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Abstract—The problem of large scale charging of electric
vehicles (EVs) is considered. An architecture for the energy
management system (EMS) is proposed based on the concept
of network switched charging where chargers are controlled
by a scheduler that optimizes the overall operating profit of
the service provider. It is assumed that the EMS has access
to collocated renewable sources (e.g. solar power) and can
supplement the renewable with purchased electricity from the
grid. The renewable source may vary arbitrarily, and requests of
all EVs accepted for service must be completed by their respective
deadlines.

Under a deterministic model for arbitrary arrivals, charging
requests, and service deadlines, online scheduling of EV charging
is formulated as a multi-processor deadline scheduling problem
for which the optimal scheduler maximizes the competitive ratio
against the best offline scheduler. An online scheduling algorithm,
referred to as TAGS, is proposed based on the principle of thresh-
old admission and greedy scheduling. TAGS has the complexity
of O(nlogn) where n is the number of EVs in the facility. It is
shown that, when the price offered to the EV customers is higher
than the purchasing price of electricity from the grid, TAGS
achieves the competitive ratio of 1. Otherwise, TAGS achieves
the maximum competitive ratio given by the inverse of a real
root of a certain polynomial. Simulations are used to evaluate
the performance of TAGS against standard benchmarks and for
the setting of optimal charging price.

Index Terms—Charging of electric vehicles; energy manage-
ment systems; deadline scheduling; competitive ratio analysis;
renewable integration.

I. INTRODUCTION

E consider the problem of charging of electric vehicles

(EVs) at parking facilities where the charging of a large
number of EVs can be centrally managed. We assume that EVs
arrive with arbitrary charging requests, and each request has
to be completed by a certain deadline. The charging service
provider (CSP) meets demands using collocated renewable
sources (e.g., solar) supplemented by electricity purchased
from the grid.

The CSP aims to maximize the operating profit. Achiev-
ing this objective, however, involves complex decisions with
interacting parameters. It is thus necessary to develop an
intelligent energy management system (iEMS) that procures
energy from different sources, dispatches of energy to EVs,
makes admission decisions on new arrivals, and determines
the price of charging.
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A. An iEMS Architecture

We propose an iEMS architecture illustrated in Figure 1|
that has some of the key functions discussed above. The
key characteristic of the proposed architecture is the network
switched charging where a scheduler controls a switch that
optimizes charging schedules based on system capacity, and
available renewable sources and local storage.
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Fig. 1. Architecture for network switched charging and iEMS.

The objective of the iIEMS is maximizing the operating
profit for the CSP. The hardware system of the proposed
iEMS includes a dispatcher that delivers power from a mix of
sources—renewable, purchased electricity, and possibly local
storage—to a set of chargers. The iEMS also includes a switch
that connects chargers to EVs admitted to the facility. Through
the network switch, a scheduler activates EV charging with
preemption, making it possible for the iEMS to serve more
urgent or more profitable requests.

The iEMS is run by its software system that makes engi-
neering and economic decisions. At the core of the software
system for the iEMS is the charging scheduling algorithm,
which is the focus of this paper. The scheduler (i) controls the
power dispatcher to procure energy from available sources,
(i1) sets the connections of the switch so that a subset of EVs
are charged by the available chargers, and (iii) determines the
admission of new EVs based on its operating condition. The
software system also has to handle billing and other ancillary



services, which are not discussed in this paper.

The optimizations involved in the iEMS are of the mixed
integer type. Since the charging of an EV may be interrupted
by a more urgent request, deadlines of service requests play a
critical role. By specifying deadlines at the time of arrival, the
EV customers provide the flexibilities that can be exploited.
For example, the scheduler should charge as much as possible
when there is ample inexpensive renewable energy. But when
electricity has to be purchased to fulfill charging requests, the
scheduler can optimize on the time and quantity of purchase.
Such an optimization are made by taking into account various
factors such as the deadlines of charging requests and possibly
the forecast of available renewable in the future.

