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Abstract—Electric vehicles (EVs) offer an attractive long-term
solution to reduce the dependence on fossil fuel and greenhouse
gas emission. However, a fleet of EVs with different EV battery
charging rate constraints, that is distributed across a smart
power grid network requires a coordinated charging schedule
to minimize the power generation and EV charging costs. In
this paper, we study a joint optimal power flow (OPF) and EV
charging problem that augments the OPF problem with charging
EVs over time. While the OPF problem is generally nonconvex
and nonsmooth, it is shown recently that the OPF problem can be
solved optimally for most practical power grid networks using its
convex dual problem. Building on this strong duality result, we
study a nested optimization approach to decompose the joint OPF
and EV charging problem. We characterize the optimal offline
EV charging schedule to be a valley-filling profile, which allows
us to develop an optimal offline algorithm with computational
complexity that is significantly lower than centralized interior
point solvers. Furthermore, we propose a decentralized online
algorithm that dynamically tracks the valley-filling profile. Our
algorithms are evaluated on the IEEE 14 bus system, and the
simulations show that the online algorithm performs almost near
optimality (< 1% relative difference from the offline optimal
solution) under different settings.

I. INTRODUCTION

Electric vehicles (EVs) are getting more popular as a long-
term vehicular technology to reduce the dependence on fossil
fuel and the emission of greenhouse gases. However, with an
increase in EV penetration, uncoordinated charging can lead to
additional power losses and unacceptable voltage variation that
overload the power grid. One way to tackle this problem is to
adopt a “smart grid” solution, which allows EVs to communi-
cate with the utility that coordinates their charging activities.
Besides preventing grid overload, it has been shown that a
coordinated EV charging can improve frequency regulation
[1], smooth out the generation intermittency from renewable
sources, and increase the efficiency in electricity usage [2],
[3]. In this setting, we consider two types of load connected
to the power grid network:
• Price-inelastic load: The exact power requested by this

type of load must be provided. This corresponds to
standard loads in a conventional grid such as lighting
and heating.

• Price-elastic load: The power delivered to this type
of load can vary depending on the current cost and a
deadline. An example is the charging and recharging of
EV batteries in a smart grid.

Considering these two types of loads, the two key problems
that we study are: What is the optimal charging schedule
for EVs to minimize the total power generation cost and EV
charging cost? How to find a near optimal online algorithm
if the future price-inelastic load is uncertain (due to the
realistic causality constraint)? To formulate these problems, we
leverage the well-known optimal power flow (OPF) problem
and consider its time-dependent extension.

The solution of the OPF problem optimizes the operation
of a power grid, and in general is NP-hard and nonconvex.
However, the authors of [4] and [5] recently show that most
practical power grid configurations surprisingly exhibit a use-
ful property that guarantees zero duality gap between the OPF
problem and its convex dual relaxation, thus making efficient
polynomial time algorithm for the OPF problem possible.

To incorporate the time-varying electricity demand and
price elastic load, we extend the OPF problem to a time-
dependent OPF charging problem that spans over a scheduling
period. It consists of a finite number of OPF subproblems
coupled with one another by the constraint associated with
the price-elastic load, e.g. the EV charging constraints. If a
power grid configuration has zero duality gap for the OPF
problem, then it has implications on how its time-dependent
extension can be solved.

In this paper, we leverage the zero duality gap result in [4]
to develop both offline and online algorithms that solve the
joint OPF-EV charging optimization problem. To this end, we
propose a nested optimization method that decomposes the
joint OPF-EV charging problem into separable subproblems,
and then solve the decoupled problem using a nonsmooth
separable programming approach. The main contribution of
the paper are as follows:

1) For time invariant EV charging cost, we characterize the
offline optimal solution to be valley-filling. The valley-
filling characterization holds true for all network config-
urations that guarantee the zero duality gap condition in
the OPF problem.

2) We propose an offline algorithm that can solve the
joint OPF-EV charging problem with a computational
complexity lower than centralized interior point solvers.

