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DYNAMIC MODELING AND RESILIENCE
FOR POWER DISTRIBUTION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to, and the benefit of, U.S.
provisional application entitled “Dynamic Modeling and
Resilience for Power Distribution” having Ser. No. 61/992,
304, filed May 13, 2014, and U.S. provisional application
entitled “Dynamic Modeling and Resilience for Power Dis-
tribution” having Ser. No. 62/065,408, filed Oct. 17, 2014,
both of which are hereby incorporated by reference in their
entirety.

BACKGROUND

Severe weather events such as hurricanes and storms have
been occurring more frequently in America in recent years,
each of which resulted in a half'to several million customers
without electricity for days. Power distribution was often
impacted the most, as a compound effect of severe weather
and an outdated infrastructure. Distribution networks lie at
the edge of the power grid with a large number of compo-
nents across a wide geographical span. Those components
can be either aging or not well-protected, and are thus
susceptible to severe weather.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better
understood with reference to the following drawings. The
components in the drawings are not necessarily to scale,
emphasis instead being placed upon clearly illustrating the
principles of the present disclosure. Moreover, in the draw-
ings, like reference numerals designate corresponding parts
throughout the several views.

FIG. 1 is a graphical representation of an example of
neighborhoods in accordance with various embodiments of
the present disclosure.

FIGS. 2A and 2B are plots illustrating examples of rate
functions in accordance with various embodiments of the
present disclosure.

FIGS. 3 and 4 are histograms illustrating examples of
disruptions and recoveries over time in accordance with
various embodiments of the present disclosure.

FIG. 5 is a plot illustrating examples of resilience of a
power distribution network in accordance with various
embodiments of the present disclosure.

FIGS. 6A through 6F are graphical representations illus-
trating resilience over a geographical area of the power
distribution network in accordance with various embodi-
ments of the present disclosure.

FIG. 7 is schematic diagram illustrating an example of a
section of a power distribution network in accordance with
various embodiments of the present disclosure.

FIG. 8 is an example of a temporal distribution of failure
durations in accordance with various embodiments of the
present disclosure.

FIG. 9 is an image illustrating an example of geographical
locations of failures during hurricane Ike in accordance with
various embodiments of the present disclosure.

FIG. 10 is a graphical representation illustrating an
example of geographical locations of regions associated
with the failures of FIG. 9 in accordance with various
embodiments of the present disclosure.
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FIG. 11 is a histogram illustrating an example of failure
occurrence time and failure rate during hurricane Ike in
accordance with various embodiments of the present disclo-
sure.

FIG. 12 is a plot illustrating the distribution of failure
durations during hurricane Ike in accordance with various
embodiments of the present disclosure.

FIG. 13 is a plot comparing an example of a joint
failure-recovery process and a reconstructed process in
accordance with various embodiments of the present disclo-
sure.

FIG. 14 is a plot illustrating failure rates associated with
different regions of FIG. 10 in accordance with various
embodiments of the present disclosure.

FIG. 15 is an image illustrating an example of geographi-
cal locations of infant and aging recoveries from the failures
of FIG. 9 in accordance with various embodiments of the
present disclosure.

FIG. 16 includes plots illustrating examples of the number
of failures during hurricane Sandy in accordance with vari-
ous embodiments of the present disclosure.

FIGS. 17A through 17C are plots illustrating examples of
failure and recovery processes during hurricane Sandy in
accordance with various embodiments of the present disclo-
sure.

FIG. 18 includes plots illustrating examples of Weibull
distribution for failure durations during hurricane Sandy in
accordance with various embodiments of the present disclo-
sure.

FIG. 19 is a flow chart illustrating an example of distri-
bution modeling and/or evaluation of a power distribution
network in accordance with various embodiments of the
present disclosure.

FIG. 20 is an example of a system that may be utilized in
power distribution analysis and control according to various
embodiments of the present disclosure.

DETAILED DESCRIPTION

Disclosed herein are various embodiments of methods
related to spatial-temporal non-stationary random processes
to model large-scale disruptions of power distribution
induced by severe weather. Reference will now be made in
detail to the description of the embodiments as illustrated in
the drawings, wherein like reference numbers indicate like
parts throughout the several views.

Resilience metrics do not exist for power distribution
under large-scale severe weather disruptions. Evaluation
methods are thus lacking on resilience of power distribution
networks and services by utilities. Embodiments of the
present disclosure develop novel resilience metrics and their
evaluation using non-stationary random processes in a net-
work setting. The evaluation utilizes large-scale data and
novel data analysis. The metrics and evaluation methods can
be used by utilities and policy makers for quantifying
resilience of their service networks.

Part A

Embodiments of the present disclosure develop a spatial-
temporal non-stationary random process to model large-
scale disruptions of power distribution induced by severe
weather. The model combines non-stationary failure- and
recovery-random processes with network structures.
Dynamic failure- and recovery-neighborhoods are defined to
characterize a topological network structure. The neighbor-
hoods characterize correlated failures and recoveries within
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networks. Dynamic disruption- and recovery-rates are used
as simple quantities for failure- and recovery processes at
both component- and subnetwork-level. A resilience metric
resulting from the model then characterizes the evolution of
failure and recovery. Real data from an operational network
during Hurricane Ike was used to study the resilience and the
impact of dynamic neighborhoods. An 80/20 rule emerged
for failures, showing that hurricane-induced power-disrup-
tions are mostly correlated due to network structures. In
contrast, recoveries occur mainly in small patches, and thus
involved individual restorations. These findings reveal dis-
parities between large-scale failures and recovery processes,
which may be used for identifying vulnerabilities and
improving resilience of power distribution networks at, e.g.,
the component level.

Empirical approaches have been used widely in industry
for weather induced failures. However, empirical
approaches have become inadequate for large-scale weather-
induced disruptions that have occurred frequently in recent
years. Static models have been developed for identifying
variables related to failures of power distribution. However,
dynamic models and resilience are needed for characterizing
the time-varying nature of weather-induced large-scale fail-
ure and recovery.

Resilience corresponds to the ability of the grid to with-
stand external disturbances and to recover rapidly from
failures. Resilience involves multiple spatial-temporal
scales. A small spatial scale exists at the component-level
where failures and restorations occur. A large spatial scale is
at the subnetwork level where resilience is measured
through aggregating component failures and recoveries in a
service area. A small temporal scale of subminutes is when
topologically correlated failures occur, and when electricity
is regained through self-healing. A large temporal scale of
minutes and beyond is when failures and restorations occur
due to severe weather and manual repair respectively. For
resilience to encompass the pertinent multi-scale character-
istics, a rigorous problem formulation is needed from bot-
tom-up, i.e., from modeling to defining resilience/vulner-
ability at the multiple scales. This work develops such an
approach by focusing on the following challenges.

A first challenge is stochasticity where failures and recov-
eries occur randomly and dynamically. Failure stochasticity
results from spatial-temporal evolution of external weather.
Recovery stochasticity results from environmental condi-
tions of the aftermath of a severe weather event. In addition,
failures and restorations exhibit non-stationarity with differ-
ent behaviours at different times and locations. Existing
approaches in power systems account for randomness of
failures but rarely account for the dynamics or spatial-
temporal non-stationarity.

Embodiments of the present disclosure include the effect
of network structures through a new notion of dynamic
neighborhoods. Dynamic neighborhoods characterize how
weather-induced failures are exacerbated by network struc-
tures. The resulting model is a spatial-temporal non-station-
ary random process that encompasses topological network
structures, different network components, dynamic failure,
and recovery.

An additional challenge is how to define resilience. Static
metrics on resilience have been widely used. These metrics,
however, do not characterize the dynamic nature of large-
scale failures induced by severe weather. In addition, resil-
ience needs to include recovery from failures. Embodiments
of the present disclosure define the resilience as a dynamic
metric, motivated by those from communication networks.
Importantly, the dynamic resilience metric is based on the
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spatial temporal model derived from bottom up. The metric
thus reflects the impact of dynamic network neighborhoods
in addition to weather-induced failures and recoveries.

The non-stationary model and the resilience metric are
applied to a real life example of large scale power failures
during Hurricane Ike in 2008. Real data from an operational
network was used to learn parameters of failure and recov-
ery processes as well as the resilience metric.

Consider a node that represents a network component
such as a substation, a transformer, or a link such as a
feeder/power line. Severe weather can induce a failure
directly at that node. For example, flooding can result in a
non-functional substation and/or other equipment failures.
High winds can cause fallen poles or trees to disrupt power
lines. Such weather-induced failures often occur in the initial
minutes resulting from evolving severe-weather conditions.

A weather-induced failure, referred to as a failure in short,
can result in secondary failures through a network structure.
A network structure comprises a topology and different
types of components. For example, unbalanced currents
from a failure can cause burned line fuses as secondary
failures. A failure upstream can also result in losses of
electricity, but no damage, at nodes downstream in a distri-
bution tree. For example, either a non-functional substation
or a broken link can cause a loss of power to downstream
nodes. Those nodes without electricity service are referred to
as outages. Secondary failures and outages occur at a smaller
time scale of subminutes, as impacted by a network struc-
ture. Disruptions include failures, secondary failures and
outages.

