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Abstract—The smart grid is creating new security vulnera-
bilities due to the deployment of networked devices into the
traditional grid. A core component of the smart grid is the
advanced metering infrastructures (AMIs), which increase the
attack surface due to smart devices deployed at households. Man-
ual management of security incidents in such a large and complex
system is impractical, and the need for automated response and
recovery to attacks is critical. This paper addresses that challenge
through two main contributions. First, we introduce and classify
an extended set of AMI-specific cyber incident response actions.
Second, we define a cost model and an approach to translate
security properties into monetary costs. The cost model is a
key element in enabling an automated response engine to make
optimal decisions and mitigate cyber incidents.

Index Terms—AMI, CPS, Response action, Cyber security.

I. INTRODUCTION

Advanced metering infrastructures (AMIs) are a core com-

ponent of the smart grid effort. AMIs are the communication

infrastructure for smart meters that transmit real-time meter

readings to the administrative network and receive remote

commands to control service. AMIs enable new applications,

such as fine-grained measurements and instant detection of

blackouts, and thus improve customer service and reliability.

However, AMIs also introduce significant security concerns,

since the processing and communication capabilities of AMI

devices allow for a larger attack surface. That attack surface

includes 1) the corporate network, 2) the wireless mesh net-

work, 3) the home area network, and 4) meters that are within

the reach of customers. Possible threats can be classified

according to attack scale, ranging from relatively small-scale

activity targeting specific customers (e.g., to turn off service or

specific appliances, such as alarm systems) or stealing energy

(e.g., through the alteration of meter readings), up to major

organized crimes that could target extended geographical re-

gions. Moreover, attacks could target the control commands

sent by a utility through the AMI. Additional security issues

also rise from the use of wireless solutions for smart meter

communication, in particular through the deployment of large

mesh networks [1]–[3].

Researchers and organizations have made important efforts

to promote security solutions for AMIs, such as VPNs, en-

cryption [4], and remote attestation [5]. Those approaches

are valuable, but they are not sufficient, mainly because

vulnerabilities can always be found in the implementations of

protocols and applications, or in human operators who can be

tricked into providing access to restricted resources. Moreover,

since meters may not have sufficient physical protection,

tampering with devices may leak secret keys stored in internal

memory and thus cause security breaches in the network. Thus,

traditional attack prevention solutions must be supplemented

with detection and mitigation approaches. While recent efforts

have started to investigate the role of AMI intrusion detection

(e.g., [6], [7]), response to incidents is still a manual procedure

in the hands of security administrators.

The goal of this paper is to explore the concept of automated

cyber incident response for AMIs. This concept is of critical

importance due to 1) the potentially unmanageable volume of

alerts and demands for decisions in such a large infrastructure,

and 2) the stringent timing and availability requirements of

certain power grid functions. In particular, utilities should

be able to get the latest meter readings and send out con-

trol commands according to specific schedules. Additionally,

disruption of services, such as outages, should be detected

and addressed with minimum input from human operators.

Automatic response to cyber incidents requires a solution that

can process input sent by intrusion detection systems, assess

the security state of the infrastructure, and select the best

response action to mitigate issues in a timely manner. This

paper addresses those challenges as follows:

• we review existing automated response frameworks and

discuss their limitations,

• we introduce an extensive set of AMI-specific response

actions through a taxonomy and the identification of key

response characteristics, and

• we present a cost model to enable automated reasoning,

and we introduce a set of approaches to computation of

cost parameters.

II. BACKGROUND

The goal of AMIs is to support two-way communications

among smart meters, smart appliances, and utilities. Since

AMIs can reach huge scales (sometimes more than a million

meters) and have to accommodate a variety of environments

(i.e., urban, suburban, and rural), several architectures have

been proposed for deployment of flexible and cost-efficient

communication infrastructure at scale.