B. Summary of Results and Contexts

Having described the iEMS architecture, we focus on the
scheduling module in Figure 1. In this paper, we adopt a de-
terministic formulation where EV arrivals, charging demands,
charging deadlines, available renewable sources, and the price
of electricity from the grid are all deterministic and arbitrary.
The decision variables include which EV to charge and by
which charger, how long each charging should last, how much
electricity needs to be purchased from the grid, and whether
a new arrival should be admitted to the system.

We restrict to the design of an online scheduling algorithm
where the scheduler has the past history but without foresight
into future requests. In such a deterministic setting where
all scenarios are possible, the approach of competitive ratio
analysis is appropriate, where the performance of an online
algorithm is compared against the optimal offline algorithm
for the worst operating scenario.

The competitive ratio (see its definition in Sec II) provides
a level of performance guarantee. In particular, if an algorithm
has a competitive ratio of 1, it implies that the algorithm
is optimal among all online and offline algorithms. If an
algorithm achieves the optimal competitive ratio C' < 1, it
guarantees better than C fraction of the reward provided by
the optimal offline algorithm. And there is no other online
algorithm that can be strictly better for all service requests.

We characterize the optimal competitive ratio and present
the optimal scheduling algorithm. Assuming that the re-
newable source can support M chargers, the main result—
Theorem 1| in Sec. II—shows that the optimal competitive
ratio has two operating regimes. When the price of charging
offered to EV customers is higher than that of the purchased
electricity, the maximum achievable competitive ratio is one.
Otherwise, the maximum achievable competitive ratio is given
by the inverse of a real root of a certain polynomial.

The more practically significant result is an online schedul-
ing algorithm that achieves the optimal competitive ratio (see
Theorem 2 in Sec. II). The algorithm is referred as TAGS,
which is the abbreviation for Threshold Admission and Greedy
Scheduling. TAGS performs simple threshold tests on prof-
itability for admission control and makes greedy scheduling
decisions. As an online scheduling algorithm, TAGS has the

complexity of O(nlogn) where n is the number of EVs in
the facility.

The deterministic model adopted in this paper has the
advantage of being agnostic to specific models of traffic,
demand, availability of renewable, and battery technology. The
competitive ratio analysis based on the worst case service
requests, however, is less informative to practitioners; often,
it is the average performance that a CSP or an EV customer
desires. In this paper we test TAGS using commonly accepted
statistical models. While TAGS does not guarantee optimal
average performance, it outperforms standard benchmarks
such as earliest deadline first (EDF), the least laxity first (LLF),
and the unmanaged charging (UC) algorithms.

The profit of the CSP depends on the purchase price of
electricity and the offered price to EV customers; their relative
values determine the optimal competitive ratio. However,
neither can be set arbitrarily by the CSP. In evaluating the
performance as a function of pricing, we assume that the
CSP is a price taker when it purchases electricity, and EV
customers behave with a downward slope demand curve. With
such a setting, we evaluate the optimal offered price to the EV
customers using simulations.

Due to space limitation, the proof of the main theorem is
omitted and is reported in [1].

C. Related Work

There is a growing literature on various aspects of the
EV charging problem including the scheduling of chargers;
see, e.g., [2, 3, 4, 5, 6, 7]. Most reported work, however,
focuses on residential charging scenarios that have somewhat
different characteristics from that considered here where EVs
are located and managed centrally. The authors of [8] conduct
simulation studies of EMS for EV charging at parking garages
where heuristic algorithms for scheduling are used. The EV
charging for public garages is also considered in [9] where the
objective is maximizing the service throughput, and the cost
of energy is not part of the optimization.

Subramanian et. al. consider a setup closest to the present
paper in [10] where the scheduling of EV charging is opti-
mized using a combination of renewable energy and energy
from the grid. The authors in [10] investigate the EDF, LLF,
and a receding horizon control scheduling algorithm; the latter
exploits the forecast of renewable energy. Our approach differs
from [10] in the use of admission control in scheduling
and the objective of the optimization. In particular, [10] is
concerned about the peak power drawn from the grid whereas
the objective in this paper is maximizing the operating profit.