Recovery also occurs at two time-scales. Self-recovery
occurs in subminutes, while manual repairs to damaged
nodes occur at the time scale of minutes or longer. When a
failure- or an outage-node regains electricity supply, down-
stream outage nodes regain the service together. Hence, the
multi-scale characteristics need to be quantified for disrup-
tion and recovery respectively.

Let X,®(t) be the state of node i at time t, where i
specifies both a network location and a geo-location of the
node, ls=i=n, where n is the total number of nodes in the
network, and t>0 is continuous time. For simplicity, a node
takes on one of two states: X,*’()=1 if node i is in
disruption or X,*?(t)=0 if node i is in normal operation.
Three scenarios are specified by w: w=f for a failure induced
by exogenous weather, w=f' for a secondary failure, and w=o0
for an outage. An outage or a secondary failure is induced by
a failure occurring at a network neighbor. A network neigh-
bor here is a node at the upstream of a distribution network
with a tree topology.

Disruption: A,"(t) is a state transition from normal to
disruption {X,(t-At)=0, X,*’(t)=1}, which occurs in
(t-At,t] at node i, t>0, and w={f, ', o}. At>0 is sufficiently
small so that there is only one failure, and one set of
secondary failures or outages that occurred in (t-At.t].

Failure Neighborhood:

V,9(t) is a new notion of dynamic topology, comprising
the downstream nodes that are in normal operation preced-
ing failure i at t—At. That is, for any JEV,?(t), either outage
A (1) or secondary failure A, Y(t) occurring with failure i.
Hence, a failure neighborhood characterizes correlated fail-
ures and outages.

Recovery:

B,*(t) is the state transition from disruption back to
normal {X,*(t-At)=1, X,*(t)=0}, which occurs in (t-At(]
at node i, >0, w={f, f', o}. When w={ (or w="f"), failure i is
repaired. When w=o0, an upstream neighbor of node i is
repaired.
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Recovery Neighborhood:

V,(t) is another new notion of dynamic topology, com-
prising the downstream neighbors of node i that are in
outage at (t—At,t) prior to the restoration. At>0 is sufficiently

small so that there is one restoration and one set V,(t) of

recoveries in (t—-At.t].

FIG. 1 illustrates an example of disruption and recovery,
as well as the neighborhoods. First, node 2 fails at time s,
inducing secondary failure 3 and outage 4, i.e., V,9(s)={3,
4}. Then node i fails at time t>s, inducing outages to nodes
in the failure neighborhood V,”(t)={1,5,6}. Then node 1
fails at time w>t, inducing outages to V,?(u)={7,8}. Note
that node 5 is a downstream neighbor of both nodes i and 1
but only belongs to the failure neighborhood V,“)(t) of node
i by definition. Hence, the failure neighborhoods are non-
overlapping for failures occurring at different locations and
time.

Failure 1 is repaired at time v>u, restoring failure 1 and
outages in recovery mneighborhood V,"(v)={5,6,7,8}.
Finally, failure i is re(paired at time w>v, restoring failure i
and outages in V,”(w)={1,2,4}. Secondary failure 3
remains to be restored. This example illustrates failure- and
recovery-neighborhoods that are dynamically changing due
to evolving failures and reconfiguration in restoration.

A dynamic network environment emerges from the above
problem setting. External severe weather causes network
nodes to fail. The failed nodes induce secondary failures and
outages at their network neighbors. Failures/outages then
recover together with their neighbors. Such disruption and
recovery can be modeled as non-stationary spatial temporal
random processes, with dynamic neighborhoods at the com-
ponent-level, and aggregations of components in a service
region.

The modeling starts from the component-level. To begin,
n nodes in a tree topology form a spatial temporal process,
comprising a network of random state transitions as binary
variables {I[A,*?(®)], I[B,"(1)]}, for 0, 1=isn, and w={f,
', 0}. I(A) is an indicator function with I[(A)=1 if the event
A occurs; otherwise, I(A)=0. Let AN,()(t) be the number of
nodes that are disrupted from electricity service in (t-At,t].
For a sufficiently small At>0, it is natural to assume that only
one weather-induced failure occurs at node i, and one set of
related secondary failures and outages in (t-At,t]. Then

ANi(d)(l):I[Ai(/)(l)]+vi(/)(l)I[Ai(/)(l)]a (6]

where v,2(OI[A,P()] is a set of secondag failures and
outages in neighborhood V,(t). v, 2(t)=[V,“(1)|| is the size
of the failure neighborhood at node i and time t. v,(t)
characterizes correlated disruptions. The larger v,(t) is, the
more correlated disruptions for the node at time t.

The failure rate of node i at time t is the expected number
of state transitions from normal to (weather-induced) fail-
ures per unit time at node i, which is given by:

Eifa" o)) @

AP0 = Timaeo =

Here E{°} represents expectation. The outage rate that is
induced by failure i at time t is the expected number of state
transitions from normal to outage per unit time at failure
neighborhood V P(1)(t). For simplicity of notation, the out-
age rate here includes secondary failures also, where

EMD 1A o)) 3

A2(0) = limaro v

40

45

50

55

65

6

The disruption rate at node i is
@0 i 1 @
A7) = limyeo EE{AN; o}

MDA +1(0). “

A disruption rate shows the impact of severe weather and
anetwork structure. A failure neighborhood shows explicitly
impacts of topology and heterogeneous types of compo-
nents.

The number of nodes that are recovered in (t-At,t] can be
obtained similarly,

ANDOOBO O+ OB (0], (&)

where I[B,(t)] is the state of recovery for failure i and
vV, is the size of a recovery neighborhood
V,(t). The recovery process can be characterized by the
recovery rate defined as follows.

The recovery rate for node i and its neighbors in V,&(t)
at time t is

E{1[B" @] + v @) ©®

A0 = tim - —

The recovery rate and neighborhoods are dynamic, showing
a changing topology in restoration. The time-varying rates
and neighborhoods show the non-stationarity of disruption-
and recovery-processes.

Now let N®(t) be the number of disruptions in a sub-
network in a service region,

E{N0)} by (@), )

where w={f, ', 0}, i(t) indicates the location of a disrup-
tion 1 at time T, and dt is assumed to be small so that
at most one failure and one neighborhood of secondary
failures/outages occur in (t-dt,t). The expected num-
ber of disruptions E{N“X(t)} that occur up to time t is
the sum of the expected failures and outages (with
secondary failures),

E{ND0)}=E{NPO}+E{N(©)}. ®

Let E{N®(t)} be the expected number of nodes which
recover in [0, t] in a subnetwork, then:

E{NOO} o N,V (@), (©)

The non-stationary spatial temporal model enables a
novel resilience metric for power distribution. Before the
metric is defined, fast versus slow recovery is first charac-
terized based on concepts from infant and aging mortality.
For infant (fast) and aging (slow) recovery, let duration d,>0
be a threshold value. If a node remains in either failure or
outage for less than d,, the node has infant recovery.
Otherwise, the node has aging recovery.

Using the threshold d,, the resilience can be defined.
Intuitively, resilience measures network-wide performance
from two aspects. One is for a power grid to withstand
external disruptions as much as possible. The other is to
rapidly restore electricity service from failures. Hence, aging
recovery is a complement of these two characteristics.
Resilience can then characterized as one minus aging recov-
ery.

Consider a subnetwork in region Z with m number of
disruptions. The resilience of the subnetwork can be given
by:
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=1L 09 o) (10
s.2)=1-~ L O(wa,o D or MA@PADEN @) > 1= 7+ do})

dr.

The second term corresponds to the expected percentage of
aging recoveries at time t. The aging recoveries here corre-
spond to disruptions at time t that would not recover for at
least additional duration d,. For example, when w=f, A, Pdt
is the expected number of disruptions that occurred in
(t-dt,t]. Pr{D, *(t)>t-t+d,} is the probability for failures
to last a duration longer than t-t+d,. The product is the
expected number of nodes that fail in (t-dt,t] and do not
recover at time t+d,, which is simply the number of aging
recoveries viewed at time t. The integral adds up all aging
recoveries in duration [0, t] and region Z. Hence, s(t,Z) is the
expected percentage of nodes in region Z at time t which are
either in normal operation or recover within additional
duration d,,. The resilience thus reflects temporal evolution
of a network in response to severe weather.

The non-stationary spatial temporal model can now
applied to studying the impact of a major hurricane. Real
data from an operational network was used to obtain empiri-
cal disruption and recovery rates and to understand impacts
of network structures.

Hurricane lke was one of the strongest hurricanes that
occurred in 2008. Ike resulted in more than two million
customers without electricity in Louisiana and Texas. A
major utility provider collected data on component failures
and outages during the hurricane. The data set comprises
2004 samples (failures or outages) that occurred from 7 a.m.
September 12th to 4 a.m. September 14th, the time period
during which Hurricane Ike made landfall. Each sample
comprises an occurrence time, duration, and location (lati-
tude and longitude) of a disruption for a component in the
distribution network. The accuracy for the recorded time t is
one minute.

A failure neighborhood included those samples whose
failure/outage occurrences fell within a minute. There were
204 failure neighborhoods of sizes from 1 to about 72. The
remaining 260 failures individually occurred minutes apart.
Similarly, samples with recovery occurrences within a min-
ute were in a recovery neighborhood. There were 241
recovery neighborhoods and 824 individual recoveries.