A. Meter Communication

As shown in Figure 1, possible options for connecting

meters to the utility include two hierarchical approaches and

a direct approach.
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Fig. 1. Complete view of AMI architectures

1) Hierarchical Approaches: Hierarchical topologies en-

able the architecture to scale well with an increasing customer

base. The goals are to cluster meters geographically and to

use one or two aggregation levels to relay communication

to and from the utility. Figure 1 presents both aggregation

levels by showing that a meter can connect to the meter data

management (MDM) system inside the utility network through

either a collector in the neighborhood area network (NAN) or

a second-level neighborhood access point (NAP). A NAP is

added to increase scalability. A variety of technologies can be

used to deploy the communication links labeled N 1 and A 1

in Figure 1:

• Wireless mesh networks allow for dynamic route gen-

eration and route healing. This scheme is the cheapest

to implement, and it scales if an optimal placement of

collector nodes is used. It is suitable for residential areas

where interference between meters is minimal. However,

it is prone to a wider class of attacks that can cause

availability, integrity, and privacy issues. Examples are

physical communication protocols like IEEE 802.15.4

and the proprietary RFLAN [8].

• Power line communication (PLC) carries information

on power lines by modulating messages to a frequency

other than 50Hz. This technology does not require new

infrastructure. It is suitable when wireless solutions are

not practical, such as in high rises. However, because of

the varying impedance, noise, and high attenuation use of

the power line as a channel increases the complexity of

the modulator at the meter side [9]. Moreover, since the

carrier is the electricity itself, losing a line means losing

both power and communication.

• Wireless Star uses a collector node that directly connects

to each meter. Such schemes include WiMax or cellular

communication that incurs a communication fee per me-

ter. It is suitable for low-density areas, such as rural areas.

• Private wired networks run by utilities, where a utility

would deploy a private network infrastructure (e.g., cable

or fiber optic) among meters. This approach is costly, but

provides a higher level of security because of the closed

nature of the network.

Those hierarchical approaches increase the attack surface

by adding collectors, relays, and repeaters to the infrastructure.

The attack surface varies depending on the choice of communi-

cation technology. For example, wireless communications can
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Fig. 2. Response action taxonomy

be vulnerable to a wide class of attacks, such as jamming, man-

in-the-middle, and eavesdropping. That technology choice also

impacts the set of response actions available. For instance, it

may not be easy to quarantine a node in the case of a wireless

mesh network.

2) Direct Approach: In this scheme, meters directly com-

municate with the utility through M 1 [10]. This approach

uses cellular communication (GSM, 3G), WiMax, or leased

lines as the communication technology. Direct communication

generally offers the security advantage of removing an attack

vector by making the network hard to access. However, the

scheme adds extra communication cost per meter for the utility

and has a scalability issue, especially in dense areas.

B. HAN Connectivity

For the purpose of enabling demand-response and load

shedding, utilities have to gain detailed measurements and

control over some of the customer loads. With the advent

of smart appliances, utilities have the ability to decrease

demand for electricity during peak times by remotely sending

price information and even control commands to appliances.

Appliances that are most likely to be remotely controlled

are high-power-consuming appliances (electric cars, washers,

dryers, or HVAC). The communication technology for the

home area network (HAN) that connects appliances to the

AMI is usually ZigBee. This connectivity brings significant

privacy and security issues, since it could enable an adversary

to spy on appliance usage, or even to disable specific loads

such as a security system. To balance the needs of demand-

response applications and privacy and security concerns, sev-

eral architectures have been proposed. The meter can be the

gateway between the HAN and the utility. With a Zigbee radio

integrated in the meter, it delivers load-shedding commands

from the utility [10]. The HAN gateway can also be connected

to the utility through a separate WAN [11], and even use the

Internet to receive and send information and commands. The

considered architecture leads to the worst case attack surface.