Prior to this work, large scale charging of electric vehicles
is formulated as a deadline scheduling problem with a single
processor, and an early version of the single processor TAGS
is presented [11]. For variable renewable sources, the general-
ization of the single processor case is reported in [12, 13]. The
present paper strengthens the optimal competitive ratio for the
multiprocessor deadline scheduling algorithm.

The technique presented in this paper follows the deadline
scheduling framework, originated from the seminal work of



Liu and Layland [14]. The best known on-line scheduling
algorithms include the earliest deadline first (EDF) algorithm
[14, 15] and the least laxity first (LLF) algorithm [16], both
are known to have competitive ratio one when the system is
“under-loaded” and there is a single processor. For general
operating conditions, EDF and LLF can perform poorly [17],
especially when there are overwhelming arrivals. The single
processor optimal online scheduling algorithms are proposed
by Baruah et. al. and Koren and Shasha separately in [18, 19],
and 1/4 is shown to be the maximum competitive ratio.
The key difference between the setting of [18, 19] and that
considered here is that, in [18, 19], the unfinished jobs have
no impact on the performance.

As a deadline scheduling algorithm, our approach presented
in this and earlier papers breaks some new ground. The
problem considered here corresponds to deadline scheduling
involving multiple processors, for which results on competitive
ratio are limited and optimal scheduling algorithm unknown.
See, e.g., [20]. The main result presented here appears to be the
first that, for the multiprocessor deadline scheduling problem,
gives a complete characterization of the optimal competitive
ratio and an algorithmic construction to achieve the maximum
competitive ratio. We obtain these results thanks to including
admission control as part of the optimization.

Admission control is natural for the EV charging application
where unfinished jobs should be penalized. Consequently, the
CSP should not accept all requests, not only because charging
facilities have physical limits but also that certain requests are
simply not economically attractive. How to make admission
decisions is not trivial. The idea of admission control in the
context of deadline scheduling takes the form of “customer
notification” [21] where the service provider can choose to
accept or decline a customer’s request upon the request arrival;
see also [22, 23] and references therein. The optimal admission
control is not known in the literature.

II. OPTIMAL DEADLINE SCHEDULING
A. Problem Formulation

Ajob J = (r,1,d,v) is represented by a quadruple specified
by the release time r, the processing time [, its deadline d, and
the value v. We adopt the so-called proportional value model
[24] where the value v of a job is proportional to its processing
time [. Without loss of generality, we set v = cl, where c is
the price per unit charging time. Preemption is allowed at no
cost, i.e., a preempted job can be resumed from the point of
preemption at a later time.

In the deterministic setting of job scheduling, an input
instance I of size n for the scheduler includes n jobs,
I =(Ji,...,Jy). The input instances in general have different
sizes. The optimization is over the collection Z of all finite
input instances.

An online scheduler S,,;,. knows the parameters of job J;
only at its release time r;. The deadline of associated with each
job is firm, i.e., the value of a job can only be collected if it is
completed before its deadline. The admission decision is made

immediately, i.e., upon the release of each job, the scheduler
has to decide whether to accept or decline the request.

We assume, without loss of generality, that the charging
station has access to zero variable cost renewable energy.
By relaxing the constraint on the physical capacity on the
number of parking spots available, the bottleneck to optimizing
profit arises from the limited renewable energy to support
all requests; operating cost from purchasing electricity is
unavoidable, since all requests of EVs admitted to the facility
have to be met.

The operating profit is the difference of the revenue gen-
erated from payments of EV customers and the cost of
purchasing electricity from the grid. Given an instance I,
we denote by S,...(I) the total profit obtained by the online
scheduler S, and Sy, (1) the profit of the offline scheduler
S.mne- In contrast to the online scheduler, an offline scheduler
S.me Knows the entire input instance a priori. We denote by
Sk the optimal offline scheduler.

Our objective is to make the online scheduler competitive
across all instances in Z. The measure of competitiveness is
defined as follows.

Definition 1. Competitive ratio: An online algorithm S, is
a-competitive for an input set T if
min Sunlinc(I) a
Iez S;Hine(l) -

where I varies over all possible input instances in Z.