The empirical non-stationary processes, the impact of
topological network structures, and the resilience using the
real data can now be examined. The empirical failure rate
AO(t) and disruption rate AP(t) were estimated by aggre-
gating over the components. The disruption rate takes into
account the failure neighborhoods. The failure rate is cal-
culated by aggregating disruptions occurring within a min-
ute of one “failure”. A simple moving average can be used,
where

i(W)([) _ %(N(w)(i - N(W)([ _ T)),

with ©=1 hour and w={d,f}.

Referring to FIG. 2A, shown is the disruption and failure
rates of the network, as well as the size of the failure
neighborhood. The rates and the failure neighborhoods are
time-varying, showing the non-stationarity of the disruption
process. The failure rate increased to the peak value of 50
new failures per hour around the landfall. The disruption rate
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exhibited a similar behavior but had a larger peak value of
450 new disruptions per hour around the landfall. The much
larger disruption rate reflects the impact of dynamic network
structure: There were a large number of correlated disrup-
tions during the hurricane. This is further illustrated in FIG.
2A where large failure neighborhoods occurred mainly
during the intense hurricane period, with as many as 72
disruptions in one neighborhood. Hence, the network com-
ponents and topology were impacted by the hurricane dif-
ferently during its evolution.

The recovery rate A”(t) and the size of recovery neigh-
borhood Vi(,)(’)(t) are estimated similarly and illustrated in
FIG. 2B. Two bursts of recoveries emerge. The first is an
infant recovery that occurred along with major failures
within six hours after the landfall. The second is an aging
recovery that occurred about 7.7 hours after. The recovery
rate and the size of the recovery-neighborhoods vary with
time, showing the non-stationarity of the recovery process.

Dynamic failure neighborhoods are indicative of the
impacts of topological network structures and the hurricane.
The large failure neighborhoods around the landfall shown
in FIG. 2A indicate that the hurricane induced a large
number of correlated disruptions. In contrast, failures that
occurred individually happened mainly before and after the
hurricane. This suggests that correlated failures/outages
occurred at the small time scale of subminutes, which can be
a pertinent characteristic of the hurricane-induced disrup-
tions.

Referring now to FIG. 3, shown are histograms of the
disruptions and failure neighborhoods over time. Using the
analogy of elephant and mice flows in computer communi-
cation, consider large neighborhoods to be elephants, and
small neighborhoods to be mice. An 80/20 rule emerges for
the disruption process: Elephant failure neighborhoods of
size more than 2 contribute to 74.3% of total disruptions as
shown in FIG. 3. However, the elephant failure neighbor-
hoods amount to only 20.7% of the total failure neighbor-
hoods. This implies that the majority of disruptions are
correlated and induced by elephant failures.

Referring next to FIG. 4, shown are histograms of the
recoveries and recovery neighborhoods over time. Unlike
the disruptions, recovery neighborhoods follow the 60/90
rule: The mice recovery neighborhoods of size 2 or less take
up 92.7% of all recovery neighborhoods, amounting to
59.3% of recoveries, as shown in FIG. 4. This suggests that
around 60% recoveries were uncorrelated, and thus needed
individual restorations.

The empirical resilience in terms of aging recovery was
obtained using real data. In general, threshold d, can be
determined through failure and recovery rates. Here in FIG.
2B, the empirical recovery rate clearly shows that infant
recovery occurred along with the majority of the failures,
and was for the failures that lasted less than 12 hours. After
the infant recovery, there was a delay of 7.7 hours before
aging recovery occurred. Therefore, the threshold was set at
dy=12 hours.

The resilience can be calculated using d,=12 in Equation
(10). As shown in FIG. 5, the resilience of the entire
distribution network decreased from the normal operations
along with the failure occurrences, and reached a maximum
reduction of 80.7% of total disruptions. The time at the
minimum resilience was 32 hours after the initial failure
occurrence. This was the most vulnerable time when the
infant recovery had already ended and the aging recovery
was yet to begin. The minimum resilience indicates that
80.7% of total disruptions needed at least another d,=12
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hours to recover. This is consistent with the resilience curve
where it took up to 14 days for all disruptions to recover.

What if the threshold d, was chosen differently? If d,=0
is chosen, the infant recovery would be incorrectly consid-
ered as a part of non-resilience. The resulting resilience is
thus overly pessimistic with a maximum reduction of 83.7%
rather than 80.7% in FIG. 5. On the other hand, if d,=24 is
chosen, the threshold falsely excludes parts of aging recov-
ery, resulting in overly optimistic resilience. Hence, identi-
fying an optimal threshold is important.

The resilience metric can also be used to identify vulner-
able areas in a service region. FIGS. 6 A-6F show examples
of two snapshots of the resilience over the geographical area
of the power distributions. FIGS. 6A and 6B show the
percentage reduction (of the total number of disruptions) for
the resilience at two time epoches: 4 hours before the
landfall and the time of the minimum resilience. The regions
with more than 15% and 6% reduction of resilience appear
as vulnerable areas for the two time epoches. FIGS. 6C and
6D show the number of elephant failure neighborhoods at
the two times respectively. The vulnerable areas coincide
with the regions that have a large number of elephant failure
neighborhoods. This is consistent with the finding that
elephant failure neighborhoods contribute to the majority of
the disruptions and thus a significant deduction of the
resilience. FIGS. 6E and 6F show the number of mice failure
neighborhoods. However, these are not coupled with the
vulnerable areas.

Accordingly, resilience of power distribution is pertinent
to the energy grid under severe weather. Embodiments of the
present disclosure develop an analytical formulation for
large-scale failure and recovery of power distribution
induced by severe weather. A focus of various embodiments
of the present disclosure is on incorporating pertinent char-
acteristics of topological network structures into spatial
temporal modeling. Such characteristics include new nota-
tions as dynamic failure- and recovery-neighborhoods. The
neighborhoods quantify correlated failures and recoveries
due to topology and types of components in power distri-
bution. The resulting model is a multi-scale non-stationary
spatial temporal random process. Dynamic resilience can
then be defined based on the model. Using the model and
large-scale real data from Hurricane Ike, unique character-
istics were identified. It was found that the failures follow an
80/20 rule, where 74.3% of the total failures result from
20.7% of failure neighborhoods with up to 72 components
“failing” together. Thus the hurricane caused a large number
of correlated failures. Unlike the failures, the recoveries
follow a 60/90 rule, where 59.3% of recoveries resulted
from 92.7% of all neighborhoods with either one component
alone or two together recovered. Thus about 60% of the
recoveries were uncorrelated and needed individual resto-
rations. The failure and recovery processes were further
studied through the resilience metric to identify the least
resilient regions and time durations.

Part B

Embodiments of the present disclosure contribute a new
application in an emerging area of smart energy grid. The
application is on learning from failure data how distributed
power networks respond to external disturbances such as
hurricanes. Learned knowledge provides understanding of
how power networks fail and recover in severe weather.
Such understanding allows for identification of network
vulnerabilities and problem areas, provide indications for
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network optimization and control, and estimation and plan-
ning of network repairs, maintenance and/or improvements.

Power distribution networks lie at the edge of the energy
grid, delivering medium and low voltages to residence and
organizations. Distribution networks comprise leaf nodes of
the energy infrastructure and are thus susceptible to external
disturbances. For example, natural disasters cause wide-
spread destructions and service disruptions to distribution
networks. There were about 16 major hurricanes and severe
storms occurred in north America in the past 5 years, each
of which disrupted electricity services from 500,000 to
several million customers for days.

Existing approaches rely primarily on empirical
approaches for large-scale failures of power distribution. For
example, empirical studies have been conducted on assess-
ing damages from large-scale power failures. Monitoring
systems have been used in power industry to respond to
failures. As hurricanes and severe storms appear to occur
frequently and at large-scale, empirical approaches become
inadequate for real time failure assessment in a wide geo-
graphical area. Furthermore, recovery from large-scale
power failures is even less understood. This is evidenced by
how difficult it was for utilities to provide accurate recovery
time to customers. Overall, quantifiable approaches are
lacking and needed for characterizing how power distribu-
tion networks respond to external disturbances. This sup-
ports discovering and mitigating vulnerabilities for enhanc-
ing the power infrastructure.

Unique challenges emerge for quantifying how power
distribution networks respond to large-scale external distur-
bances. The first is randomness. External disturbances such
as hurricanes exhibit random behaviors. The resulting power
failures occur randomly also. The second is dynamic nature
of failures and recoveries due to evolution of external
disturbances. For example, a hurricane usually has a landfall
with a strong force wind, and then gradually dies down when
moving in land. Hence, non-stationarity (randomness and
dynamics) is an intrinsic characteristic of large-scale fail-
ures.

Non-stationary learning is a natural approach for quanti-
fying non-stationary large-scale failure and recovery of
power distribution induced by external disturbances. How-
ever, an additional challenge for learning is lack of data. This
may appear to be a paradox: A large-scale external distur-
bance such as a hurricane often results in thousands of power
failures, which amounts to a lot of data. However, in the
space of external disturbances, a hurricane generates only
one sample, i.e., a snap-shot of network failures and recov-
eries from one external disturbance. Hence, data from an
individual disturbance can be valuable and should be used to
enable learning. Note that using real data for studying
large-scale power failures and recoveries is not yet a com-
mon practice for the power infrastructure. Real data on
power failures from external disturbance is rare. Recent
work shows the strength of combining algorithmic
approaches with real data on geographically correlated
power failures. The focus there is on power transmission
rather than distribution.

