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Abstract

Deviations of grid frequency from the nominal frequency
are an indicator of the global imbalance between genera-
tion and load. Two types of control, a distributed propor-
tional control and a centralized integral control, are cur-
rently used to keep frequency deviations small. Although
generation-load imbalance can be very localized, both
controls primarily rely on frequency deviation as their in-
put. The time scales of control require the outputs of the
centralized integral control to be communicated to distant
generators every few seconds. We reconsider this con-
trol/communication architecture and suggest a hybrid ap-
proach that utilizes parameterized feedback policies that
can be implemented in a fully distributed manner because
the inputs to these policies are local observables at each
generator. Using an ensemble of forecasts of load and
time-intermittent generation representative of possible fu-
ture scenarios, we perform a centralized off-line stochas-
tic optimization to select the generator-specific feedback
parameters. These parameters need only be communi-
cated to generators once per control period (60 minutes in
our simulations). We show that inclusion of local power

flows as feedback inputs is crucial and reduces frequency
deviations by a factor of ten. We demonstrate our con-
trol on a detailed transmission model of the Bonneville
Power Administration (BPA). Our findings suggest that
a smart automatic and distributed control, relying on ad-
vanced off-line and system-wide computations commu-
nicated to controlled generators infrequently, may be a
viable control and communication architecture solution.
This architecture is suitable for a future situation when
generation-load imbalances are expected to grow because
of increased penetration of time-intermittent generation.

1 Problem Setup and Brief State-
ment of Results

In today’s power systems, the system operator performs
an Optimal Power Flow (OPF) dispatch periodically with
typical time interval being 5, 15, or 60 minutes depending
on the Balancing Area [1]. The OPF sets the power
outputs of the committed generation to match power de-
mand and minimize generation cost while respecting the
capacity limits on lines, ramping constraints and limits
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on generators and sometimes taking into account the N-1
security constraints. In between two successive OPFs,
the system is automatically controlled by a combination
of two mechanisms. The faster of the two, acting on the
scale of seconds, is primary frequency control–a fully
distributed proportional feedback on locally-measured
frequency deviations that may also include a deadband.
The slower mechanism, acting on the scale of minutes,
is automatic generation control (AGC), also called
secondary control–a centralized feedback on the integral
of a weighted sum of a centrally measured frequency and
tie line flows to neighboring balancing areas.[2]

These combined controls correct deviations in the
generation-load balance driven by fluctuations in loads,
renewables and other disturbances in the system. How-
ever, these mechanisms do not explicitly incorporate
line-flow limits, generators ramping limits, or time-
integral constraints like those on run-of-river hydro
generation or energy storage. For systems with relatively
low levels of fluctuations, these limits are not frequently
violated and it is not necessary incorporate them directly.
However, higher levels of time-intermittent generation
will create larger fluctuations and ramping events and
the associated constraint violations will become more
common. Standard primary and secondary controls are
limited in their ability to balance these fluctuations, and
better control design is needed to manage these larger
fluctuations. Because these fluctuations are intimately
connected to frequency deviations, they are of special
concern because they my result in system-wide instabili-
ties and loss of synchrony [3].

Other considerations for real-time power grid control
systems are communication constraints and commu-
nication security[2]. Mechanisms that rely on central
aggregation of the entire grid state followed by a centrally
computed response will be vulnerable to communication
failures and attacks on the communication network,
making the overall system less robust. On the other hand,
with significant renewable penetration, it is difficult to
control a system purely based on local feedback, since
under some conditions, it may be necessary to control
distant generators in a correlated manner.

In this preliminary work, we explore a hybrid approach

Figure 1: Our model of the BPA Transmission Network

that combines the speed and security of fully distributed
control with the extensive system visibility provided by
centralized control. Our method performs a centralized
lookahead dispatch that also computes optimal local
feedback parameters for all controllable generation, thus
enabling the system to respond to fluctuations based only
on local observables. We expand our definition of local
observables to include not just frequency but also real
power flows to neighboring nodes. We use an ensemble
of forecasts that capture various possible scenarios for the
wind generation and loads over the next intra-dispatch
period (5 min/15 min/ 1 hour) to design an optimal
time-varying dispatch for all the generators, as well as
local feedback functions that enable the generators to
respond to fluctuations based on the local observables.