)

In other words, an a-competitive online algorithm is guar-
anteed to achieve at least « fraction of the optimal offline
value under any input instance [ in the input set Z.

For the rest of the paper, the input set Z is fixed to be the
set of all input instances I with finite sizes, and each service
request is valid, i.e., the request can be met if the EV is charged
immediately (d; > r; + ;).

B. Optimal Competitive Ratio

We state the result of the optimal competitive ratio in
Theorem 1| followed by a detailed description of the online
scheduling algorithm (TAGS) that achieves the optimal com-
petitive ratio.

Theorem 1. Let M be the number of chargers powered by
the zero-cost renewable energy. Let ¢ be the price of provid-
ing charging service measured by dollars per kilo-Watt-hour
($/kWh), p ($/kWh) the marginal cost of electricity from the
grid, and -y = ¢/p be the normalized charging price. For the
collection T of all finite job instances, the maximum achievable
competitive ratio is given by

{ 1
1
z(M,)

where z(M,~) > 1 is the unique positive real root larger than 1
of the polynomial fur ~(2) = y(z + M)M+L — (M + 1)M+1,

ify > 1;

= ify < 1.

2)

Proof Sketch: The proof of this theorem involves showing
(2) is an upper bound on competitive ratio. To this end, we
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Fig. 2. Competitive ratio vs the number of renewable chargers and
normalized charging price.

use an adversary argument by considering a game between the
online scheduler and its offline counter part. The upper bound
is then shown to be tight by considering a specific scheduling
algorithm TAGS, which is shown in the next section. See [1]
for the details of the proof. O

Theorem 1 divides the normalized price y into two operating
regimes. For the high price regime, the optimal online sched-
uler is as good as the optimal offline scheduler. Intuitively,
when v > 1, the price of charging is higher than the price of
electricity from the grid; profit is always guaranteed in every
job. Thus every request should be accepted, i.e., there should
be no admission control.

For the low price regime, v < 1, and the maximum
achievable competitive ratio is less than one. While the optimal
competitive ratio is not intuitive, it is expected that C'* should
be monotone with respect to the normalized price . This is
confirmed in Figure 2(b) (for M = 1) where we see a sharper
increase as <y is approaching to 1.

When the number of chargers powered by the renewable
increases, most EVs can be charged by renewable energy. Thus
higher the M is, the less energy is needed from the grid, the
less valuable the knowledge about future arrivals is, and the
less advantage the optimal offline algorithm has over the best
online algorithm. We then expect that the optimal competitive
ratio increases with M. This too is confirmed by Figure 2(a).

It is interesting to note from Figure 2(a) that, for any
fixed price v < 1, the optimal competitive ratio does not
approach 1 as M — oo. This is because the collection of
input instances always requires much more energy than the
available renewable supply.

C. TAGS: Optimal Scheduling Algorithm

We now focus on developing an algorithm (TAGS) that
achieves the optimal competitive ratio given in Theorem 1.
The skeleton of TAGS is given in Figure 3. Here we provide
an abbreviated narrative for its implementation as there are
many variations that can be incorporated.

The scheduling aspect of TAGS is in fact similar to EDF
or LLF. The classical EDF and LLF do not use admission
control. It is obvious that it will perform badly when the arrival
rate of EVs is heavy. It is however not difficult to modify
EDF and LLF using a naive admission control where, for
each arrival, the scheduler checks whether the system remains
underloaded. Such a check only has low complexity. The

resulting EDF or LLF, referred to as conservative EDF/LLF,
completes all charging using renewable only. We can view
TAGS as an optimal tradeoff between the conservative and
aggressive versions of EDF/LLF.

If a newly released request can be accommodated by a cer-
tain charger without affecting any previously accepted requests
on this charger, TAGS algorithm will accept the request and
add the request to the job queue of the specific charger.