Incorporating all challenges, a basic research question
includes how to learn non-stationary behaviors of large-
scale failure and recovery for distributed power distribution,
using real data from one external disturbance. Combining
model-based and data-driven methods is a viable approach
for limited samples. A model identifies pertinent quantities
that determine non-stationary random processes of failure
and recovery. Initially, a problem formulation is derived to
obtain a model. What remains unknown are the model
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parameters, which can be learned from the data. Such a
combination of model-based and data-driven approaches
directs learning to a small number of functions or param-
eters, and thus makes effective use of data. In addition, a
combination of model-based and data driven approaches
makes learning explanatory. Learned model parameters bear
physical meanings on how distributed power distribution
responds to the external disruption.

The current discussion focuses on power failures and
recoveries induced by exogenous weather. The time scale of
such failures and recoveries can be considered to be a minute
to be consistent to that of a hurricane. Power failures can
also occur in bursts at small time scales of seconds or less.
Such bursty failures are usually due to an internal network
structure and not examined in this disclosure. Self-recover-
ies often occur at the small time scale of subseconds,
whereas recovery by field crews usually occurs in minutes or
beyond. Hence the model at the time scale of a minute
focuses on weather induced failures and recoveries that
cannot be repaired through self-healing. Such a model
provides understanding about how a distributed power infra-
structure responds to external disturbances.

Begin with the spatial scale of network nodes and the
temporal scale of a minute. As the data from an external
disturbance is insufficient to completely specify a detailed
temporal-spatial model, spatial variables can be aggregated
into groups. A group can be, e.g., a city that comprises nodes
from a small geographical area. The resulting model thus
characterizes an entire non-stationary life-cycle of large-
scale failure and recovery in time and at geo-locations. Such
a spatial-temporal model is multivariate generalization of
GI(t)/G(t)/o queues to include geo-locations. GI(t)’s and
G(t)’s are arrival (failure) processes and departure (recov-
ery) processes for individual geo-graphical area and “c0”
means that it is possible for a recovery to occur immediately
after a failure, e.g., less than a minute in this work. Hence,
multivariate GI(t)’s and G(t)’s constitute the model that can
completely specify non-stationary behaviors of large-scale
failure and recovery at a power distribution network.

Consider one simplified characterization of GI(t)/G(t)/c0
queues to the expected values. What to learn then becomes
clear: A small number of pertinent parameters of GI(t) and
G(t) at different geo-locations, i.e., failure rates and recovery
time distributions. First obtain detailed data on large-scale
power failures from a real life example of a natural disaster,
Hurricane Ike. Ike caused power failures in the south states
of US and affected more than 2 million users in 2008.
Learning for two scenarios were devised using the real data.
The first learns only temporal processes of non-stationary
failure and recovery by aggregating over spatial variables of
nodes in the entire network. The second learns geo-location
based spatial-temporal processes by aggregating nodes in
cities. The modeling facilitates learning where model
parameters can be easily estimated using the failure data.
The model was then applied to another data set from
Hurricane Sandy. Hurricane Sandy caused wide-spread
power failures to more than 8 million people in the northeast
of US in 2012. The data set comprises aggregated rather than
detailed power failures in one of the impacted areas. The
approach is shown to be applicable to the aggregated data for
estimating failure and recovery rates. The approach also
shows what cannot be learned using aggregated data.

In summary, this work presents (a) a novel model based
on non-stationary random processes and dynamic queues for
weather-induced large-scale failure and recovery of power
distribution, (b) simple learning approaches for estimating
parameters of the non-stationary model, and (c) applications
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of the model and non-stationary learning to real data from
two hurricanes at different locations.

Examples are provided on the temporal scale, and non-
stationarity of failure and recovery. First, the time scale for
modeling weather induced failures and recoveries are dis-
cussed. A power distribution network comprises components
such as substations, feeders, transformers, power circuits,
circuit breakers, transmission lines, and meters. An example
of a section of a power distribution system is illustrated in
FIG. 7, with a commonly used radial topology. Three types
of components are shown for illustration: a primary substa-
tion, three secondary power sources, and loads. Links cor-
respond to power lines. Assume that either a component or
a link can fail during a hurricane. Assume that the substation
is used as a primary source during normal operation. The
secondary sources, that can be distributed renewable
sources, are used for back-up when the primary source fails.
Then the following scenarios can occur for failure and
recovery:

If all the sources fail due to an external disturbance, there
is no electricity supplied to any loads. Hence, the loads
experience dependent failures that can occur instanta-
neously. The scenario of dependent failures also applies
to other components upstream in the radial topology
that causes loss of electricity at nodes downstream.
Dependent failures are often experienced by loads
within sub-seconds.

If a link that connects a load to the network fails due to
an external disturbance, there is no electricity supplied
to the load. Such link failures can occur independently
due to fallen trees or power lines. Thus, loads can
experience independent loss of electricity. As such
independent failures are caused by exogenous weather,
they are assumed to occur at a time scale of a minute
or beyond. Such a time scale can be estimated through
how rapidly a hurricane force wind passes a city.
Consider a small city of 1,600 acres as an example.
Based on the IEEE standard (IEEE/ASTM SI 10-1997),
an approximated “diameter” of the city is about 1.6
miles. Consider the speed of the force wind at 60 miles
per hour. It takes about 1.6 minutes for the wind to pass
the city. This provides a basis of using a minute as a
time scale of weather induced failures.

Recovery depends on the types of failures and recovery
schemes. Certain failures can be repaired through self-
recovery. For example, if the primary substation fails,
the electricity supply to all loads can be recovered
when the three secondary sources are in operation. In
general, self-recovery and automated reconfiguration
built in power distribution usually operate at a time
scale of sub-seconds or seconds. However, failures due
to external disturbances, e.g., falling trees and power
lines, often require manual repair by field crews.
Recovery time depends on not only restoration schemes
but also environmental constraints, and is thus consid-
ered as random in this work. Such manual recovery
time is in either minutes or hours or days from failure.

In summary, failures and self-recoveries at a small tim-
escale of seconds or sub-seconds depend on detailed net-
work structure and self-recovery schemes. Failure and
recovery at a larger time scale of a minute and beyond are
often due to external disturbances that evolve dynamically
and randomly.

To gain intuition on an entire life cycle of failure and
recovery of a distribution network, consider a real-life
example of large-scale power failures that occurred during
Hurricane Ike in 2008. FIG. 8 shows a histogram on failure
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occurrence time and duration of an operational distribution
network before, during and after the hurricane. Each bin has
a length (failure occurrence time) of 1 hour and width
(duration) of 4 hours. The height of each bin represents the
number of failures that occur at time t and last for duration
d. FIG. 9 shows geographical distributions of failure occur-
rences at two different time epochs, where failure occurrence
is evidently non-stationary across geographical regions.
Cross markers indicate failures that occurred from 7 p.m to
8 p.m. September 12 and circular markers indicate failures
that occurred from 5 a.m. to 6 a.m. September 13. Hence,

Failure occurrence is non-stationary, i.e., random and
time-varying;

Recovery time is non-stationary, i.e., obeys different
probability distributions for failures occurred at differ-
ent time;

Failure occurrence and recovery time are also non-sta-
tionary spatially, i.e., exhibit different distributions for
different geo-locations.

Hence, samples on failure occurrence time and duration are
not identically distributed but exhibit geo-temporal non-
stationarity.

Non-stationary random processes have been studied in the
context of drifting concepts. Samples for learning are
dynamically drawn from a non-stationary environment. An
issue arises on the sample size, i.e., whether data is sufficient
for characterizing underlying drifts of distributions.

Learning non-stationary processes exhibits unique chal-
lenges in terms of sample size. For simplicity, batch data is
assumed to be collected for learning an entire non-stationary
life cycle of failure and recovery processes off-line. A
challenge here is that there is only one snapshot of a
distribution network in space and time from one external
disturbance. The number of data sets is often small, e.g.,
from a few severe storms. Therefore, combining model
based and data-driven approaches becomes important,
where data can be used to learn a small number of model-
parameters from one external disturbance at a time. In
addition, combining model-based and data-driven
approaches for learning is used for the problem: Learned
model parameters exhibit physical meaning for generic
network behaviors upon external disturbances.

Large-scale failure and recovery can be formulated based
on non-stationary random processes. Begin with the detailed
information on nodal statuses in a distribution system. The
spatial variables of nodes can be aggregated to obtain
temporal evolution of failure and recovery across geo-
graphical areas.

A geo-temporal random process provides a theoretical
basis for modeling large-scale failures. The temporal vari-
able is time t that is assumed to be continuous at the scale
of a minute. The spatial variable can be either geo- or
network-location of a node. For simplicity, this work con-
siders geo-location as a spatial variable to focus on location-
based failures induced by severe weather. Nodes can be
components in a distribution system such as substations,
feeders, hubs, transformers, transmission lines, and distrib-
uted energy sources. A shorthand notation i is used to specify
the index of node i located at z, with i€S={1, 2, . . ., n} for
a power distribution network with n nodes. An underlying
network topology is assumed to be radial so that cascading
failures occurred in mesh networks are not considered.

