the challenges mentioned above, we

enumerate potential solutions to the above challenges.

1) To overcome Empatica E4 real-time data streaming soft-

ware, we are developing an add-on (docker image) for

home assistant, which uses the Wine compatibility layer

to run the proprietary windows streaming software on

an x64-based Linux host OS (home assistant). However,

if the compatibility issues persist, it will still virtualize

a complete instance of Windows inside the host OS.

However, the compatibility layer is much more efficient

than full virtualization. In addition, we are developing

software, an object-oriented asynchronous Python client

library, using asyncio to mitigate the challenges faced

for the real-time data streaming task. It is still in the

developing and testing phase and planning to release as

FOSS with full test code coverage.

2) The setup with the REST sensor integration for home

assistant can be simplified and improved by bundling the

Python client script with the necessary home assistant

integration boilerplate directly, as opposed to using the

more limited REST sensor integration. This would also

allow for a local push configuration that updates the
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TABLE II: Hyper-parameters of CNN-based classification

model

Hyper-parameters Values
No. of maximum convolution layers 2

No. of filters in convolution layers 32, 64

Convolution filter dimension 3x1,1x1

No. of maximum fully connected layers 3

No. of neurons in fully connected layers 96, 128, 6

Batch size 16

Dropout rate 0.35

Learning rate 0.0003

Max number of epochs 64

home assistant immediately when new data is available

instead of after a polling delay.

3) In order to resolve the issue mentioned above with

the add-on InfluxDB version not supporting edge data

replication, developing a new add-on is necessary, which

runs the new database. However, InfluxDB is open-

source and already has a Docker image, so the add-on

should not be challenging to create. Alternatively, since

the add-on is also open-source, upgrading the InfluxDB

version the add-on uses is also an option.

VII. SYSTEM EVALUATION: ACTIVITY RECOGNITION

This section extensively evaluates the proposed smart IoT-

based system by deploying it in an indoor home environment.

Subsequently, using the enriched in-house dataset, we conduct

context-aware activity recognition task to comprehend the sub-

ject’s behaviours’ and actions’ while capturing the interaction

between the subjects and HeteroSys. For the context-aware

activity recognition task, we concentrate on high-level activi-

ties (sitting, walking, etc.) instead of low-level actions such as

personalized and contextual information (indoor-positioning,

time, user, etc.), similarly, discuss in CAPHAR [18]. This is

because we hypothesize that prior knowledge from pervasive

sensors about the interaction between subjects and the environ-

ment is comprehended. Furthermore, the motivation employs

high-level activities to demonstrate that one can detect the

temporal actions captured across subjects. Lastly, we used

Emaptica-E4, attached to the subject’s dominant hand, to

capture temporal signals while performing the activities.

Additionally, our in-house dataset comprises synchronized

pervasive and wearable sensors by deploying 5, 3 and 1 PIR,

reed switches and water leak pervasive sensors, respectively

and 1 Empatica-E4 in the indoor environment layout shown

in figure 4. We. We deploy HeteroSys for 120 hours and

collect dataset from 5 subjects performing 6 ADLs and

IADLs activities: sitting, walking, washing utensils, folding
laundry, using toothbrush and writing. Furthermore, Empatica-

E4 records the movement (through accelerometry; 32 Hz

sampling frequency), Electro-Dermal Activity (EDA), skin

temperature, and heart-rate variability. Lastly, we enumerate

the data preprocessing, experiment strategy and results.

• Data Preprocessing: For this study, we employ the

temporal signals from the wearable sensor accelerometry

Fig. 6: Raw feature representa-

tion of high-level activities

Fig. 7: Classification Accu-

racy

data as our input to capture the unique movements. First,

the raw data acquired is preprocessed using a median

filter to eliminate the data’s noise because most body-

worn wearable sensors are vulnerable to noise, such as

motion artifacts. Next, we employ the sliding windowing

technique on the filtered signals as it is extensively

utilized to remove the motion or device artifacts from

the dataset. We employed a sliding windowing with 50%

overlap with a window size of 0.50 sec at a sampling rate

of 32 Hz. Within each window, we employed the majority

voting for data labelling for each window segment. We

showcase the feature representation of preprocessed raw

signals shown in Fig. 6. Finally, we record the data

collection session using IP cameras as the ground truth

to assign the labels to the activities.