III. RESPONSE ACTIONS

In this section, we present an extensive set of response

actions designed to actively mitigate cyber incidents. Our first

effort towards defining those actions was to create a generic

taxonomy of actions. Several taxonomies have already been

proposed for response actions [12]–[14], but most are not

suited for AMIs. Our taxonomy, presented in Figure 2 reflects

the typical intrusion response process: collecting information,

blocking or limiting attacks, recovering from attacks, and

performing forensics. This taxonomy has been helpful for
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TABLE I
ORGANIZED SET OF RESPONSE ACTIONS FOR AMIS

L
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LP1 Log information

LP2 Generate reports

LP3 Generate alarm

LP4 Profile customers’ power usage

LP5 Passive power book keeping

A
ct

iv
e

LA1 Start analysis tools

LA2 Verify ARP caches

LA3 Trace connections

LA4 Enable dormant IDS sensors

LA5 Detect duplicate nodes

LA6 Locate routing attacks

LA7 Request logs

LA8 Add decoy nodes

M
o

d
if

y
in

g

B
lo

ck
in

g

MB1 Block meter

MB2 Isolate neighborhood

MB3 Revoke meter keys

MB4 Restart meter

MB5 Block connections

MB6 Limit network access

MB7 Limit system/service access

MB8 Enable quarantine

MB9 Jam Attacker

MB10 Change IP addresses

R
ec

o
v
er

y

MR1 Rollback previous responses

MR2 Merge neighborhood network

MR3 Distribute attack signature

MR4 Renew keys of meters/utility

MR5 Correct C12.22 routing tables

MR6 Verify meter OS

MR7 Apply patches

MR8 Restart meter

MR9 Replace meter

MR10 Recover meter readings

MR11 Recover service state

1) exploring the set of possible response actions following a

structured approach, and 2) understanding the characteristics

of the various actions that are primordial in the definition of

cost models. We used the attack trees presented in [15] to map

the set of actions to attack techniques and ensure a sufficient

coverage of the threat model. The resulting set of actions is

presented in Table I.

A. Learning Actions

Actions LP1, LP2, LP3, and LA1 involve log generation

and collection. Those actions are applicable to all architec-

tures. LP4-5 are related to power measurements and are also

architecture-independent. Active learning actions are mainly

used to deploy new sensors or to change sensor configurations

in order to collect more activity. Those actions are more

efficient when the same activity is visible to multiple sensors.

Thus, they are suitable in the case of a shared medium (e.g.,

wireless or PLC) if meters can be used as sensors.

Actions LA1, LA2, LA5, and LA6 are related to verifying

routes and detecting routing attacks. If wireless mesh com-

munications are used, then cooperative behavior is needed

to verify routes and detect routing attacks (e.g., man-in-the-

middle, wormhole, and black hole attacks) [16], [17]. The

responses typically consist of checking routing tables and

caches on routers (e.g., cell relays), and sending probe packets

to the mesh to verify that routing paths are correct. Action LA4

enables more IDS sensors using meters or utility trucks.

B. Modifying Actions

Modifying actions are mostly architecture-and technology-

dependent, because the goal of those actions is to induce

changes in the network. First, blocking actions aim to limit the

access and privileges of a compromised entity in the network.

Architectures and communication technologies provide a va-

riety of control functions and granularity. For example, action

MB1, “blocking a meter,” can be performed by removing the

meter from the utility registration list, which is a suitable

action for all architectures but may still allow a compromised

meter to attack other devices. In the case of a hierarchical

topology, a more effective response is to update firewall rules

at the level of the collector or the cell relay to block a compro-

mised meter locally. In addition, if a wireless mesh network is

used, quarantine of a meter can be performed through updating

of routing information of neighboring meters.

Action MB6 includes rate limiting and is applicable to all

architectures. The rate-limiting threshold can vary according

to the level at which it is applied in the network topology.