3) To account for the causality constraint from the price-
inelastic load, we propose an online algorithm that
dynamically tracks this valley-filling characteristic. The
online algorithm can be easily implemented in a decen-



TABLE I: Notations

N set of buses in the power grid network
L set of transmission lines in the network
Y admittance matrix

fk(·) convex cost function for bus k
p[t] + q[t]j complex vector of power generated at time

t
p̃[t] + q̃[t]j complex vector of price-inelastic demand at

time t
p̂[t] nonnegative vector of EV charging rate at

time t
α nodal EV charging cost

v[t] complex voltage vector at time t
W[t] v[t]v[t]∗

r̄[t], r[t] charging rate limits at time t
c vector of total EV energy demand
ek kth standard basis of R|N|

tralized manner: at each time interval, charging decision
is made locally by each vehicle after comparing its
battery’s charging rate limit to an estimated valley level
set by the utility. We evaluate the performance of our
algorithms under different settings of demand and EV
penetration, and demonstrate that the performance of the
online algorithm is near optimal.

The paper is organized as follows. Section II introduces the
system model and problem formulation. Section III gives the
main analytical results and valley-filling algorithms. Section
IV gives the simulation results and the conclusion is given
in Section V. We use (x[t])j to represent the value of the
jth component of a vector x[t] at iteration t. Due to space
constraint, the key results in Section III are stated without
proofs, and the detailed proofs can be found in [6].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a discrete-time model where the time-slot
interval matches the timescale at which the power grid adjusts
its power generation. Without loss of generality, the goal is to
optimize the operation of the power grid over a time-interval
of interest t ∈ {0, 1, . . . , T}. Thus T is the scheduling period
duration. In practice, T could be a day and a slot t could be
in the order of minutes. In addition, we assume that the loads
are fixed over each time interval [t, t+ 1].

A. EV battery model

Suppose that each bus k ∈ N can connect to a price-
inelastic load and a price-elastic EV battery. Furthermore, we
assume that each EV battery can absorb or inject only active
power at an adjustable rate via a smart outlet. In the following,
we consider that each bus is connected to only one EV battery.
However, our results can be generalized to the case when
multiple EV batteries are co-located at the same bus.

Each smart outlet has a charging rate limit at each time t
[7], hence for k ∈ N and t ∈ {1, 2, . . . , T − 1},

(r[t])k ≤ (p̂[t])k ≤ (r̄[t])k, (1)

and set (r[t])k = (r[t])k = 0 if no EV is connected to
bus k at time t. Let Bk, sk(0), and ηk denote the battery

capacity, initial state of charge (SOC), and charging efficiency,
respectively. By the deadline T , the EV should be fully
charged, hence, ηk

∑T−1
t=1 (p̂[t])k∆t = Bk(1 − sk(0)). Let

Ck := Bk(1−sk(0))/(ηk∆t), then the EV charging constraint
is the following, for all k ∈ N

T−1∑
t=1

(p̂[t])k = ck. (2)

B. The joint OPF-EV charging problem

Using the EV battery model, we study the following time-
dependent joint OPF-EV optimization problem:

min
{W[t],p̂[t]}

T−1∑
t=1

∑
k∈N

fk((p[t])k) +

T−1∑
t=1

∑
k∈N

αk(p̂[t])k (3a)

s.t. Pmin
k ≤ (p[t])k ≤ Pmax

k , (3b)

Qmin
k ≤ (q[t])k ≤ Qmax

k , (3c)

(V min
k )2 ≤W[t]kk ≤ (V max

k )2, (3d)
(W[t]ll −W[t]lm)Y∗lm ≤ Smax

lm , (3e)
Trace{W[t]Y∗eke

∗
k} = (p[t])k − ((p̂[t])k + (p̃[t])k)

+ ((q[t])k − (q̃[t])k)j, (3f)
W[t] � 0, (3g)
rank(W[t]) = 1, (3h)
T−1∑
t=1

p̂[t] = c, (3i)

r[t] ≤ p̂[t] ≤ r̄[t]. (3j)

In the above, the physical limits
Pmin
k , Pmax

k , Qmin
k , Qmax

k , V min
k , V max

k and Smax
lm are given.

Note that fk(·) is the power generation cost function at bus
k, and (3b)–(3h) are standard OPF constraints on power
balance, voltage, and thermal limit of transmission lines. In
addition, (3i) and (3j) are the EV charging constraints. We
can set Pmin

k = Pmax
k = Qmax

k = Qmin
k = 0 if there is no

generator at bus k. In (3a), we assume that the EV charging
cost αk is time invariant.

C. Decoupling power dispatching from EV scheduling

While the optimization variables in the joint OPF-EV charg-
ing problem (3) are W[t] and p̂[t], if the optimal charging
decision, p̂[t] is also known, then all the remaining variables
W[t] become separable in t. Hence, solving the joint OPF-
EV charging problem at time t is the same as solving the
OPF problem with the demand given by(p̃[t] + p̂[t]):

F (p̂[t] + p̃[t]) := min
W[t]

(∑
k∈N

fk((p[t])k)

)
(4)

s.t. (3b), (3c), . . . , (3h).