• Experiment Setup: We utilize four evaluation metrics:

Accuracy, Recall, Precision and F1-Score and split the

dataset into 60-20-20% as training, validation and testing

sets, respectively. The validation set is used to fine-

tune the hyperparameters and also the validation and

test datasets were not utilized during the training phase.

All the codes for data preprocessing and deep learning

mechanisms is implemented with python and PyTorch

libraries. The experiment is conducted on the hub, the

overall pipeline shown in Fig. 3.

• Results and Discussion: We apply several machine

learning (ML) algorithms with 10-fold cross validation

over the in-house dataset. Different parameters for the

ML algorithms are fine-tunned to achieve the maximum

accuracy. The applied traditional ML algorithms are-

Random Forest (RF), Decision Tree (DT) and Support

Vector Machine (SVM). In addition to the traditional

machine learning algorithms, we also experimented with

a simple deep learning architecture for the classification

task and have seen substantial increase of 22% in the

classification accuracy shown in Fig. 7. We obtain the

proposed CNNs-based deep architecture through several

grid search among various hyper-parameters shown in

table II. The increase of accuracy is realizable as the

convolutional neural network (CNNs) provides the ad-

vantage of feature engineering and enable us to learn the

embedding space efficiently compared to the traditional

ML algorithms. We notice the CNNs-based classification
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network obtained F1-score of 82.5% and outperform

all the shallow learning algorithms. We notice CNNs-

based classification network relatively took less time with

total parameters of 22,726. Furthermore, this experiment

demonstrates the system’s end-to-end characteristic, aid-

ing us in aggregating all the sensed data to a centralized

location and performing detection of high-level activities.

VIII. CONCLUSION

This work showcases an end-to-end heterogeneous and

collaborative sensing IoT-based system, HeteroSys that will

enable us to integrate multiple sensors and aggregate all the

sensed data into the hub. First, we highlight and discuss the

different problem scenarios where the HeteroSyssystem can

be effortlessly scaled and deployed to the real-world domain.

Secondly, we enumerate the operational and functional re-

quirements of the HeteroSys system to be deployed in the wild,

followed by methodologies to integrate all the heterogeneous

sensors concurrently to the hub. We also enumerate the chal-

lenges and potential solutions faced during our development

phase. Furthermore, we evaluated the proposed HeteroSys by

deploying in an indoor home environment and collected 6
ADLs and IADLs from 5 subjects for 120 hours. We developed

CNNs-based architecture for the high-level classification task

and obtained 83.1% accuracy. Lastly, we summarize our study

with potential future work.

IX. FUTURE WORK

We highlight the potential future work and showcase that

the proposed HeteroSys system can be scaled to different

domains by enhancing the existing prototype’s operational

and functional attributes and employing low-level pervasive

sensor data information to comprehend subjects’ behavior.

Furthermore, as the technologies evolve, we must include

futuristic aspects in the proposed IoT-based system.

1) One of the future aspects is to include a WiFi [19]

channel state information (CSI)-based approach for the

indoor localization system instead of depending on pas-

sive infrared sensor (PIR) point measurement data.

2) We would like to integrate more depth-informative data-

driven sensors, such as infrared cameras, radars, Li-

DARs, etc., with the HeteroSys system to build a data

enrichment platform.

3) In future, we would like to integrate HeteroSys system

with Matter [20] to build a more sophisticated and

reliable IoT-based system for heterogeneous sensors.

4) We envision integrating the proposed IoT-based system

with robot platforms such as Amazon Astro, ROSbots

2.0, etc. to build a better human and machine interaction

platform and enhancing the robot’s performance with

the more incoming flow of contextual-aware information

from the other sensors.
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