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_Abstract—Demand Response is an emerging technology whichis expected to be one controllable resource that will filsthi
will transform the power grid of tomorrow. It is revolutiona ry, gap [1], however, the type of resource required for this duty
not only because it will enable peak load shaving and will jg gifferent than the large-load DR discussed above. Perhap

add resources to manage large distribution systems, but maly L . .
because it will tap into an almost unexplored and extremely the most significant differences are that (a) this new form of

powerful pool of resources comprised of many small individal DR will be called upon more frequently, and (b) the control
consumers on distribution grids. However, to utilize thesere- will be required to both decrease and increase in a condrolle
sources effectively, the methods used to engage these rases fashion the load.

must yield accurate and reliable control. A diversity of mehods Accessing DR at the residential scale can be done via
have been proposed to engage these new resources. As opposed

to direct load control, many methods rely on consumers andfo arran_gements_ simila_lr to those currently used for large com-
loads responding to exogenous signals, typically in the for of Mercial and industrial customers, e.g. contracts where cus
energy pricing, originating from the utility or system operator. tomers receive payments or lower energy rates for providing
Here, we propose an open loop communication-lite method for DR services. However, it is expected that the majority of
estimating the price elasticity of many customers comprisig a agjgential consumers would balk at the idea of a utility or
distribution system. We utilize a sparse linear regressionmethod . L .

that relies on operator-controlled, inhomogeneous minor fce system operato_r _have direct control over Iqads within the_lr
variations, which will be fair to all the consumers. Our numerical home. Instead, it is expected that DR will be implemented via
experiments show that reliable estimation of individual and thus ~ variable pricing or some other similar signalirig [1]. Seler

aggregated instantaneous elasticities is possible. We ddbe models exist for this type of DR control, and they can be
the limits of the reliable reconstruction as functions of tre categorized into two fundamental groups: open loop or dose

three key parameters of the system: (i) ratio of the number . .
of communication slots (time units) per number of engaged loop control. Retail-level, double auction markets (aksorted

consumers; (ii) level of sparsity (in consumer response);ra (i) transactive control”)[[5] represent one type of the clokeap
signal-to-noise ratio. control. In this model, the control loop is closed via a fordva

energy market where the supplier and each consumer agree
upon the amount of energy each load will consume and the

Today's Demand Response (DR) focuses on controllimgice of energy over the next market period. Advantagesisf th
major commercial and industrial loads, i.e. large indiabu type of control include certainty about the energy consimnpt
loads, where the actual control is infrequent and mostver the following market period and the ability to build in
focused on shaving peaks during times when the transmissigtwork and/or generation constraints into the control in a
grid and generation resources are highly stressed [1].eLalggical manner, e.g via local marginal pricing. A signifitan
peaking events are usually predicted well in advance so thimhwback of this type of control is the need for two-way,
communication requirements for this type of DR duty areejuitndividually addressed communication between the utitity
limited; often taking the form of phone calls|[2[,][1]. At @h system operator and every individual participating loade T
times, this large-scale DR may be used as a type of spinnic@mmunication is not required to be real-time, however, the
reserve to rebalance generation and load after a major ggathering of energy bids from the loads must take place every
disruption [3], [4]. In this case, the immediacy of the need f market period which can be as short as every five minutes.
the resource justifies the cost of installing the commuiocat Mechanisms other than double auctions have been proposed to
so that the load interruption is under direct control of thsettle on energy quantity and pricirg [6], however, the tmay
system operator. communication infrastructure and overhead remain esdbnti

As utilities and system operators integrate more timé¢he same.
intermittent renewables, they will also be forced into a&it  An alternative to the transactive control is open loop aaintr
tion where there is less traditional controllable generatie- where the utility or system operator simply broadcasts a
sources online as there will be less room left in the germratiprice to all participating loads. The communication in this
stack for these resources. The loss of controllable ressurcase is a simple one-way broadcast that does not require
will occur at a time when they are needed even more to balaresgy information to be returned from the customer—a form of
the intermittent renewables. Increased deployment of tRe Rommunication that is easier and less expensive to implemen
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and that also does not expose sensitive consumer data in
a real-time environment. Prices may be updated on regular
intervals with allowances for unscheduled updates trigger
by system disruptions. After receiving an updated pricehea
participating load consumes electricity at the currenteif it
desires[[7],[[8], however, the simplicity of the communioat
systems comes at a cost of not having certainty about load
response that the price change will elicit.