Since the convex dual problem of the OPF can be efficiently
solved [4], we can decouple the power dispatching, i.e., finding



W[t], from the EV scheduling, i.e., finding p̂[t], and focus on
the following EV scheduling problem:

min
p̂[t]

T−1∑
t=1

F (p̂[t] + p̃[t]) + αTp̂[t] (5a)

s.t. r[t] ≤ p̂[t] ≤ r̄[t] ∀t ∈ [1, T − 1], (5b)
T−1∑
t=1

p̂[t] = c, (5c)

where F (p̂[t] + p̃[t]) returns the optimal value of the OPF
problem for a total load demand (p̃[t] + p̂[t]).

III. VALLEY-FILLING ALGORITHMS

A. Optimal Offline Algorithm for EV Scheduling Problem

The following result is a direct consequence of the zero
duality gap property of the OPF problem, which reveals the
convexity of the decoupled function in (4).

Theorem 1. If the zero duality gap condition holds in (4),
then F : R|N | → R, is a convex function.

By convexity of F , and suppose that the charging rate
constraints are inactive, we can apply Jensen’s inequality and
get the following result:

Lemma 1. If ∀t, r[t] = −∞, r̄[t] =∞, then the EV scheduling
problem (5) has an optimal solution p̂[1] + p̃[1] = p̂[2] +
p̃[2] = . . . p̂[T − 1] + p̂[T − 1] = pE + pI, where pE =(∑T−1

t=1 p̂[t]
)
/(T − 1) and pI =

(∑T−1
t=1 p̃[t]

)
/(T − 1).

When the charging rate limits are inactive, the optimal
solution is a flat profile, i.e., ∀t, p̂[t] + p̃[t] is constant. Next,
we consider the case where the charging rate constraints can
be active. The optimal solution will then no longer be flat, but
valley-filling as defined in the following:

Definition 1. A charging profile is valley-filling, if there exists
a unique vector a such that p̂[t] = [a− p̃[t]]

r̄[t]
r[t] ,∀t, where

[x]
u
l = max(l,min(x, u)).

In the definition, a can be seen as a valley level that
p̂[t] + p̃[t] tries to reach unless p̂[t] is constrained by its
charging rate limits. A similar definition of valley-filling for
EV scheduling can be found in [8]. Interestingly, the valley-
filling characterization is reminiscent of the water-filling notion
for power allocation to maximize capacity in information
theory [9].

The following theorem can be proved by using a substitution
argument, i.e., if there is an optimal charging profile that is not
valley-filling, then by convexity of F , we can always construct
a valley-filling profile with the same or lower objective value.

Theorem 2. For a general convex function F (·), a valley-
filling profile is optimal to the EV Scheduling problem (5).

Corollary 1. A valley-filling profile is a minimizer for any
convex function F (·). For example, let F (p̂[t] + p̃[t]) =

(∑
k∈N ((p̂[t])k + (p̃[t])k)

)2
, we can see that the valley-

filling profile is also minimizing the l2 norm of the ag-
gregate load. Furthermore, as the total load over time∑T−1

t=1

∑
k∈N (p̂[t])k + (p̃[t])k is a constant, a valley filling

profile is also a load variance minimizing profile.

Next, we show the uniqueness of the valley level a. Note
that a must satisfy the following for j = 1, . . . , |N |:

min
t
{(p̃[t])j + (r[t])j} ≤ aj ≤ max

t
{(p̃[t])j + (r[t])j}, (6a)

T−1∑
t=1

p̂[t] =

T−1∑
t=1

[a− p̃[t]]
r̄[t]
r[t] = c. (6b)

If we look at (6b) component-wise, it is a continuous and
strictly increasing function of aj for aj in the box constraint
(6a). Since (6b) is continuous and strictly increasing, we can
find a unique a via the bisection method for the offline case.
This is presented in the following algorithm with ε as an
error tolerance level. We determine a in a component-wise
manner. Each iteration of the while loop in the bisection
algorithm will halve the search space for aj , and therefore the
computational complexity of the bisection algorithm is low.