Our control design is split into 2 phases:

a An off-line optimization phase where the distributed
control gains are optimized jointly for the whole net-
work in a central computer using extensive simu-
lation of possible future wind generation and fore-
cast scenarios. These gains are then communicated
to each flexible resource (controllable device) in the
transmission network. This off-line optimization
would need to be re-run every time the statistics of
possible future scenarios change significantly. In
general, we expect this optimization to be run every
time the generation re-dispatch changes.

b An online response phase where each device imple-

2



ments its purely local control in response to local ob-
servables (local frequency, line flows etc.) on the
pace of the standard primary controls.

We test our algorithm on historical data from the Bon-
neville Power Administration (BPA) system [4], an ideal
test system for our algorithm as it has significant amounts
of both hydro and wind generation. We show that our al-
gorithm performs well, even in cases of significant wind
ramps.

Our results (detailed in section 3) lead to the following
important observations:

a Local control based on response to frequency devi-
ations and local line flows at each generation can
keep frequency deviations down to the about 10 mHz
while maintaining all the security and capacity con-
straints.

b Proportional control on frequency deviations and
feedback on line flows is sufficient. Adding a
frequency-deviation integral response is unneces-
sary, which is advantageous because a distributed
implementation of an integral term may cause insta-
bilities due to errors in local frequency measurement,
and also because it limits communication require-
ments.

c Joint optimization of feedback parameters for fre-
quency deviation and line flows is necessary. Inde-
pendent optimization or removal of either term leads
to poor control performance.

d Optimization over a finite but representative set of
future scenarios enables the generalization of the
control to new unseen scenarios.

The rest of the paper is organized as follows: Section 2
describes the mathematical setting of the underlying con-
trol/optimization problem; we describe and discuss results
of our numerical BPA experiments in Section 3; and Sec-
tion 4 presents conclusions and explains our path forward.

2 Mathematical Formulation

2.1 Preliminaries
The power system is described by an undirected graph
G = (E ,V ) with edges E and n vertices V . The grid

is composed of loads (l), conventional generators (g) and
renewable generators (r). The flexible resources in our
grid are the online conventional generators go. We denote
by p the |V | × 1 vector of net active power injections at
each node in the network and by pgo,pr,pl the net active
power injections due to online conventional generators,
renewable generators and loads: p = pgo +pr +pl. Each
of these vectors is of size |V |×1 with the convention that
pgo

i = 0 or pr
i = 0 if there is no conventional or renewable

generator at node i. Note here that we make the assump-
tion that there is only one generator or load at a given
node. If there are multiple, we replace them by an equiv-
alent single generator or load. For a vector v with indices
in V , vi denotes a particular component for i ∈ V and vS
denotes the sub-vector {vi : i ∈ S} for a subset S⊂ V .

2.2 Scenarios

The control algorithm proceeds by analyzing an ensem-
ble possible future scenarios and designs control strate-
gies that optimize the system cost (defined below) across
all scenarios. We define a scenario χ to be a collection of
the following quantities:

a Renewable generation over the time horizon of inter-
est: pr(t).

b Load profile over the time horizon of interest: pl
0(t).

c A unit commitment (configuration of generators
which are online, i.e. available for re-dispatch) go.

To define the control problem, we require a collection of
scenarios Ξ and estimates for the probability of each sce-
nario, i.e. Ξ = {χi,Prob(χi)}. We note that for a given
collection Ξ, pr(t) and pl

0(t) (items a and b from above)
will vary across the ensemble of scenarios, however, we
take go (the unit commitment from c) fixed because we
are designing the time-dependent dispatch and local feed-
back parameter for that particular go. In this work, we
assume that the collection Ξ is finite. Typically, Ξ will be
built up from load and wind forecasts from different fore-
casting methodologies weighted by confidences in each
of these forecasts. Ξ could also include samples from
a stochastic forecasting model based on climate models,
historical data, meteorological sensors etc.
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2.3 Control Formulation
We ignore electro-mechanical dynamical transients and
work with a discrete-time quasi-static approximation of
the system dynamics with fixed time step δ and integer
time indices t = 0,1, . . . ,T : at each time step the power
flows over lines are re-computed for configuration of
consumption/generation at nodes evolving in discrete
time. In general, the feedback can depend on any of
the system variables, but we limit ourselves to local
observables so that the control can be implemented
in a completely distributed fashion at each generator
after the dispatch and feedback parameters have been
communicated.