Let X,(z,t) be the status of the i-th node at time t>0 for
1=<i=n. Assume for simplicity that nodes only exhibit two
states: X,(z,,t)=1 if the i-th node is in a failure mode, i.e.
without power supply; and X,(z,,t)=0 if the node is in normal
operation. Failures caused by external disturbances exhibit
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randomness. That is, whether and when a node fails is
random and whether and when the failed node recovers is
also random. Hence, random processes can be used to
characterize failure and recovery for the nodes in the net-
work.

Given time t>0, P{X,(z,t+1)=1} characterizes the prob-
ability that node i is failed in the near future t+t, where T>0
is a small time increment. Assume that a node changes state
from failure to normal and vice versa. Then for the i-th node,
1=i=n, the probability that node i stays in failure mode in
[t,t+T] can be expressed as:

P{Xi(z, t+7) = 1} = P{Xi(z;, D = 1} = (1

PXi(i 1+7) =1, Xi(zi, ) = 0} = P{Xi(z, 1+ 7) =0, Xi(z, 1) = 1},

Equation (11) assumes Markov temporal dependence, and
can be applied to n nodes in a distribution network. The n
equations together form a geo-temporal model of a network.
Note that statistically dependent failures at the small time
scale less than a minute are not considered here, as such
failures are often caused by an internal network structure
rather than exogenous weather. Spatial dependence is
embedded in the model but will be studied explicitly in
subsequent work.

When large-scale failures are caused by one external
disturbance, information available is from one “snapshot” of
temporal spatial network statuses, and thus insufficient for
specifying a complete temporal-spatial model at the node
level. Hence, nodes can be aggregated over a geographical
region (Z), resulting in:

> P40 =1- ) PiXig,0=1)= 12

iizjeZ iz;eZ

> PXia, 1+ 0 =1, Xilz, 0 = 0} -

izieZ

D Pz 47 =0, Xi(@, 0 =1},

iz;eZ

Here P{X,(z,,t)=1}=E{1[X,(z,,1)]}, where I(A) is an indi-
cator function with I(A)=1 if the event A occurs, and I(A)=0
otherwise. A geo-temporal process can be defined as fol-
lows. {N(t,Z )& ,t>0} is a geo-temporal process where the
spatial variables (i’s) are aggregated for all nodes z, in a
predefined region Z. N(t,Z ) is the number of nodes in failure
state at time t located in Z given by:

NG Z)= Y X 0 =11 (13)

izel
Combining Equations (12) and (13), gives:

EANGZ) = Y PiXia, 1+0 = 1= 3 PiXi( 0 =11, (14

izeZ iizjeZ

where AN(t,Z )=N(t+t,Z )-N(t,Z ) is an increment of the
number of failed nodes in a certain region. AN(t,Z ) is the
result of either newly-failed or newly-recovered nodes.
Hence, a failure process and a recovery process can be
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defined respectively. A failure process {N(t,Z)EN ,t=0} is
the number of failures that occurred up to time t. A recovery
process {N,(t,Z)EN t=0} is the number of recoveries that
occurred up to time t.

Assuming that ©>0 is sufficiently small so that failure or
recovery occurs at most once to a node during (t,t+t), the
increments on a failure process and a recovery process
satisfy, respectively:

EAN; (L Z)b= )" PiXitz, t+7) = L, Xi(zi, 0 =0}, 15

iz;eZ

EAN,0. Z)} = ) PXi(z, 147 =0, Xilz, 0= 1),

izeZ

where AN(1,Z )=N{t+7,Z )-NAt,Z). Similarly, for a suffi-
ciently small >0, it can be assumed that at most one
recovery occurs during (t,t+T). Hence, Equation (12) can be
simplified as:

E{ANG L)}=E{AN (1,2 )}-E{aN, (. 2 )}. (16)

Furthermore, assuming at time ,=0, N(t,Z )=0, Nt,Z )=0,
and N,(t,Z)=0. Aggregating increments in Equation (16)
from O to t, gives:

ENG T =EN, L }-E(N,0, L)} an

Hence, the expected number of nodes in the failure state
equals to the difference between the expected failures and
the expected recoveries. Group the distribution network of n
nodes into m geographical regions Z , 1<jzm, based on their
geo-locations. A city, e.g., a subdivision, is an example of a
geographical region widely-used by utilities. Then the fail-
ure-recovery process for the entire distribution network N(t)
can be defined as:

NoO-ING L )N L, . .. N L), 1®)

where N(t,Z ;) characterizes how local power distribution in
region Z ; responds to an external disturbance.

Non-stationary characteristics on failure and recovery can
now be derived. The derivation reveals pertinent quantities
that completely model the behaviors of large-scale power
failures and recoveries in expected values. This is pertinent
to learning a small number of parameters as will be dis-
cussed.

A failure process can be characterized to the first moment
by failure rate functions. Let A f)=[ALtZ ), MLZ>), . . .,
MUZ ,JI be a vector that comprises the rate function of a
failure process, where A(1,Z ;) is the expected number of
new failures per unit time at epoch t and region Z ,, for j=1,
2, ..., m, then:

1 19
Af([, Zj):lin’(};E{Nf([+T, Zj)—Nf(I,Zj)}. ( )
!

The larger A(t,Z ) is, the faster failures occur in Z ; at time
t. AL, Z ) is referred to as the rate function of the failure
process N(t,Z ;). Hence, the failure rate quantifies the inten-
sity of failure occurrence. A non-stationary failure process
has a time-varying intensity function A(t,Z ;) across geolo-
cations. Assuming a failure process begins at t=0, then
EE{ }, ..., E{NO}E{NLZ )}, ..., E{NALZ )}",
where

EWN L nn o L pay 0)

for 1<j=m.
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A recovery process can be characterized by recovery rate
function A (t), where Ar(t)=[A,(t,Z ), M (,Z,), . . ., AL,

Z )" nZ ;) is the expected number of new recoveries
per unit time at epoch t and region Z ,, with

! (21
A, Z)) = 11_{% ;E{Nr(t +7,Z;) = N,(t, Zj)}.

A non-stationary recovery process Nt,Z ) has a time vary-
ing rate function. Assuming the temporal failure process
begins at t=0, then for 1<j=m,

E(N, 2 )} 0 L ay, (22)

The recovery rate characterizes how rapidly recovery
occurs, which is measured by failure duration D. For a
non-stationary recovery process, a failure duration depends
on when and where a failure occurs as illustrated in FIG. 8.
Such non-stationarity of recovery is characterized by g(dlt,
Z ;) which is a conditional probability density function of
failure duration D=d given failure time T=t at region Z ,. For
a given threshold d,>0, the conditional probability that a
duration is bounded by d,, for failures occurred at time t is:

P{D<dylt, L )} 7ogwit, L yav. (23)

When d, is sufficiently small, this probability character-
izes rapid recovery that occurs shortly after failures. For a
given d,, the larger P{D<d0It,% } is, the more rapid recov-
ery dominates a recovery process. Given a desired value of
probability P{D<d0It,Z }, the smaller d,, is, the more domi-
nating the rapid recovery is. Rapid recovery is referred to as
infant recovery. This terminology is borrowed from infant
mortality in survivability analysis. Infant recovery is a
desirable characteristic of the smart grid. In contrast, slow
recovery is referred to as aging recovery in analogous to
aging mortality. Infant and aging recovery can be formally
defined as follows. Let d,>0 be a threshold value. If a node
remains in failure for a duration less than d,; then the
recovery is an infant recovery. Otherwise, the recovery is an
aging recovery. Infant recovery can be characterized by
P{D<dOIt,Z }. Aging recovery is characterized by
P{D>dOIt,Z }.

A joint failure-recovery process characterizes an entire
life cycle of a failure-recovery process (FRP), and represents
the total number of nodes N(t,Z ) in failure state at time t and
region Z as shown in Equation (13). The expected number
of nodes in failure can be expressed in rate functions,

ENG L )} =1y 00 L -2, 0 L y)av. e

A failure-and-recovery process can be viewed as a birth-
death process. However, commonly used birth-death pro-
cesses have a stationary distribution of failure duration and
assume independence between failure occurrence t and
failure duration d. Here, these two assumptions do not hold.
This implies that failures occurred at different time can last
different duration. For example, under strong and sustained
hurricane wind, failures that do not happen in day-to-day
operation can occur due to falling debris and power lines.

A recovery process can be related to a failure process
through a probability density function of failure durations.
Theorem: Let Nt,Z ) be an independent increment (failure)
process with a rate function A(t,Z ), 1sjsm. Let D(t) be the
duration of a failure that occurred at time t and in region Z ,.
D(t) has a conditional probability density function g(dit,Z ),
where d=0, t=0. Then, the recovery rate A (t,Z ) satisfies:

M6 L =fy'gti-s1s, L yngs, L s, (25)

where 1<j=m, d=t-s with s and t being the failure time and
recovery time, respectively.
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The foregoing theorem is a corollary of the Transient
Little’s Theorem. Intuitively, g(t-sls,Z ;)ds can be viewed as
the probability that a failure occurred at time s and region
Z ,, and lasts for a t—s duration. g(t-sls,Z )dshf(s,Z ) is the
average number of failures per unit time recover after t-s
duration, i.e., the recovery rate by definition. Aggregating
over all failures occurring prior to time t results in Equation
(25).