The scope of this action also depends on the granularity of

the rate-limiting solution. For example, if individual flows for

a specific device cannot be isolated, rate limiting at the level

of a relay will impact a full neighborhood and will likely

affect noncompromised devices. It is also possible to apply

rate limiting the level of the head-end by delaying packet

processing for compromised meters.

Recovery actions attempt to return the system to a secure

state. They deconstruct operations performed by attackers

and require a detailed understanding of the AMI security

state. For example, action MR6 checks the integrity of a

meter’s operating system. Actions MR7-8 can then be used

to put the meter back into a secure and working state. MR9

would be used if a recovery is not possible (e.g., the meter

has been physically damaged). An important action is MR1,

which enables utilities to reverse the effect of one or several

response actions. If an action is performed based on incorrect

information, or if an attacker is able to take advantage of

it, then canceling the action may be necessary. Note that

different actions have different rollback levels, ranging from

fully reversible (e.g., adding decoy nodes), to irreversible but

with removable effects (e.g., blocking a connection), to fully

irreversible (e.g., alerting an intruder).

The rollback capability is an important characteristic to

take into consideration when calculating a cost model for
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each action, since irreversible actions are likely more expen-

sive for utilities than reversible actions are. We defined the

following set of characteristics to help us understand cost

parameters and to guide the response engine: 1) rollback level,

2) applicability to specific architectures and communication

technologies, 3) system-level involvement (i.e., whether an

action can be performed locally by a single device, or requires

multiple devices to cooperate on a wider scale), 4) flexibility

(e.g., the rate-limiting threshold can be tuned dynamically),

5) the system layer impacted (e.g., physical, network, or

application layer), and 6) manual involvement, ranging from

none (fully automated action) to some (input required from

an operator). That last characteristic is critical if an action can

have potentially unsafe effects.

IV. TOWARDS A COST MODEL

Automated response and recovery systems have to make

decisions after assessing the security state of the system.

Those decisions require predicting the positive and negative

effects of different combinations of attack steps and responses.

That element of needing to predict the behavior of multiple

entities explains why game theory has often been used in

implementing automated reasoning systems for security [18].

To obtain accurate predictions, it is necessary to have a cost

model. Automated response systems cannot decide on optimal

actions without a cost model. “Optimization” usually means

minimization of the cost for the organization, either locally

or globally [19]. Moreover, the performance of any recovery

algorithm depends on the quality of the cost model. A cost

model that does not reflect the complete and real cost of an

action might lead to suboptimal or counterproductive actions.

A survey of the literature indicates that availability of

services is used as a main metric in computing costs for tradi-

tional IT systems. For example, e-commerce systems require

high availability to keep customers, and loss of availability

is proportional to loss of revenue. However, an AMI is a

large cyber-physical system in which the cost of an action

is linked to the physical system controlled by the AMI. Using

availability as the cost metric doesn’t represent the actual cost

for a utility. Additionally, customers play an important role

in the system, since they are directly affected by outages,

price updates, and energy delivery services. As a result, we

propose a cost model that goes beyond service availability and

considers three entities: utilities, customers, and attackers.

A. Related Work

We can divide past research on cost models into three

categories: models based on static costs, models based on

parameterized costs with static parameters, and models based

on dependency graphs. In the first category, the approach

consists of generating a taxonomy of response actions for

general IT systems and then tagging each action with a

static cost value [12], [13], [20]–[23]. Those costs have to be

assigned by system administrators based on their subjective

knowledge of the system. The issue with this approach is that

it does not capture the system dynamics (i.e., an action that

induces changes in a system may affect the costs of subsequent

actions). Moreover, requiring administrators to assign cost

values is often impractical, and results in inaccuracies.

In the second category, [24], [25] decompose the cost of

actions into several parameters to better capture how actions

may impact the system. [26] assigns static costs for each

parameter and uses an analytical hierarchy process to compute

impact factors. [27] proposes to use static costs that would

linearly increase over time. The advantage of these approaches

is that the cost model captures more aspects of the actual cost

for the utility. However, use of static parameters still does not

capture system dynamics.