For each generator g ∈ go, we compute a time-varying
dispatch p0

g(t) : 0 ≤ t ≤ T , proportional frequency re-
sponse coefficient αP

g , integral frequency response co-
efficient α I

g, and a response coefficient to local flows
{αF

g→i : i ∈ Neb(g)}. Further, we denote by ω(t) the fre-
quency deviation from the nominal frequency (50/60 Hz)
at time t and by Ω(t) the integral of the frequency devia-
tion, which in discrete-time is approximated by Ω(t) =
∑

t
τ=0 γτ−tω(τ) where 0 < γ < 1 is a discount factor.

In other words, the integral frequency term is simply a
weighted sum of frequency deviations in the past, where
frequency deviations that are further in the past receive a
geometrically smaller weight. With the time varying dis-
patch and feedback parameters determined, the output of
the generators is given by:

pgo
g (t) = pgo

0 g(t)+α
P
g ω(t)+α

I
gΩ(t)+

∑
i∈Neb(g)

α
F
g→ipg→i(t).

Although our algorithm can incorporate nonlinear feed-
back, we choose feedback which is linear in the local
observables for this initial work. In addition to gener-
ators, the real power consumption of loads responds to
frequency changes, and we assume a simple linear load-
frequency response given by

pl(t) = pl
0(t)+β

l
ω(t),

where the β l are known from measurement where pl
0 is

the load at the nominal frequency (60 Hz). Combining the
load and generator frequency response and the generators’

time varying dispatch, the system’s equilibrium frequency
is computed by enforcing power balance in the system:

∑
i∈V

pgo
i (t)+pl

i(t)+pr
i (t) = 0 =⇒

ω(t) =−∑i pl
0i(t)+pr

i (t)+pgo
i (t)

∑i β l
i

.

To compute power flow from the injections p(t) = pl(t)+
pr(t)+pgo(t), we use a modified version of the DC Power
flow equations based on a linearization of the AC Power
flow equations around the nominal dispatch at the begin-
ning of the control period p(0). The linearization gives
us dynamic impedances sd

i→ j that substitute for the line
reactances in the DC power flow equations:

pi(t) = p0 + ∑
j∈Neb(i)

θi(t)−θ j(t)
sd

i→ j
,

pi→ j(t) = p0
i→ j +

θi(t)−θ j(t)
sd

i→ j
.

Such a linearization is reasonable assuming that the flow
patterns do not change too much during the course of the
control period.

In addition to several other constraints discussed below,
we will also imposed a constraint on the total energy ex-
tracted from generators in the control period. Such con-
straints can represent the water discharge constraints on
run-of-river hydro systems or state-of-charge constraints
on energy storage devices. Therefore, we must also in-
clude the total energy extracted from each generator into
the system state:

pI(t) =
t

∑
τ=0

pgo(τ).

The overall system state consists of x(t) =
[Ω(t);pgo(t);pI(t)] (in Matlab notation), and the
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system evolution can be summarized by:

ω(t) =−∑i pl
0i(t)+pr

i (t)+pgo
i (t)

∑i β l
i

(1)

Ω(t +1) = ω(t)+ γΩ(t)

pgo
g(t) = pgo

0 g(t)+α
P
g ω(t)+α

I
gΩ(t)

+ ∑
i∈Neb(g)

α
F
g→ipg→i(t)

pl(t) = pl
0(t)+β

l
ω(t)

pi(t) = ∑
j∈Neb(i)

θi(t)−θ j(t)
sd

i→ j
,pi→ j(t) =

θi(t)−θ j(t)
sd

i→ j

2.4 Cost Functions
We consider a stochastic setting with many possible fea-
tures, and it is unclear whether it is feasible to satisfy all
constraints across all scenarios in Ξ. Therefore, we use
a penalty function to enforce our constraints in a smooth
manner. The penalty function has a magnitude of zero in
a dead-band around the most feasible region and grows
cubically with the magnitude of constraint violation:

Pen(a, l,u)=


107((a−u)/(0.1∗ (u+1)))3 if a≥ u
107((l−a)/(0.1∗ (l +1)))3 if a≤ l
0 otherwise

.