What to learn now becomes apparent. Failure rate func-
tions and probability density functions of recovery time
completely specify our model to the first moment, i.e.,

MUZ ), for 1sj=m, and

g(t=sls, Z ), for 1sj=m.

In general, the forms and the parameters of these two
functions are unknown, and need to be learned from real
data. The learned functions and the parameters can then be
used to estimate the empirical processes. The empirical
processes are the sample means N(t,Z P) Nj(t,Z ), and IQAT,(t,
Z.,) that estimate the true expectations E{N(t,Z )}, E{N(t,
Z )}, and E{N,(t,Z )}, respectively.

Next, the foregoing techniques can be applied to a real-
life example of large-scale utility-service disruptions caused
by a hurricane. Hurricane lke was one of the strongest
hurricanes that occurred in 2008. Ike caused large scale
power failures, resulting in more than 2 million customers
without electricity, and marked as the second costliest Atlan-
tic hurricane of all time. Reported by National Hurricane
Center, the storm started to cause power failures across the
onshore areas in Louisiana and Texas on Sep. 12, 2008 prior
to the landfall. Ike then made a landfall at Galveston, Tex.
on 2:10 am. (CDT), Sep. 13, 2008, causing strong winds,
flooding, and heavy rains across Texas. The hurricane weak-
ened to a tropical storm at 1:00 p.m. September 13 and
passed Texas by 2:00 a.m. September 14.

A major utility provider collected data on power failures
from more than ten cities. The failures include failed cir-
cuits, fallen poles and power lines, and non-operational
substations. The raw data set includes 5152 samples. Each
sample comprises the failure occurrence time (t,) and dura-
tion (d;) of a component (i) in a distribution network from
September 12 through 14, 2008. The accuracy for time t is
a minute.

The data set contains bursts of failures that occurred
within a minute. As a minute is the smallest time scale for
each sample, the bursts are considered as dependent failures.
Dependent failures are grouped as one failed entity (i), with
a unique failure occurrence time t, and duration d,. After
such preprocessing, the resulting data set had 465 failed
entities. Two outliers with negative failure duration were
further removed. The remaining 463 failed entities from 7
am September 12 to 4 am September 14 are referred to as
nodes. D={t,,d,},_,*® is the data set that was used for
learning.

Spatial variables {Z,}’s can be either chosen a priori or
through learning from data. In this work, {Z }’s were
chosen to be small cities to include a natural living envi-
ronment of customers. This is widely-used by utility pro-
viders. There are 13 cities in the data set, with the geo-
graphical locations of the 13 regions illustrated in FIG. 10.

The temporal non-stationarity of the failure-and-recovery
process is first examined. Spatial variables can be aggre-
gated across the entire network. This is equivalent to reduc-
ing multiple geographical areas to one entire impact-region
from the hurricane. Then the geo-temporal failure-recovery
process reduces to a temporal process. For notational sim-
plicity, spatial variables are omitted for temporal processes.
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The empirical rate function can be estimated using a
simple algorithm based on moving average: }\./(t):[Nf(t+’t)—
N/(t-7)]/2t, where T is chosen to be 5 hours. The two
resulting rate function 1103 is overlaid with the samples on
the number of failures Nf(t) in FIG. 11, where each bin is of
duration 1 hour.

The learned failure rate function shows a time-varying
rate of new failure occurrence:

Prior to 7 p.m. September 12, the rate was low with fewer
than 5 new failures occurring per hour. Hence 5 per
hour can be considered the failure rate in day-to-day
operation.

At 7 p.m. September 12, the rate initially increased
sharply to 25 new failures per hour. In the next 6 hours,
the rate reached a peak value of nearly 50 new occur-
rences per hour. This is consistent to the weather report
that a strong wind about 145 mph and flooding
impacted the onshore areas prior to the landfall. The
time of the peak coincides with the landfall at 2:10 a.m
9/13 CDT.

After staying at the high level for about 12 hours (from 7
p-m. September 12 to 7 a.m. September 13), the rate
decreased rapidly back to a low level of less than 5 new
failures per hour.

Turning next to the empirical recovery process character-
ized by g(dlt), the conditional probability density function of
failure duration can be learned given failure occurrence time
t. As the spatial aggregation removes the geo-location vari-
ables, g(dIt) is the conditional probability density function of
failure duration of the entire network.

The 463 samples on the failure durations and occurrences
are used in the data set. These samples result in a joint
empirical distribution g(dlIt) illustrated in FIG. 8. The height
of each bin located at (t,d) represents the number of failures
that occur at time t and that last for a duration d. FIG. 8
illustrates the non-stationarity of failure durations. For
example, a large number (217) of failures occurred between
7 p.m. September 12 and 8 a.m. September 13, which lasted
for more than a day. This indicates that many failures that
occurred during the surge of the hurricane were difficult to
recover. Hence, a non-stationary distribution for g(dlt) is an
appropriate assumption.

Given failure occurrence time t, it can be observed that the
distribution of duration is a combination of two components:
infant recoveries and aging recoveries. Thus, a mixture
model can be selected for the probability density function
g(dIt) where d>0,

U1
gdIn=>" p;g;dln,

J=1

(26)

where 1(t) is the number of mixtures at time t, p,(t) (1=j<l)
is a weighting factor for the j-th mixture function g (dIt), and
2p,()=1. The weighting factor p,(t) signifies the importance
of the j-th component g(dlIt). For a non-stationary recovery
process, these parameters vary with failure time t.

A mixture model is chosen since its parameters exhibit
interpretable physical meaning. A parametric family of
Weibull mixtures is particularly appealing as the parameters
correspond to infant and aging recovery directly. Weibull
distributions have been widely used in survival analysis and
reliability theory, but not in characterizing recovery from
large-scale external disturbances. Specifically, a Weibull
distribution is
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where d>0, and k(t) and y(t) are the shape and scale
parameters, respectively. Hence, j-th component in Equation
(26) is g,(dIty=w(dlt; v,(1), k,(1)). The shape and scale param-
eters, k(t) and y(t), are pertinent for characterizing the type
of recovery. The smaller k(t) and y(t) are, the faster the decay
of g(dlt), the shorter the failure duration and thus the faster
the recovery. Hence, k(t)<1 and moderate y(1) (e.g., y(t)~10
h or smaller) correspond to infant recovery. k(t)>1 and large
v(t) (e.g., y(t)~100 h) correspond to aging recovery.

For simplicity, a piecewise homogeneous function was
used to approximate g(dIt). The failure time t can be divided
into 5 intervals as illustrated by the dashed lines in FIG. 8.
Within interval , for 1=i<5, g(dIt€y,)=g,(d) is assumed to
be stationary and does not vary with failure time t. For
different intervals, g(dltE,)’s have different parameters for
non-stationarity,

i (28)
gdlrey) = Z 0,81 (s Vi s ki j)-
=

The parameters of the Weibull mixtures within each
interval can be learned through maximum likelihood esti-
mation from the data. Failure durations obey different dis-
tributions for failures occurring at different intervals, show-
ing the non-stationarity. For example, the first duration y, (7
a.m. September 12 to 7 p.m. September 12) is when the
network was not yet impacted widely by Hurricane Ike.
Three Weibull mixtures were learned from the data, with the
shape, the scale and weighting parameters as (1, 0.71,
0.486), (10.5, 14.4,0.257) and (10.7, 211.8, 0.257). The first
two components result in dominating infant recovery, where
74.3% of failures recovered within a day. In contrast, the
third duration {5 (3 a.m. September 13 to 3 p.m. September
13) is when the large-scale failures continued to occur after
the landfall. Two Weibull mixtures were learned from the
data. The shape, the scale and weighting parameters were
(5.3, 11.0, 0.323) and (12.4, 112.2, 0.677), showing domi-
nating aging recovery. As the result, only 32.2% of failures
recovered within a day. The second duration 1, (7 p.m.
September 12 and 8 a.m. September 13) is around the
hurricane landfall, where about half of the failures that
occurred experienced infant recovery within a day (see FIG.
12 for the three Weibull mixtures). For 5 durations overall,
the probability of infant recovery within a day changes over
time, showing the non-stationary of failure-recovery pro-
cesses. .

The empirical temporal failure-recovery process N(t) can
then be reconstructed with learned f»f(t) and f»,(t) through
Equation (24). FIG. 13 shows the comparisons between N(t)
and N(t), where the reconstructed sample path using learned
parameters and the actual sample path from the data set of
the failure-recovery process, respectively. The closeness
between the two sample paths shows that the piecewise
stationary g(dlt) approximates well the actual failure-and-
recovery process.

Geo-location variables can be included to learn the geo-
temporal non-stationarity. Failure process N/(t) is a geo-
temporal process with multiple attributes N(t,Z ) from m
geographical regions, l<j=m. The empirical failure rate
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functions A(t,Z ) for 1sjsm are estimated using the same
algorithm of moving average. The resulting rate vector A (t)
is multi-variate, comprising of m time-varying functions.
Due to the small sample size, there are 6 out of 13 cities
shown in FIG. 10, each of which has sufficient samples
ranging from 27 to 101. FIG. 14 shows the empirical
geo-temporal failure rates of the 6 cities. The cities are
sequenced with respect to the time when the failure rate
reached the peak value in each region. The multi-variate
failure rates exhibit the following characteristics:

Temporal non-stationarity: At a given geographical region
Z, M{t,Z)) is a time-varying function similar to the
bell-shaped curve obtained for the entire network.
Consider Z 5 as an example. The failure rate was low
(fewer than 5 failures) prior to 7 p.m. September 12.
Then, the rate increased sharply and reached the maxi-
mum value of 25 new failures per hour, at about 1 a.m.
September 13. After that, the rate decreased rapidly to
fewer than 5 failures.