Algorithm 1 Valley Level Bisection

1: ∀j,uj ← maxt{(p̃[t])j + (r[t])j};
lj ← mint{(p̃[t])j + (r[t])j};

2: for j = 1→ |N| do
3: while (‖uj − lj‖ ≥ ε) do
4: mj ← 1

2 (uj + lj);
5: if (

∑T−1
t=1 [mj − (p̃[t])j ]

(r̄[t])j
(r[t])j

> cj) then
6: uj ←mj ;
7: else
8: lj ←mj ;
9: a←m.

Remark 1. Once a is determined, solving p̂[t] can be
done in O(1) time. Thus, the joint OPF-EV charging prob-
lem (3) reduces from a semidefinite program (SDP) with
O((|N | + |L|)(T − 1)) variables to (T − 1) SDPs each
with O(|N | + |L|) variables. Since the complexity of SDP
interior point algorithms grows superlinearly with respect to
the number of variables [10], [11], this decomposition leads
to a lower computational complexity.

The offline algorithm for the EV Scheduling problem (5) is
shown in the following.

Algorithm 2 Offline EV Scheduling

1: Calculate the valley level a using Algorithm 1;
2: for t = 1→ T − 1 do
3: p̂[t]← [a− p̃[t]]

r̄[t]
r[t];

4: Solve the OPF problem with the active load demand set
to (p̂[t] + p̃[t]);



B. Online Algorithm for EV Scheduling Problem

Under a causality constraint, we do not assume any knowl-
edge of p̃[t] until time t. Therefore, we cannot use the previous
bisection algorithm to find a in an online fashion. Instead, we
propose an algorithm that estimates the valley level, which
is denoted by a′[t] and adjusts it dynamically in an online
fashion. This is illustrated in Algorithm 3.

Algorithm 3 Online EV Scheduling

1: a′[1]← pE + p̂I; (p̂I is an estimation of pI)
2: for t = 1→ T − 1 do
3: p̂[t]← [a′[t]− p̃[t]]

r̄[t]
r[t];

4: for j = 1→ |N| do
5: if (

∑t
k=1(p̂[k])j > cj −

∑T−1
l=t+1(r[l])j) then

6: (p̂[t])j ← cj −
∑T−1

l=t+1(r[l])j −
∑t−1

k=1(p̂[k])j ;
7: if (

∑t
k=1(p̂[k])j < cj −

∑T−1
l=t+1(r̄[l])j) then

8: (p̂[t])j ← cj −
∑T−1

l=t+1(r̄[l])j −
∑t−1

k=1(p̂[k])j ;
9: if (t < T − 1) then

10: (a′[t+ 1])j ← (a′[t])j +
(a′[t])j−(p̂[t])j−(p̃[t])j

T−1−t ;
11: Solve the OPF problem with the active load demand set

to (p̂[t] + p̃[t]);

For Algorithm 3, line 1 initializes the first estimation of a.
From Lemma 1, the ideal valley level is indeed (pE + pI)
if the charging rate constraints are not active. We know the
value of pE, which is just the charging target c divided by
time (T −1), but the value of pI has to be estimated, possibly
by learning from historical record of the price-inelastic load.
Line 3 follows the valley-filling characterization outlined in the
previous section. However, as the valley level estimation is not
perfect, we need to take extra steps from line 5 to line 8 to
ensure the feasibility of the solution. The rationale for line 5 to
6 is to ensure that the charging profile (p̂[1], . . . , p̂[T−1]) will
not overcharge the EV batteries at any point in time. Roughly
speaking, it means that “if from this instance on, even charging
at the minimal rate will eventually overcharge the EV batteries,
then slow down the current charging rate.” Line 7 to 8 are
based on similar rationale and this prevents undercharging.
Lastly, the estimation of the valley level is updated from line
9 to 10.

Remark 2. Algorithm 3 can be efficiently implemented in a
decentralized manner: at the beginning of iteration t, the utility
broadcasts the estimated valley level a′[t], and each EV runs
line 3 to line 8 and replies with its charging power. The utility
collects p̂[t] and runs line 9 to line 10 to calculate the next
estimated valley level a′[t+ 1].

The following result demonstrates the feasibility of the
output from Algorithm 3.

Theorem 3. If the charging rate constraints (r̄[1], . . . , r̄[T −
1]) and (r[1], . . . , r[T − 1]) permit a feasible solution, then
(p̂[1], . . . , p̂[T − 1]) obtained from Algorithm 3 is a feasible
solution to (5).