Otherwise, there is no charger that can accommodate the
request without affecting any previously accepted requests.
The basic structure of TAGS can be broken down into a two-
stage decision process for such a “difficult” request. The first
is an admission decision that determines whether the arrival
request should be accepted to the host charger; the host charger
is the charger currently intended for the requests that requires
a profitability test. The index of the host charger will initially
be set to be 1 and every time a “difficult” request is accepted
to the host charger, the index of the host charger increments
by 1.

To this end, TAGS performs a threshold test on profitability
for the “difficult” request. Specifically, if the accommodation
of a request increases the cost of some existing charging
orders, TAGS compares the profit of accepting the request
and that of declining it. In particular, if the potential profit
of acceptance is (1 4 3)*/M greater than that of declination,
the EV request is accepted. Otherwise, the request is declined.
Here (3 is a parameter to be optimized. It should be noted that
the profit ratio is a function of the number M of chargers
powered by the renewable. It is obvious that, as M increases,
TAGS accepts more EV charging orders.

Once a “difficult” request is accepted, TAGS assigns the
charging request to the current host charger. Once the request
is assigned to a charger, a greedy scheduling of earliest
deadline first is used to determine the request to be executed.
The scheduler of TAGS maintains a job queue and a tentative
earliest deadline first schedule for each processor at all times.

Theorem 2. TAGS achieves the maximum competitive ratio
C* in (2) in Theorem 1.

Proof Sketch: The proof of the optimality of TAGS involves
several steps. From Theorem 1, we already have an upper
bound for competitive ratio. Here we analyze the performance
of TAGS by partitioning jobs into several types and analyze the
performance. Specifically, we partition the entire request sets
into the constrained-ended and free-ended sets. The optimal
offline value from the constrained-ended set is upper bounded
by the length of the busy interval for the TAGS algorithm,
while the optimal value from the free-ended set is upper
bounded by the free-ended value collected by TAGS algorithm.
See [1] for details. O

III. SIMULATION RESULTS

We present in this section numerical simulation results
aimed at providing an assessment of the average performance
of TAGS. It is not unusual that a competitive ratio optimal
algorithm performs poorly when it is measured by an average



TAGS procedure

1: set host processor k =1
2: loop

3:  upon event: job Jary is released

4: if Jarr can be accommodated at some processor 1 < j < M
then

5: add Jarr to the job queue of processor j

6: else

7 examine total Profit-of-acccept and Profit-of-decline for

host processor k

8: if Profit-of-accept > (1 + 3)'/™ x Profit-of-decline then

9: add Jarr to the job queue of processor k

10: reduce the processing time of Jar accordingly

11: increment host processor k

12: else

13: decline Jar

14: end if

15:  end if

16: end loop

Fig. 3. TAGS algorithm.

performance metric. Here we evaluate the average profit of
TAGS compared with standard benchmarks.

A. Benchmarks and Performance Measure

The first benchmark is the unmanaged charging (UC) which
mimics the operations in self-service gas stations. Specifically,
an EV is charged immediately until the request is fulfilled. The
charger uses renewable if available. Otherwise, it purchases the
electricity. No admission policy is used.

The second benchmark is a variation of EDF. Since the
classical EDF performs poorly without admission control, we
consider the conservative EDF where we equip the classical
EDF with a conservative admission control policy that admits
a job only if it can be finished. A version of multiprocessor
EDF is used in the simulation.

The average profit of the CSP is the metric of evaluation.
With energy of use (EOC) pricing, the CSP receives payment
from individual EV customer at the price of ¢ $/kWh. Besides
the charging price, the EV traffic also affects the overall profit
of CSP, both in term of of traffic intensity and traffic statistics.

When evaluating the profit against traffic intensity, there are
two different scenarios. One is treating traffic as an exogenous
input. In this case, we vary the traffic intensity and evaluate
how profit varies. In this case, the traffic includes only those
who have decided to charge regardless the charging price.
The more significant evaluation is to use endogenous traffic
in which the traffic includes all EV customers whose decision
of charging at a facility depends on the posted price c. In this
paper, we present the results correspond to the latter.

B. Pricing Considerations

The endogenous traffic is the result of pricing induced
customer trimming for the charging operations. The customer
trimming summarizes the effect that the pricing mechanism,
together with the customer response, shapes the fraction of

customers who accept the offered price. It is this fraction that
determines the endogenous traffic intensity.