Spatial non-stationarity: At a given time t, M(t,Z ) is a
spatially-varying function. The peak values of failure
rates vary from 1.5 to 27 per hour across the 9 cities.
The time when the rate reached the peak value varies
between 8 p.m. September 12 to 7 a.m. September 13,
and is depicted as a dashed line at the bottom in FIG.
14.

Spatial temporal non-stationarity: The regions are then
labeled with respect to the order of failure rates that
reached the maximum value in FIG. 14. For example,
the failure rate at City Z , reached the peak value first,
followed by the failure rates at City Z , through City
Z . F1G. 14 shows the geo-temporal characteristic that
failure rates at different city reached their peak values
approximately from the coast to inland. This appears to
be consistent to the movement of the hurricane track
indicated in FIG. 10.

To learn the geo-temporal non-stationary recovery, the

mixture model of Equation (26) can be extended to a
geo-temporal bivariate mixture, where for 1<j=m,

(z;) 29

gd1nZy= ) pilt, Z)gid |t Z).
i=1

Again the learning focuses on the 6 cities with sufficient
samples. Dependencies of failure durations among the cities
were not examined because of the small sample size. Apply-
ing the piecewise homogeneous distribution function in
Equation (28) to each region Z ;, gives:

b
gdlteyi,zeZy= Z 02.4,i82,1,§(d)-
=1

(B0

Here, each component g ; (d) is a Weibull distribution w(d;
Yo 0Ke ). Mixture g(dlt€y,,zEZ )’s and their coefficients
vary with respect to not only failure occurrence time 1,
(temporal non-stationarity), but also geo-locations Z’s
(spatial non-stationarity).

Applying the maximum likelihood estimation, the esti-
mated parameters of Weibull distributions in the 6 cities can
be obtained. Note that due to the small sample size in some
of the regions, the parameters of distributions of failure
duration have to be assumed, in the implementation, not
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varying with a failure occurrence time within a region. The
probability of infant recoveries is also computed accord-
ingly. Three cities (1, 4, and 6) show a similar percentage of
infant recovery from 66% to 68% whereas the remaining
cities (3, 5, and 8) have infant recovery from 40% to 45%.
TABLE 1 shows the learned model parameters for two
example cities. FIG. 15 shows the geographical distribution
of infant recoveries (lighter crosses) and aging recoveries
(darker crosses) for the 6 cities (d,=24 hours).

TABLE 1
1 2 3 P{d <24}

g(dlz €z,)

Pig 0.3478 0.3188 0.3333 66.63%
Yiz 0.0045 12.1893 197.0316

ki 0.2490 2.7891 3.7629

g(dlz €EZa)

Pax 0.3000 0.1500 0.5500 45.37%
Yaz 0.0650 12.2138 129.7408

k3 0.2897 3.9992 2.8037

The probability of infant recovery as well as model
parameters vary across different geographical regions,
showing the spatial non-stationarity of the recovery process.
Examining more details, adjacent cities (e.g., 1 and 3) that
are close to the coast can exhibit different percentages of
infant recovery. Faraway cities (e.g., city 8 which is far in
land and city S which is close to the coast) can also exhibit
a similar percentage of infant recovery.

Learning using real data from another real-life example of
large-scale disruptions caused by Hurricane Sandy is now
examined. This provides an understanding how the model
and learning approach can be generalized to other hurri-
canes. Hurricane Sandy had a landfall at Northeastern
United States on Oct. 28, 2012. Hurricane Sandy resulted in
more than 6 million customers without electricity for days.
The state with the most customers without power was New
Jersey, where about 1.98 million customers lost power
supplies.

A utility company reported the number of failures (out-
ages) in more than 10 counties in New Jersey from Oct. 28,
2012 to Now. 22, 2012. The aggregated number of reported
outages is a sample in our data set. Each sample comprises
a given geo-location and time t at the scale of 15 minutes
(the reporting interval). The geo-location variable Z , corre-
sponds to a county in New Jersey for 1=j<14. The data set
comprises 2275 such samples, i.e., {N(t,Z,)},_,'* for time t
from October 28 to Nov. 22, 2012. FIG. 17A plots an
example of the data. Note that such aggregated data does not
provide accurate occurrence time or duration of each power
failure.

Learning begins with the aggregated number of failures
N(t,Z) for 1=j=<14, from which failure- and recovery-rates
can be estimated accordingly. This is a reverse process to
learning from the detailed failure data in Hurricane Ike.

To learn the failure rate, recall that

Ar(n) = [Nf(t)]

from Equation (20), and

d
Ar() =20 = ZEIN(0)]
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from Equation (24). This suggests that a lower bound A4(t)
on the failure rate can be estimated from the aggregate
number of failures at time t as:

. d 31
e, Z)) = 2N Z)),

ifr=r",

where t* is a time epoch when N(t*,Z)) increases.

To determine how to obtain such an estimate, character-
istics of raw (time series) data N(t,Z,) are examined at the
county level. FIG. 16 shows two examples of the number of
aggregated failures N(t,Z ;) at two different counties in New
Jersey. N(t,Z ;) shows sharp increases and sharp decreases.
A sharp increase occurs when the failure rate exceeds the
recovery rate whereas a sharp decrease happens when recov-
ery rate exceeds the failure rate. Hence, a change point in
N(t,Z ) can be used to identify a lower bound for either a
failure rate or a recovery rate. In addition, a sharp increase/
decrease indicates a salient rather than noisy change point,
where a lower bound can be obtained accurately.

First obtain the positive increments from N(t,Z,) for each
region Z, using Equatlon (31). Then aggregate the incre-
ments over the 14 regions to obtain a lower bound A () for
the failure rate of the utility network. N/(t) the estlmated
lower bound on the number of failures up to time t, can then
be obtained by integrating f»ﬂ(t), which is shown in FIG.
17B.

To learn the empirical recovery rate, Equation (31) can be
applied except that t* corresponds to the time epoch of a
decrease in the number of failures. FIG. 17C shows an
estimated lower bound Aﬂ(t) for the recovery rate and the
cumulative number of recoveries N (t), respectively.

Since the aggregated data from Hurricane Sandy does not
contain detailed recovery time for each failure, it is impos-
sible to learn the time-varying distribution of failure dura-
tion g(dlt). Nevertheless, the aggregated data can be used to
estimate a stationary distribution of recovery time, i.e., g(d).
As the detailed information on failure duration is not avail-
able from the data, we consider a simple distribution with
one Weibull mixture g(d; v, k). Applying discrete samples to
the Theorem, the reconstructed recovery rate A,(t) can be
related with g(d; y,k) and Aﬂ(t) as

. i B (32)
Li-0)~ ) gli-6— j-0g(j-6),
=0

where 0=15 minutes is the step size, and 19 is the discrete
time. Weibull parameters y and k can then be estimated
to minimize the estimation error [[A,(t)-A,,()|?. FIG.
18 shows the estimated Weibull distribution, where the

shape parameter k'=1.3094 and the scale parameter
v=54.1684. The resulting stationary distribution of fail-
ure durations is then used to reconstruct a lower bound
for the recovery rate. FIG. 18 shows the estimated A1)
from the data set and the reconstructed A ,(t). Recon-
structed AR (1) thus provides a profile on how the
recovery varies with time.

Learning from Hurricane Ike and Hurricane Sandy results

in the following findings:

Failure process: Failure rates were time-varying for both

Hurricane Ike and Hurricane Sandy. The corresponding
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failure processes were non-stationary in time and geo-
graphical regions. However, the failure rates exhibit
different characteristics at the county level for Hurri-
cane Tke and Hurricane Sandy: The failure rates for
Hurricane Ike appear to vary gradually. However, the
failure rates for Hurricane Sandy exhibit sharp changes,
showing that failures occurred in groups. When aggre-
gated over geographical regions, failure rates for both
hurricanes exhibit similar characteristics, i.e., first rap-
idly increasing and then decreasing.

Recovery process: Learned recovery rates from Hurricane
Ike and Hurricane Sandy were both time-varying. For
Hurricane Ike, the learned probability distributions of
failure durations exhibit non-stationarity in time and
geo-locations, and depend on when failures occur. Such
distributions constitute both infant and aging recovery,
as shown in TABLE 1 and FIG. 15. The degree of infant
recovery, however, is different at different cities. Three
out of the six chosen cities recovered more rapidly then
the rest. Failures with infant and aging recoveries are
also inter-leaving in geo-locations.

The recovery for the provider network from Hurricane
Sandy shows a nearly steady rate of 7000 recoveries per
hour. In addition, the estimated Weibull distribution of the
failure duration exhibits stronger aging recovery than infant
recovery. A lack of infant recovery for this utility provider
may indicate that power distribution networks suffered viru-
lent disruptions during Hurricane Sandy. The recovery can
thus be difficult.