Here, a is the value of the constrained quantity and l
and u are the lower and upper bounds on a, respectively.
We also adopt the convention that when a, l,u can be
vectors (of the same size) and the penalty in this case
is applied element-wise and added up. The penalty
function is designed so that the resulting cost function is
smooth (twice differentiable). However, if a is violates
the upper bound by 10%, a penalty of approximately 107

is incurred–a high enough penalty so that if a feasible
solution exists across all scenarios, it will be found.

The cost function Cost(x(t),x(t +1), t) is computed at
each time step in the control period, but it requires state
information from both t and t + 1 so it can incorporate
generator ramping limits. The cost includes seven terms
that penalize both economic cost of supplying generation
and deviations of the system state outside of normal oper-
ational bounds. The individual terms are:

1 Generation costs

GenCost(pgo(t)) = ∑
g∈go

cg1(pgo
g )2 + cg2pgo

g + cg3.

2 Generation limit penalties

Pen(pgo(t),pgo,pgo).

3 Ramping limit penalties

Pen
(

pgo
r ,

pgo(t +1)−pgo(t)
δ

,pgo
r

)
.

4 Power flow thermal limit penalties

∑
i→ j∈E

Pen(pi→ j(t),−pi→ j,p).

5 Frequency deviation penalties

Pen(ω(t),−0.01,0.01)

6 Integral frequency deviation penalties

Pen(Ω(t),−0.01,0.01).

7 An integral deviation penalty on generation:

Pen(pI(T ),0.95Ego,1.05Ego)

Cost 1 simply represents the financial cost of energy from
different generators. Costs 2-4 are normal power system
constraints converted to costs using the penalty function
defined above. Cost 5 is an additional penalty designed
to constrain the system frequency to within a 10 mHz
band, and Cost 6 is designed to constrain the deviation
of the integral of the frequency deviation so that the fre-
quency is not allowed to be low or high for extended pe-
riods of time. Finally, Cost 7 is designed to keep the total
energy delivered by each controllable generator over the
control period within a ±5% band around a pI(T ) mim-
icking constraint the would occur in either a run-of-river
hydro system or an energy storage device.
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2.5 Ensemble Optimal Control

The evolution equations listed in (1) are functions of a
given scenario χ , therefore, we can think of the state as a
function of the scenario χ and the control parameters α =
{αP,α I ,αF ,pgo

0 (t) : 0 ≤ t ≤ T}: x(α,χ, t). The overall
optimization problem can then be written

min
α

∑
χ

Prob(χ)

(
T−1

∑
τ=0

Cost(x(α,χ, t),x(α,χ, t +1), t)

)
Subject to (1). (2)

We optimize this objective using a standard numerical
optimization algorithm (LBFGS [5]). The gradients of
the objective function can be computed efficiently using a
forward propagation algorithm that uses the chain rule to
propagate gradients in time. This computation can be eas-
ily vectorized over all the scenarios, leading to significant
speedup if run on a cluster or on GPUs.