(a) Illustration of dynamic estimation of valley level

(b) Comparison of online and offline solution

Fig. 1: The base demand curve is the average residential load
in the service area of SCE from 20:00 on Feb. 13th to 19:00
on Feb 14th, 2011 [12]. The valley-filling curve is obtained
using Algorithm 2. The valley-filling online curve is obtained
using Algorithm 3.

Remark 3. Once the condition in line 5 is triggered, the
subsequent charging rate will stay at the minimum. Similarly,
once the condition in line 7 is triggered, the subsequent
charging rate will stay at the maximum.

While line 5 to line 8 ensure feasibility, we may not
want to trigger those “if” conditions, because once any of
them holds true, it means that there is no room left for
optimization. Line 9 to line 10 achieve this by updating a′[t]
based on the information up to iteration t. If the sum of
the EV load and the price-inelastic load cannot meet the
current valley level estimation a[t], then the next estimation
a[t + 1] will be adjusted in the opposite direction to ensure
that

∑T−1
t=1 p̂[t] = c.

As shown in Fig. 1a, the valley level estimation decreases
when the sum of the EV load and the price-inelastic load
exceeds the current estimation; it increases when the sum is
below the estimation, and it stays the same when the sum
meets the estimated level. This behavior is dictated by line 10,
which updates the estimation in order to spread out the current
error to subsequent estimated valley levels. The result below
shows that with this dynamic adjustment, the “if” conditions
in line 5 and line 7 will be inactive in most cases when the
first estimation of the valley level is sufficiently good.



Fig. 2: IEEE 14-bus system studied in Section IV and taken
from the IEEE power system test archive [14].

Theorem 4. Assuming the estimation of pI is correct, and
p̂[T − 1] = a′[T − 1] − p̃[T − 1], then the charging profile
(p̂[1], . . . , p̂[T −1]) obtained from Algorithm 3 without line 5
to 8 is a feasible solution to the EV scheduling problem (5).

Fig. 1b compares the EV charging profiles produced by
Algorithm 2 and Algorithm 3. As illustrated, both exhibit the
valley-filling characteristic, but the valley level of Algorithm
3 is changing dynamically.

IV. NUMERICAL RESULTS

Consider the IEEE 14-bus system depicted in Fig. 2, where
the circuit specifications and the physical limits are given in
the library of the toolbox MATPOWER [13]. The system has
five generators connected to buses 1, 2, 3, 6, and 8. Assume
that each of the non-generator bus 4, 5, 7, 9, 10, 11, 12, 13,
and 14 is connected to an EV load. Enumerate the batteries of
these vehicles as 1, 2, . . . , 9. Consider that all the batteries are
plugged in at time t = 1 and must be fully charged by time
T = 25, the charging rate of each battery can be controlled
only at the discrete time instants 1, 2, . . . , 24.

Aside from the elastic EV loads, suppose that each bus k ∈
{1, 2, . . . , 14} is connected to a price-inelastic load as well,
which varies at the discrete times 1, 2, . . . , 24 according to

(p̃[t])k =
l(t)× Pk

l(t)
, t = 1, 2, . . . , 24, (7)

where (P1, . . . , P14) is equal to the load profile given in
the library of the toolbox MATPOWER for the IEEE 14-
bus system, l(t) follows the average residential load in the
service area of SCE at different times of the day (cf. SCE
website [12]), and l(t) =

∑24
t=1 l(t). The goal is to optimize

the controllable parameters of the power grid network such as
the active power supplied by a generator or the charging rate
of a battery, which can be modified only at the time instants
1, 2, . . . , 24. To this end, we aim to minimize the following
cost function:

24∑
t=1

∑
k∈N

(p[t])k +

24∑
t=1

∑
k∈N

α(p̂[t])k. (8)

This cost function has the following features:

• The generation cost is the total active power generated
by all the generators over the time horizon [1,24].

• The pricing vector of each battery is assumed to be
independent of its bus number and invariant over time,
and we let α = 2 in the following.

Fig. 3: Profile 1: residential load from 10:00 on Jul. 6th to 9:00
on Jul. 7th; Profile 2: average residential load from 15:00 on
Aug. 27th to 14:00 on Aug. 28th; Profile 3: residential load
from 1:00 on Mar. 11th to 0:00 on Mar. 12th. All load profiles
are taken from SCE website [12].