In the third category, [28] proposes to model the system

using a dependency graph. The graph is used to compute

the availability by propagating the impact of nodes becoming

unavailable due to a response action. This work was later

extended in [29] to cover all security properties (CIA) by

proposing to use three separate graphs (one for each property)

and adding links between the graphs when dependencies

among the properties are found. Finally, [30] combines the

three graphs into one by labeling the nodes with a vector

and used a matrix to model the relation among the different

security properties. The importance of this approach is that it

enables the modeling of system dynamics to capture the effect

of an action on the system. However, the problem is that it

still requires considerable work from system administrators to

define parameter values in the graph. Moreover, the resulting

output vector represents the total effect on the CIA properties

and would require additional processing to be used by an

automated reasoning system.

B. Approach

The objective of a cost model is to evaluate the real cost

of an action for utilities and customers. The notion of cost

can be divided into a managerial cost (i.e., operational cost,

recovery cost, and labor cost), an attack cost, and a cost due

to the impact of an action on the system. Consequently, the

cost of an action is computed using the following equation:

CAction = CImpact + COperation + CAttack, (1)

where COperation is the operation cost, which includes the

cost of labor to initiate the action and the resources required

to run the action. The latter will likely increase over time,

which means that the duration of a response action has to be

evaluated. That evaluation can be done based on experience or

computed using a simulation of the system. CImpact is the cost

of the impact of the action on the system. We characterize that

impact by measuring the changes to the system that positively

or negatively affect confidentiality, integrity, and availability

(CIA). Those changes are captured through a dependency

graph model of an AMI that include devices (e.g., meters)

and entities (e.g., customers and utilities). Prediction of the

effects of a response action is achieved through updating

of the dependency graph and computation of a vector that

characterizes the impact of actions on each security property.

The impact must be converted into financial values in order to

351



TABLE II
COST BREAKDOWN FOR EACH SECURITY PROPERTY AND SERVICE

Integrity Availability Confidentiality

Real-time Pricing Electricity Market N/A

Usage Readings Market SLA
Empirical Data

Service Commands SLA SLA

be combined with the managerial cost and to be evaluated

across different configurations. This conversion requires a

financial understanding of the repercussions of AMI actions

on the grid. We rely on the electricity market, service-level

agreements (SLAs), the cost of outages, customer revenues,

and customer retention factors to assess the costs of impacts,

such as unavailable services or power outages. (We illustrate

our approach to conversion of response impact into financial

values in Section IV-D.) Finally, CAttack is the cost of the

consequences of an attack on the system and is discussed in

the next subsection.

C. Cost Effectiveness

Evaluation of the cost of a response represents half of

the information needed by the decision algorithm to choose

an optimal response strategy. One also has to evaluate how

effective a response is in mitigating attacks. We propose to use

the cost of an attack as a measure of effectiveness. A response

R1 is defined as more effective than a response R2 if the cost

of the attack for R1 is less than that for R2. To compute

the cost of an attack, we make the following differentiation

based on the taxonomy of response actions. Learning actions

allow the attack to keep running while being monitored, so

their costs include both the cost of the running attack and the

cost of the running action. Limiting actions are intended to

stop or reduce the impact of attacks. Their costs are mostly

represented by the resources required for their implementation.

The cost of an attack often has high uncertainty, because we

cannot predict the next attack steps planned by attackers. We

are currently investigating using a simulation framework such

as ADVISE [31] to simulate adversaries. The stochastic model

defined in ADVISE allows for subjective evaluation of several

threat models, offering results on attack likelihood, system

weaknesses, attack duration, and attacker strategy based on

attacker preferences and system configuration.