The impact on the portfolio of charging energy consumed
is directly related to the marginal cost of the charging facility,
since more renewable energy implies lower cost, and vice
versa. Specifically, if the renewable energy availability is
fixed, when the overall charging load is small, with proper
scheduling the majority of the charging can be fulfilled by the
cheap renewable energy and the marginal cost is low. When the
overall charging load increases, the component of the relatively
expensive grid electricity inevitably expands and the marginal
cost will increase as a result.

Typically, the charging price has to be above the marginal
cost, although there is no explicit formula for the marginal cost
available for the charging facility with deadlines. Along this
line, the pricing mechanism has to strike reasonable balance: a
high charging price turns away too many customers whereas a
low price pushes up the charging load and causes the increase
of marginal cost due to increased purchase of electricity.

C. Simulation Setup

The traffic parameters in the simulation are adopted as
follows: the customer arrival process is assumed to be Pois-
son process with mean inter-arrival time A~ € {0.5,1,2}
minutes, the charging time requirements assumed to be i.i.d.
uniform in the interval [0, 30] minutes, and the relative dead-
lines assumed to be i.i.d exponential with mean 40 minutes,
where the relative deadline is d —r — [, the difference between
the time span of customer parking d — r and the requested
charging time /.

The pricing function simulated is EOU pricing with unit
price ¢ € [0.03 : 0.01 : 0.27] $/kWh. We conduct Monte
Carlo runs with time duration of 8 hours and 6 renewable
chargers, each of which is capable of fully charging an EV
in 30 minutes. The grid electricity price is set to be constant
during the eight hour time frame with unit grid purchase price
p=0.16 $/kWh (we raise the grid electricity price from the
data entry 0.1132 $/kWh in EIA Monthly Energy Review for
July 2011', since there is concern on the high peak powered
needed by the charging facilities, thus an incentive to raise
the grid purchase price for charging facilities to mitigate
the impact of the spiky peak power needed). The customer
response curve 6(u) is assumed to be a sigmoid function

0(u) = o5y the shape of which is shown
in Fig. 4.

D. Profit Comparisons and Optimal Pricing

The monopolistic profit is plotted in Fig. 4 versus the
normalized unit charging price (7 = ¢/p) under EOU pricing
mechanism. Several observations can be made from Fig. 4:
1) there exists a unique unit price which corresponds to
the maximum monopolistic profit, which suggests a relation
between the EV adoption level and optimal pricing. 2) TAGS

ITable 9.9, Transportation sector, Monthly Energy Review, United States
Energy Information Administration (EIA), May 2012.
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Fig. 4. Impact of scheduling algorithms on operator profitability

outperforms EDF and UC in terms of the maximum monopo-
listic profit 3) the best unit price increases with the arrival rate
(with a smaller arrival rate there are less customers, and the
unit price has to be reduced to attract more business so that the
charging station capacity can be maintained at a high level) 4)
for the same unit price the profit per vehicle decreases when
the arrival rate increases, which demonstrates the increasing
trend of the marginal cost with the overall charging workload.

IV. CONCLUSION

We have considered in this paper an iEMS for the charging
of EVs in large parking facilities using a combination of
renewable and purchased energy. The proposed architecture for
iEMS is based on the concept of network switched charging,
which provides a hardware-software platform that optimally
manages a large number of EV customers.

The charging scheduling algorithm (the central controller
of iEMS) optimizes jointly the procurement of energy, the
charging of EVs, and the admissions of new arrivals. It should
be noted that the optimal online scheduling algorithm (TAGS)
has very low computation cost. In the simulations, despite that
TAGS is optimized for the worst case performance, TAGS
performs better than benchmarks when measured by statistical
averages.

Several generalizations are currently being considered. Note
that the general principle of TAGS, threshold admission (or
assignment) and greedy scheduling, can be applied to many
new scenarios, including the integration of local storage and
variable pricing of purchased electricity. Mechanisms for pric-
ing are also being studied [25].
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