A. Effect of EV penetration

In this case, we vary the EV load to be from 10% to
100% of the price-inelastic load, and compute the percentage
difference given by (p∗online−p∗offline)/p

∗
offline×100, where p∗offline

is the optimal value of (8) obtained using Algorithm 2 and
p∗online is the result from the Algorithm 3. Fig. 3 shows the
simulation results using three different 24-hour load profiles
taken randomly from the SCE residential load data [12].
Firstly, Algorithm 3 is able to produce charging profiles that
almost optimally solve the joint OPF-EV charging problem
(3). From the three randomly chosen load profile, the worst
performance is less than 0.016% different from the optimal
value. Secondly, we can see all three plots go up initially
and eventually decrease. This is because at the beginning,
the EV load is relatively insignificant, and thus Algorithm 2
and 3 perform almost the same as there is little to optimize.
As the EV load becomes more significant, the performance
gap grows because Algorithm 3 lacks perfect knowledge.
However, a higher EV penetration will also lead to larger room
for optimization. Hence, the performance gap decreases and
eventually approaches zero as the EV penetration increases.

B. Effect of online estimation

In this example, the EV charging profile of a working
example is illustrated. The price-inelastic load variation is
based on the residential load profile from 15:00 on Aug. 27th
to 14:00 on Aug. 28th (taken from the SCE website [12]).
The EV penetration level is set to 50%, and we assume that
there is 10% error in over estimating the initial valley level for



Algorithm 3, i.e., a′[1] = 1.1 × a. Fig. 4a and Fig. 4b show
the charging profile of one of the EVs produced by Algorithm
2 and Algorithm 3 respectively in this setting. We can make
several observations from Fig. 4a and Fig. 4b:

1) An over-estimation of the initial valley level a′[1] causes
Algorithm 3 to charge the EV batteries faster than
optimum. As a result, the EV battery at bus 7 is fully
charged two time slots before the deadline.

2) The result of the Algorithm 3 is still very close to the
optimal value, as the percentage difference (p∗online −
p∗offline)/p

∗
offline × 100% = 0.0627%. Hence, in terms of

power loss minimization, Algorithm 3 performs nearly
optimally at this setting.

(a) Offline solution for EV at bus 7 (b) Online solution for EV at bus 7

Fig. 4: Comparison of EV charging profile for Algorithm 2
and Algorithm 3, p∗offline = 79.5348pu, p∗online = 79.5847pu.

C. Runtime comparisons

In this section, we compare the computational time of the
SDP optimization approach that uses interior point algorithm
to solve (3) in [15] with that of Algorithms 2 and 3. The sim-
ulation is run on the IEEE 14 bus system for T = 6, 12, 24, 48
respectively.1 The computational time measured is the average
of running the respective algorithm for ten times.

TABLE II: Performance comparisons

T SDP Optimization Algorithm 2 Algorithm 3
6 6.0 s 5.8 s 5.9 s

12 13.1 s 11.6 s 11.6 s
24 31.5 s 22.9 s 22.8 s
48 84.0 s 45.8 s 45.7 s
96 262.6 s 87.5 s 87.4 s

From Table II, we see that the time complexity of Algorithm
2 and Algorithm 3 are comparable. Also, both Algorithm 2
and Algorithm 3 have lower time complexity as compared
to the SDP optimization method in [15], and the saving in
computational time from using Algorithm 2 and Algorithm
3 is more significant as T increases. This demonstrates the
advantage of the decoupling approach to solve the joint OPF-
EV charging problem.

V. CONCLUSION

We studied a time-dependent OPF charging problem that
optimized jointly the operation of the power grid and the
charging activity of electric vehicles. We proved that this

1We used MATLAB version 7.6.0.324 (R2008a). The programs were run
on an Intel Xeon CPU 2.80GHz machine running on Windows 7 OS.

problem is convex with respect to the total electricity demand,
characterized the valley-filling charging profile to be optimal
under constant electricity price, and proposed a decentralized
online algorithm that followed this characterization. At each it-
eration of the online algorithm, each electric vehicle calculated
its own charging rate according to the valley level broadcast
by the utility, and the utility guided their charging rate by
updating the valley level. Simulation results showed that the
online algorithm performed almost optimally in minimizing
power loss, and the optimal value of the online algorithm
approached to that of the offline solution as the penetration
of EVs increases.

In this paper, the online algorithm considers a time invariant
pricing scheme. That is, the nodal electricity price remains
constant throughout the scheduling period. However, when
there are renewable sources, electricity prices can vary in
real time. In addition, electric vehicles may require charging
at different times in a more dynamical setting. Incorporating
real time pricing, modeling vehicle arrivals as random events
and accounting for the additional uncertainties with these
extensions are interesting directions for future research.
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