In this work, our goal is to develop and demonstrate
algorithms that reduce the load response uncertainty im ope
loop control methods by estimating or learning the futuiegr aggregated
elasticity of consumers based on their responses to previou response P
pricing updates. We seek to keep communication requiresnent
at a minimum raising a significant challenge—how can we
learn the price elasticities afidividual consumers and/or loads
without deployment of additional sensors in the distribati

i i . ication?
network and without resorting to two-way communlcatlonFig 1. Scenario of the two-stage, real time. open loop obnef

By I_imi_ting our allgolrithrns tQ Se_nSing of power-flows at th%riées and operationga) the price signal, including some small consumer-
beginning of a distribution circuit (where there is typigah inhomogeneous component, is communicated to consumensgiiran inde-

sensor already installed), we must resort to another metHR§gdent aggregating entityb) the utility senses (through electric measure-
.. . TR ., ments) only an aggregated response, i.e. the cumulatyrefgated change in

to distinguish individuals. To solve the problem, we coBsid consumption/production.

multi-cast communication where we are able to addressgrice

to individual customers. We propose to introduce fluctueio

in the individual prices of each customer to enable estingati Il. REGRESSIONMODELS FORLEARNING PRICE

their individual price elasticities. We express the task of ELASTICITIES

learning the elasticities as a linear regression probleln [9 We consider a distribution system consistind\oindividual

[10], [11], [12], [13], [14] in which the aggregated changegonsumers served by a single retailer/utility. We ignossés

in consumption over the distribution network are represéntin lines, transfer of reactive power and varying voltagasist

as the weighted sum of all individual changes in consumptioraccounting only for redistribution of real power in a simple

The prices enter in the model via the design matrix, anghpacity-based balance between production and consumptio

thus can be considered as controlled variables chosen irp;&) denotes the change in consumption of itte customer,

convenient way for the task under consideration. i=1,...,N, from the previous time step— 1 where time

. . . . is discretet =1,...,T. We assume the following consumer-
we are interested n charac_te_r_|z|ng the regime whe_r_e r(se|5eciﬁc, time-varying, linear relation betwegn(t) and the

construction of the price elasticities is possible in ardist . _ 0) . -

bution system utilizing the multi-cast (utility-to-corsers) P/'C€ Pi (1) pit) = pi~ + aipi(t). Here, aj is the elasticity

communication system illustrated in Fig] (1). We analyzes ho(llnear response) rate which 'S_ l_mder control _Of the cgqome

the reconstruction error behaves as a function of the Signgit Presumed constant for sufficiently long periods, pﬁ_ 1S

to-Noise Ratio (SNR) of the aggregate power measuremélﬁ? porthn of_the |nd|V|dL_JaI consumption which is ms_emalt

and the number of available measurements per numbert@he price signal. In this work where we only consider the

consumers. For systems with small noise and constant prﬂﬂ-zen loop scenariqi(t) is set by t.he aggregat_or/utility. We i
elasticities, it is easy to infer the parameters optimathas- can _mo‘?'e' the aggregate chgnge in consumption of the entire
ticity estimation becomes significantly more difficult inrye distribution network as the direct sum over all the consumer

noisy environments and when price elasticities changelhapi . N (0) o o

effectively limiting the number of measurements availaflee P(t) = i; i i;alp. B+, (1)
problem is still solvable if one assumes that only a small . .
number of consumers are the “marginal” consumers, i.e. Om%%;eref(t) is the uncertainty modeled as an aggregated zero-