3 Numerical Results

3.1 Description of Test System

We test our algorithm using publicly available historical
data for hydro and thermal generation, wind generation,
and load from the Bonneville Power Administration
(BPA) website[4]. We use a model of the BPA trans-
mission system (shown in Fig. 1) that has 2209 buses
and 2866 transmission lines. By identifying major
hydroelectric stations on the transmission system and
overlaying this onto a publicly available BPA wind site
map [6], we located the existing wind farms on the BPA
transmission system (as of January 2010). We located
the meteorological stations where BPA collects wind
data [7] in a similar manner. Using the same overlay,
we used a simple incompressible air-flow model to infer
hub height wind speeds at the wind farms. The resulting
wind speeds were passed through the power curve of a
standard 1.5-MW GE Wind Turbine which was scaled to
the wind farm nameplate capacity to estimate the power
output pr(t) (in MW) at each wind farm as a function
of time. When we aggregate our wind farm-specific
estimates of wind generation, we typically over estimate
the BPA aggregate data by 20%, which may caused by
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Figure 2: Comparison of control schemes. a) Aggregate
wind generation from a period with significant ramping
events. b) Worst-case frequency deviations over the con-
trol period for 18 validation scenarios not used in the con-
trol design.
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several factors including: spilling of wind by BPA, under
performance of wind farms relative to single-turbine
estimates, or shortcomings in our model of interpolating
wind speeds. BPA also provides aggregate load data[4]
that we divide among the nodes in the network according
to population densities. BPA also makes publicly avail-
able aggregate interchange flows [4], which we apportion
to different tie lines in a similar manner.

To test our control algorithm on difficult conditions,
we select a control period of one hour from 10:35 AM
to 11:35 AM on February 12, 2010, when the wind
generation was ramping significantly (shown in Fig. 2a).
We then create 26 scenarios (site-specific wind profiles)
for this period by adding random time-varying Gaussian
noise to the wind speeds at each meteorological station
(from which we infer site-specific wind generation as
outlined above). We set the magnitude of the noise so
as to match, on average, the aggregate wind generation
hour-ahead forecast errors reported by BPA [8]. All
the time series data used in our study was available at a
5-minute resolution.

Unit commitment data is missing from our model,
therefore, we assume that all hydro generators larger than
300 MW are online and are all participating in frequency
regulation. From inspection of the BPA historical genera-
tion data [4], we infer that the thermal generation dispatch
is fixed over time. In our model, we replicate this dispatch
by dividing the total thermal generation among the online
thermal generators (randomly chosen).

3.2 Comparison of Various Control
Schemes

For difficult wind ramping conditions, we illustrate the
value of feedback based on local flows by comparing four
control schemes. We use P to designate proportional con-
trol (to frequency deviations ω(t)) and I designates inte-
gral control (to integral frequency deviations Ω(t)). The
control schemes we consider using are:

1 PI: Joint optimization of the time-varying dispatch
pgo

0 (t) and the local feedback parameters for ω(t)
and Ω(t).

2 Flow+PI Uncoordinated: Time-varying dispatch
pgo

0 (t) plus feedback on ω(t),Ω(t) and local flows
pg→i at each generator. The optimization in 1 is per-
formed first followed by a second optimization over
the flow feedback parameters.

3 Flow+PI Coordinated: Same as 2, but the optimiza-
tion is performed jointly.

4 Flow+P: Same as 3, but without feedback on Ω(t).

The experimental protocol is as follows. We setup each
of the four optimization problems according to Eqs. 2
with the scenarios described in Section 3.1 and determine
a single set of feedback parameters for each of the four
feedback schemes. We use 8 of the 26 created scenarios
as input to the optimization algorithm. The remaining 18
unseen scenarios are reserved for validation of the control
policy discovered by the optimization algorithm. We note
that all four control strategies are able to achieve simi-
lar generation costs while maintaining all the other con-
straints (line thermal capacities, ramping limits, and inte-
gral energy constraints), however, there are significant dif-
ferences in the quality of the frequency regulation. Figure
2b shows the worst-case frequency deviations over the 18
validation scenarios. The frequency deviations are at an
unacceptable level (.1-.2 Hz) when using just PI feedback
(scheme 1). If the flow feedback is included but optimized
separately (scheme 2), there is little improvement. How-
ever, the if the PI and flow feedback are coordinated via
joint optimization (scheme 3), the frequency deviations
are reduced to an acceptable level. Interestingly, remov-
ing the feedback on the integral of the frequency devia-
tions (scheme 4) does not impact the frequency deviations
significantly relative to scheme 3.