D. Converting Impact into Financial Values

In this section, we explore how to compute the cost of the

deterioration of security properties of AMI services due to

a response action or an attack. We illustrate our approach

through a case study that includes 3 AMI services. Those

services are 1) real-time pricing information sent by utilities to

meters, 2) usage readings sent by meters to collection engines,

and 3) control commands sent by utilities to meters. Table II

shows the information source used to evaluate the impact on

integrity, availability, and confidentiality of those 3 services.

1) Pricing Information: After deregulation of the energy

sector, distribution companies began buying energy from the

electricity market. The price of electricity in the market is

dictated by the rules of supply and demand. Utilities will sell

electricity to the customer at market rate. Thus, the utility will

send real-time pricing information to customers. Customers

will use the pricing information to determine their level of

power consumption. Loss of availability and integrity of such

information leads to costs for both the utility and customers.

a) Availability: If pricing information is unavailable or

delayed, we assume that the customer will be sold electricity

at an incorrect flat rate, causing losses for either the customer

or the utility. If the current rate is greater than the flat rate,

then the utility will be losing revenue by paying more for

power than the price at which it is selling it. In the opposite

case, the customer will be overbilled, paying a higher price

for electricity. That can lead to customer dissatisfaction and

long-term revenue losses for the utility.

b) Integrity: Integrity loss for pricing information would

lead to inaccurate information delivered to meters. If the

received information shows a value higher than the real market

price, then no losses are incurred but customer dissatisfaction

is possible. However, if the received information shows a value

lower than the real market price, then customers will be billed

for the original price, which also leads to loss of confidence

in the utility. It may result in increased demand due to the low

price, potentially causing generation perturbations.

2) Meter Readings: The primary goal of AMIs is to auto-

mate meter readings. Readings are sent periodically by meters

to the collection engine in the back-end. Usage information is

used to bill customers for the electricity used and also to gain

detailed information about load profiles so that usage can be

better forecasted.

a) Availability: Availability of the information is crucial

for billing. If information is lost, the utility has to estimate

usage. Moreover, the metering company may pay a penalty

for the loss of availability, as defined in the SLA.

b) Integrity: Inaccurate usage information leads to in-

accurate billing information. If the information leads to a

decrease in the actual usage (e.g., due to energy theft attempts),

then the utility would lose revenue.

3) Utility Commands: Utility commands are used to

control the AMI network, e.g., by turning service on or off,

or by controlling smart appliances. Availability and integrity

of those commands are important to ensuring that the energy

delivery system works properly.

a) Availability: The metering company pays a penalty

for loss of availability, as defined in their SLA. In addition,

unavailability of utility commands would reduce the ability to

diagnose problems and outages in the power grid. Moreover,

unavailability of commands would delay critical services, such

as remote connect or remote disconnect of customers.

b) Integrity: Integrity loss in utility commands may lead

to faulty control over the grid. If a control command is

altered, it might lead to overcharging of customers, or even

disconnection of customers from the grid.

4) Confidentiality: Some of the services provide public

information, such as pricing information. Thus, loss of confi-

dentiality has no financial impact for either the customer or
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the utility. However, access to control commands and usage

information might lead to privacy violations for the customer

(e.g., loads could be identified, and usage profiled). The cost

of privacy violation is difficult to assess. We are investigating

techniques that use empirical metrics, such as historical court

records, to evaluate the violation of privacy policies.

V. CONCLUSION

This paper presented an approach to understanding the role

of automated responses for AMIs. We introduced a set of

cyber incident response actions that are suitable for AMIs.

The definition of those actions followed a rigorous process

that included a review of the possible AMI architectures

and communication technologies, the definition of a response

taxonomy, and the identification of key response character-

istics. We then proceeded to define an attack/response cost

model that, unlike traditional cost models, takes into account

the cyber physical nature of an AMI by integrating system

dynamics to capture the potentially significant consequences

for the power grid. As future work, we plan to formalize

the cost model using power models. We are also working on

implementing the actual automated response system for AMIs

over the TCIPG AMI testbed, which contains a hybrid network

of real and emulated meters.
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