. . . . 2
a small number of consumers respond to any particular pri Ean (E?\ussmnt.r:olse with tLJanjnO\évnlyarlaqR:e 1/0'3.' del
update. We compare different state-of-the-art linearaggjon g- @) constitules a standard linear regression moade
where the predictors and the response variables correspond

methods that incorporate this sparsity assumption and show

that their reconstruction can be done satisfactorily gieen:ﬁ changes tmd the Iconsugetr-spemflc tpr'?ﬂ$t)o anfl n
relatively small number of samples. e aggregated real powe(t), respectively. Our learn-

ing/reconstruction task is to estimate simultaneously#wor
In the next Section we introduce and describe our regre¥-regression weightd and the noisg given the training data

sion modeling. Sectioflll presents our numerical results. V@"" = {p(1),P(1),...,p(T),P(T)}. Notice that the aggrega-

conclude in Sectioh IV with a discussion and future work. tion of the price insensitive portion of the signg[\‘b1 pfo), can

consumer

generator
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be incorporated in the response vector, therefore, witlomst There are many other related regularization methods, nfost o
of generality, we can consider zero mean response ve¢tpr them based on the first two methods and thus resulting in
and drop the first term from the rhs of E@] (1). convex optimization problems (see [14] for a recent account

The Ordinary Least Squares (OLS) approach is th&e restrict our analysis to the two canonical convex methods
simplest way of solving this linear regression problen{ridge and lasso) and a novel method fgrnorm regulariza-
a = X*lB, where x is the input covariance matrix, tion, summarized in the next Section.
Xii = 1/pSipi(t)pj(t), andb is the vector of input-output .
cojvariancesbi = 1/Jpzt pi(t)P(t). If price elasticitiesd do A. Lo-norm Regression
not change in time, one can obtain reliable estimates aftetVWe choose a recently introduced methiod [13] that performs
a sufficiently long period of measurements. However, eith@rvariational approximation on the posterior probabilitytiee
because the individual consumptions can start affectirg tArice elasticities. It is inspired by Breiman's Garroft&] and
price signal, or because the individual users may change tHéses a spike-and-slab model[16].
elasticity, the periods wherg remains constant can be short, We model price elasticities; asswi, where the additional
limiting the small number of sample$ compared to the binary variabless = {0,1} show if the customer is active
number of consumen. In these cases, obtaining non-biasetf = 1) or inactive § = 0). The regression model becomes:
estimates can be problematic as the typical inverse isfnot N
well defined. P(t) = lewipi (t)+&(t).

One known way to address this problem is to incorporate a i=
regularization term into the OLS error function to penaliz@/e consider the probability distribution over the paramete
undesirable solutions_[10], resulting in the following @rr (w,s B) and compute the maximum-a-posteriori estimate from

function to minimize: the posterior probability of the parameters given the déta.
LT N 2 N choose the following prior distribution fcs:
E(a)== <P(t) - aipi (t)) +A |ai|q, (2) N exp(ys
22 2 2 _ _ _eXpys)
tzi lzx lzl P(Sly) i|1 p(sly); P(slv) =17 exgly)’

whereA > 0 andqg > 0. Different choices ofy determine the h imil A bef d . h . f
prediction accuracy, interpretability of the obtainedusion where y (similar to efore) determines the sparsity o

(selecting variables that are relevant), and complexityhef the solutlon:y<<Q \{VlII_favor sparse solutions and, on the
optimization problem. Selecting the optimal is usually contrary, V'~ 0 wil |r_1d|c_ate bias _towards <_jense SOIUt'O.nS'
performed via cross-validation. In this work we consideeth The_.\ mafg'”a' posterior is approximated with the following
possible choices of the penalty term in Ed. (2): variational bound:

. Ridge regression [9] q=2. The simplest penalty term  p(W,3|D.,y) Dz p(8ly)p(D|S, W, B)
takes the sum of square& (norm) of the weight vector s

a, which has the effect of replacing the input covariance q(d)

matrix x with x + Al, that can be invertible. Using ridge Zexp| — Zq(§> log p(Sy)p(DISW,B) |’
regression improves the prediction accuracy, but not the s

interpretability of the solution. where we choose(s) = [1N;(ms + (1-m)(1—s)) thus

o Lassa [11] g= 1. The lasso imposes afi penalty on allowing us to specifyq with only the expected values
the weightst (sum of the absolute values), which has they = gi(s = 1). For a given level of sparsity, the expected
effect of automatically performing variable selection byaluesm of S and the rest of parametevi 3 are found by
setting certain coefficients to zero and shrinking the resteratively solving a set of fixed point equations definedtfer
The lasso method favors sparse solutions while preseregectationsn;, the weightsw;, and the noisg3. An estimate
the convexity (tractability) of the optimization problemof the price elasticity for customeris obtained by setting
resulting in a good compromise between prediction acd = mw; (see [13] for more details on the algorithm).
curacy, interpretability and tractabililﬂ.