3.3 Discussion of the Results
The distributed frequency control method we have pre-
sented benefits greatly from the incorporation of local
power flows as demonstrated in Fig. 2b. There are several
possible reasons for this improved performance. First,
power flows make the local generation-load imbalances
visible to the generators so that the closest generators re-
spond, effectively screening the more distant generators
from the need to respond. When compared to feedback
based on frequency deviation, which is a global measure
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of the imbalance, feedback on local power flows confines
imbalances to shorter spatial scales with a corresponding
decrease in the time scale of the response. An alternative
explanation is that the optimization over the ensemble of
possible futures in Eq. 2 is acting as a sort of machine
learning that encodes correlations between the wind pre-
diction errors and the resulting local power flows into the
flow feedback parameters. When wind prediction error
occurs, the change in power flows drives the feedback to
nearly compensate for the error without a frequency devi-
ation existing for any significant length of time. More nu-
merical experiments are required to distinguish between
these two (and other) possibilities. In both of the possibil-
ities discussed above, variations in the local power flows
appear to be acting as “pseudo-communication” channels
between the renewable and controllable generators. Such
a communication analogy may help explain why the in-
dependent optimizations in scheme 2 does not yield sig-
nificant improvement in control performance. The first
optimization over frequency deviations may effectively
washout the important local information in the power
flows such that it is not available when optimizing over
power flows.

4 Conclusions and Future Work
We introduced a control architecture based on off-line
centralized optimization that can occur on a slow time
scale coupled that sets the feedback parameters for fast
distributed control of generation. The control scheme
takes into account explicitly the variability in renewable
generation using ensemble control. We showed that local
feedback based on line flows and frequency deviations
is sufficient to maintain all operational constraints and
limit frequency deviations to an acceptable level even
when the system is experiencing significant ramps in
wind generation. Our method exploits the hour-scale
predictability of wind energy while using the off-line
optimization to re-adjust control policies over longer
timescales where wind predictability suffers. Our hybrid
approach has the potential enable even higher levels
time-intermittent renewable generation than presented
here, and it can do so without real-time computation or
communication.

These results are quite exciting and promising, how-
ever, they are preliminary and much work needs to be
done to ensure the viability of this scheme in practice.

• Dynamical simulations are needed to check the dy-
namical stability of a grid with flow feedback. If
these simulations show that the scheme is unstable,
we believe that this can be rectified by appropriate
exciter control at the generators to damp the fast
electro-mechanical transients.

• The scenario approach can be extended to include the
(N-1) security criterion, so that the optimized control
strategy can deal with contingencies arising from the
failure of a grid component.

• It is possible that flow feedback acts as a pseudo-
communication channel between generators in the
absence of a dedicated communication channel. It
would be interesting to investigate this from an infor-
mation theoretic point of view and investigate how
much of information can be encoded in the flows.

• We have used the simplest possible algorithmic ap-
proach by defining a smooth version of the optimiza-
tion problem using penalty functions solving it us-
ing a generic LBFGS algorithm [5]. Second-order
algorithms such as Stagewise Newton[9] or Differ-
ential Dynamic Programming (DDP)[10] efficiently
exploit the problem structure of deterministic opti-
mal control problems. These can be leveraged in our
ensemble control context by noting that when the
feedback parameters α I ,αP,αF are fixed, we have
a deterministic optimal control problem in pgo

0 (t)
for each scenario. We have also been working on
a Gauss-Newton algorithm for optimizing the fixed
feedbackα I ,αP,αF efficiently. One can perform al-
ternate minimization of pgo

0 (t) and α I ,αP,αF to get
an efficient algorithm for optimizing both. Further,
we note that when feedback does not include the in-
tegral term Ω(t), the ensemble control problem is a
convex programming problem, and the global opti-
mum can be found efficiently using specialized con-
vex optimization techniques.

• We plan to incorporate more accurate AC model-
ing of power flows taking advantage of most recent
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advances in analysis and algorithms related to opti-
mizations of nonlinear power flows, e.g. [11, 12].

• The integral energy constraint we introduced can
also model energy storage, and our algorithm can
easily be extended to incorporate distributed control
of energy storage.
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