e £ norm: q = 0. A drawback of the lasso is that the
same) is used for both variable selection and shrinkage. We are only interested in testing the nontrivial cas& ef N
Consequently, lasso may select a model with too mahgcause forT > N, the elasticity of each consumer can be
variables to prevent over-shrinkage of the regressigobed independently. FaF < N, we utilize a random price
coefficients[[12]. It is known that using @p norm instead strategy. Even though the random strategy may not be the opti
(the number of non-zerog;) improves the selection of mal reconstruction strategy for all customer elasticitjtgras,
relevant variables, resulting in more interpretable solive expect it to be sufficiently good and robust in an average
tions. A complication is that fog < 1, the optimization sense. For convenience, we choose independent fluctuations
problem is non-convex and more difficult to solve. for the different customers to prevent undesired effects du

to correlated predictors. In the following, we quantitatiw

1\We use theglmnet implementation for lasso in our experiments. compare the different learning schemes introduced in @ecti

Ill. RESULTS



M under the aforementioned assumptions, i.e. independent . sparsity = 10%, generalization error
random price variations and constant customer elastcitMe ‘ ‘ ‘
analyze two simulated scenarios: a sparse case when only
10% of customers respond to the incremental change in price
and a denser case when 50% of customers are active. The 10 ¢
price elasticities are set to unity/zero for all activediinze
customers. For each of the tested algorithms, paramétars

B are estimated using a training sB@", for a fixed hyper- 10° 1|~ Ridge |
. . R . —Opt [
parameter X or y), which is optimized on an independent, ‘ : i i
validation setD¥® [17], generated in the same way B&3" 005 025 0.5 0.7 !
- » g y proportion of measurements (T/N)
of size T /2. area under ROC curve
To compare the resulting solutions quantitatively, we com- 1 :

=
T

pute the following three quantities. Lét and d* denote the
estimated and the true price elasticities, respectively:

« Generalization error: measures how well the learning 0.8}

model generalizes, i.e. given a new vector of prices

0.9¢

p"e" how the response predicted usitig differs from 0.7
the response obtained using*. We computed it as 06l
s(P(t) — 3; a/pi(t))?, whereP(t),5(t) belong toD.

o Area under the Receiver Operating Characteristic 05005 o025 05 075 1
(ROC) curve: The ROC curve is calculated by threshold- proportion of measurements (T/N)
ing the estimates’. Thosea/ that lie above (below) the reconstruction error
threshold are considered as active (inactive) customers. 02— ‘ ‘
For a given threshold, it is computed as the ratio between ; T ) HEF=3 .
the true positive rate and the false positive rate, where the ¥ 5 s

true positive rate means those active customers that are
detected out of the actual active ones and false positive
rate means those active customers that are detected out
of the inactive ones. The ROC curve plots this relation
at various threshold settings. The area under the curve ‘ ‘ =
measures the ability of the method to correctly classify 005 025 0.5 0.75 1
. proportion of measurements (T/N)

those customers that are and are not active. A value of
1 for the area represents a perfect test whereas an Bg2. Results for 10% of active customers vs the number afsuements.
represents a worthless test.

« Reconstruction error: measures how accurately the pat-

tern of price elasticities is recovered. It is defined as the | .
¢1 norm of the price elasticities differences, i’ — a;*|. remaining worse than what is shown by the other methods.

. . - . The area under the ROC curve (middle plot) shows that
The q.ual|ty.of learning depends crmcally on the fOIIOngan ridge methods initially perform similarly and signifirty
t_hree dimensionless parameters: the ratio of measuremggger than lasso. This is consistent with the fact that when
time slots to number of sample§/N, the sparsity level, the number of samples is small, the lasso outputs a trivial
and the Signal-to-Noise ratio (SNR) of the aggregate pOW%r P ' b

0.1r

) : Il zero) solution. However, once the threshold is reached
measurement. In the next two Subsections we consider i .
oth lasso andy outperform the ridge method. Finally, the
dependence on the number of samples and SNR. For each . !
. L ) reconstruction error in the sparse case (bottom plot) steows
condition, we report the variations in the results over 1 . !
. . well pronounced threshold fdp, which reconstructs the price
different random instances. -
elasticity pattern perfectly once 40% or more samples are
A. Dependence on the Number of Samples available. The lasso error, although very small, is notlliota

In our study of the dependence d@i'N, we set the noise réduced, because some coefficients are not set to zero. We

level to B = 1/02 = 1. As shown in Fig[R, the generalizatiorobserve that_ the reC(_)nstruc_ti(_)n error of the ridge method is
errors (top plot) for the three tested methods are similar #Pt menotonic - showing an initial increase and then deereas
the number of samples is small. Once the number of sampwaich is consistent with the fact that the ridge regress®on i
reaches certain threshold (in this ca5eN ~ 40%) the error of NOt Optimizing the reconstruction error.

¢y drops to the error obtained using the actual (optimal) elas-The results are qualitatively different for denser prokdem
ticities (denoted by 'Opt’ and black curve), and the decgdas see Fig.[B. Testing the generalization error (top plot), one
the lasso error is also significant. On the contrary, thegperf observes an abrupt transition in both lasso d@gdmeth-
mance of ridge regression improves continuously but slowlgds. However, the transition occurs earlier in themethod



sparsity = 50%, generalization error sparsity = 10%, generalization error
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107}

E 10°f
o || — Ridge f
10 | ——opt FFFFEFT =F =5 =7
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Fig. 3. Results for 50% of active customers vs the number efsmements. Fig. 4. Results for 10% of active customers vs SNR.

(T/N = 80%) than in the lasso, which requir€s= N number two methods outperforrfy in all the measures considered, but

of samples to reduce the error significantly. Remarkably, fespecially if the problem is dense, see Elg. 5. In the dersg ca
small T/N (before the threshold) the solution provided byidge regression is the best option at low SNR. Note, however
the simplest method (ridge) is the best. The behavior of tlieat the bad performance of lasso in the dense case is due to
area under the ROC curves (middle plot) also differs frothe fact that it requires more samples for denser problems to
the sparse case — the performance&gfand lasso below the improve over ridge, see the gray line in Hig. 3.

threshold is not as good as before. Finally, the reconstmict

error (bottom plot) is generally worse in this case, and ragai IV. DISCUSSION ANDFUTURE WORK

the ridge method shows the best performace for shaN. Our main conclusion is that the sparse reconstruction can
) ) be used to extract individual consumer price elasticitiesnf
B. Dependence on the Signal-to-Noise Ratio a measured time series of aggregated consumption of real

We now vary the SNR in a simulated environmentNof= power when this aggregated power is perturbed using small,
500 customers. We define the SNR as the log of the averamgmsumer-specific, random price signal variations. For the
standard deviation ai " g(t) divided by the standard deviationreconstruction to be reliable, several conditions must le& m
op. In this case, we choose the number of time steps to the number of time slots over which consumers do not change
large enough to allow accurate reconstruction for suffityen their elasticity should be sufficiently large, the proponti
large SNR, i.eT =250 samples for a sparsity of 10% anaf the consumers actually responding should be sufficiently
T =475 samples for a sparsity of 50%. These conditions amall, and the aggregated consumption is sufficiently large
shown as gray vertical lines in Fids. 2 ddd 3, respectively. so that the price-driven response is not swamped by the

Figs.[4 and[b show that, at sufficiently high SNR, noise of natural fluctuations of consumption. All methods
performs the best. However, when the SNR is low, the othsihow transitions (smooth or abrupt, and sometimes at difter



sparsity = 50%, generalization error In a future, we will consider incorporating more details of
‘ ‘ ‘ ‘ ‘ ‘ power systems into the reconstruction, e.g. losses, i@miat
in voltages, and nonlinearity of power flows. Another direc-
tion for extensions is more detailed modeling of consumer
elasticity that includes the discrete and nonlinear natfre
the response_[8]. Finally, some of the sparse reconstmctio
methodology discussed in this manuscript should be useful
for analysis of the "closed loop” distribution markets, .etlie

i i i : double auction markets of the Olympic Peninsula Project [5]
SNR and several others discussed in recent energy market casear

[18], [19], [20].

area under ROC curve
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