Note that failures and recoveries can occur simultane-
ously within a 15 minute interval. That is why the amount of
increase in N(t,Z,) is a lower bound of the actual failure rate
A[t,Z)). When the number of failures increased rapidly, e.g.,
from October 28 to October 31, recovery appeared to be
minor. When the hurricane passed the area after October 31,
recovery dominated. This is shown by the lower bounds of
the failure- and the recovery-rate in FIGS. 17A-17C and 18.

The type of available data can be important for learning
non-stationary behaviors of power distribution in response
to external disruptions. The accurate failure data from Hur-
ricane Ike characterizes an entire life cycle of failure and
recovery processes. Data from Hurricane Sandy is aggre-
gated and thus lack of exact information on individual
failure occurrence and duration. Hence, learning is to infer
failure- and recovery processes, which is a reverse process
to that used for Hurricane Ike. The 15-minute sampling
interval seems to be sufficient for estimating the lower
bounds of failure- and recovery-rates from Hurricane Sandy.
The aggregated data was insufficient for characterizing a
non-stationary distribution of failure duration but could be
used to learn a stationary distribution as an approximation.

To deal with the small sample size, a rule of thumb was
used where training samples should be several times more
than parameters. For Hurricane Ike, 20 or more samples
seemed to be sufficient for estimating temporal characteris-
tics of failure- and recovery-rates but insufficient when the
spatial non-stationarity was studied. This suggests that the
algorithm need to be enhanced, e.g., to identify spatial scales
appropriate for aggregation.

The model assumes an underlying radial topology, where
failures can be considered as independent increments at
large temporal spatial scales (minutes, cities). Detailed net-
work configuration may be included in the model. For
example, topology and power flows are two possible char-
acteristics that can be included for failures and recoveries.
Failure- and recovery-process at a small time scale of
subseconds then need to be considered accordingly.
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Non-stationary geo-temporal random processes can be
used to model large-scale failure and recovery of power
distribution induced by hurricanes. In particular, multivari-
ate geo-location based GI(t)/G(t)/o queues provide such
non-stationary failure- and recovery processes. The non-
stationary failure and recovery can be completely charac-
terized to the expected values by time-varying failure rate
and probability distribution of recovery time across geo-
graphical regions.

Real data from two hurricanes was used to learn failure
and recovery processes. Learning detailed failure data from
Hurricane Ike revealed that the failure process across dif-
ferent geographical regions follows a similar trend to that of
the hurricane. However, the failure- and recovery-processes
exhibit different infant and aging recovery across geo-
graphical regions. Learning aggregated data from an impact
area by Hurricane Sandy shows that our model can infer
failure- and recovery rates using aggregated data. The failure
rates have more significant discrete components for Hurri-
cane Sandy than for Hurricane Ike at geographical regions.
The recovery process is dominated by aging recovery for
one utility network from Hurricane Sandy but comprises a
significant component of infant recovery for another utility
from Hurricane Ike. This shows that GI(t)/G(t)/c model can
be used for general failure- and recovery-processes in
dynamic queues. Note that these findings are for power
distribution through open rather than underground networks.

Supporting Information

Modeling: Joint disruption, recovery, cost processes, and
resilience studies utilize analytical modeling of failure and
recovery as well as impacts to customers. Large-scale failure
and recovery induced by severe weather exhibit tremendous
randomness and dynamics that result from evolving weather
conditions. The randomness and the dynamics are also
reflected by how providers (DSOs) and customers are
impacted. Hence, failure, recovery and the impact form
processes are dependent on time, geo- and system-locations.
Therefore, resilience is a network problem from the physical
infrastructure to services to customers. The role of modeling
is to relate individual failures and recoveries as well as
impacts to customers at a large scale. Pertinent and simple
quantities are then derived to characterize the processes
(materials and methods), including disruption rates, time-
varying probabilities of failures and recoveries, and
expected costs to customers. These quantities serve as
guidance for identifying vulnerability (non-resilience) using
large-scale real data.

Details on modeling are now presented. Modeling starts
from a basic level of a node that is either a power or
protective device. A node failure corresponds to either a
damaged power component or an activated protective
device. The occurrence of failure i can be represented by an
indicator function, I[F,(t)], where F,(t) is an event that
node i fails in time duration (t-At,t] for sufficiently small
0. I[A]=1 if event A occurs; and I[A]=0, otherwise. For
power distribution with a radial topology, a failure occurs
locally without cascading. However, a failure can cause
so-called outages where a component loses power without
being damaged. For example, a failure at the upstream of a
radial topology can cause outages at components down-
stream. The occurrence of an outage (j) can be represented
by an indicator function, I[F,((t)]. Define N,(t) as the
neighborhood of failure i, where N,(t) comprises the induced
outages. Then jEN,(t). The outages and the failure are
assumed to occur at the same time, i.e., I[F,/2()IF,P(t)]=1;
if JEN,(t). A system-disruption F,“(t) is either a failure (d=f)
or an outage (d=o0). A node loses power upon a disruption,
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thus a disruption is already assumed to be detected. This
enables real data collected from power distribution to be
used.

Recovery occurs when failures are repaired. The speed of
recovery can be characterized by how long a disruption lasts.
Let D,(v) be the duration of a disruption that occurs at time
v. Indicator function I[D,(v)>t-v] represents a recovery
event, where a system disruption occurs at v and is yet to
recover at t, O<v<t.

Failures occur randomly in time and locations. For
example, given a severe weather event such as Hurricane
Sandy, fallen debris can randomly cause failures, e.g., bring
down wires and result in nonfunctional substations. Like-
wise, recoveries involve randomness such as terrain condi-
tions in the aftermath of a severe weather event. Spatial
temporal random processes can thus be used to model
failures and recoveries:

Disruption process: {I[F,“(v)], i€S(v), v>0},

Recovery process: {I[Dy(v)>t-v], kES(t), O<v<t},

Joint disruption-recovery process: {I[F,2(v)], I[Dy(v)>t-

v], iIE€S(v), kES(1), 0<v<t},
where S(v) and S(t) comprise nodes at time v in normal
operation and at time t in disruption, respectively. As dis-
ruptions are random and varying with time, so are S(v) and
S(1). A joint process results from the fact that recoveries and
disruptions can occur concurrently in an area.

A system disruption at power distribution directly inter-
rupts electricity services to customers, and thus induces cost
C“(1). Disruption rate A,““(t) is the first moment, a simplest
quantity that characterizes both the system disruption pro-
cess and its cost. In particular, A,“O(t) is the average incre-
ment of the cost AC,“(t) on newly affected customers
caused by system-disruption i in (t-At,t]. Such a disruption
rate can be obtained from the stochastic equation. Given
S(t), a set of nodes in normal operation at t-At,

EACE )1 5(0) 63

90 = Jlim v
'

-0

where d=f (failure) or d=o (outage). E[*] is the conditional
expectation over randomly occurring disruptions given state
S(t). For At>0 to be sufficiently small, at most one disruption
occurs in (t-At,t].

As an example, assume the occurrence of disruption i
incurs cost ¢, to the affected customers (e.g., ¢, can represent
the number of customers affected). The cost to customers at
time t from the failure and the outages are respectively,

P =l D), 34

Pw= Y, cilFPw|FolF o).
JEN; (1)

Furthermore, when each disruption incurs unit cost c,_1, the
customer disruption rate reduces to the system-disruption
rate, which is the average number of new failures and
outages occurred per unit time. Hence disruption rate A, “(t)
relates failures with impacts to customers.

Prolonged service interruptions affect customers signifi-
cantly. Thus, the cost needs to include disruption durations.
Consider again disruption i that occurs in (v-Av,v]. Let
h,(v,t)=min{I[D(v)>t-v],][Dy(v)<t-v]} for O<v<t. hy(vt)
represents whether or not the disruption is restored by time
t. Let h(C,(v),D(v)) be a function of disruption duration
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D,(v) and the cost of the occurrence C,(v). Let G,(v,t) be the
combined cost to customers at time t, where

GDHD),CONRLY).

When impacts to customers also involve randomness, the
cost forms one other spatial temporal point process connect-
ing system disruptions, recoveries and impacts to customers:

(3%)

{G,(0)iES(Y),0<v<1}, (36)

where t is the time for the cost to be assessed and v is when
disruption i occurs. Assuming that, given the occurrence
time, a disruption and its recovery are conditionally inde-
pendent. The conditional expectation of the cost given
iES(V) can be characterized by the system disruption rate
and the cost,

E{IFOW)] G, iESM) ) =MD (WAVE[ Gy, 1) liES
QI

The total cost can then be obtained for all disruptions in
an area that occur up to time t,

G7

' @) . (38)
E[C(l)]=fES(v){/\; WME[Gi(v, )i e SW)}dv,
0

where E[*li€S(v)] is the conditional expectation over ran-
domly occurring disruptions in time and locations. Intui-
tively, A,““(v)dv is the average number of newly-occurred
disruptions in (v=dv,v]. A,“2(v)G(v,t)dv is the resulting total
cost to the interrupted customers at time t, O<v<t. The
integration adds up all disruptions and thus all costs
occurred in [0,t].

The above expression extends the derivations for non-
stationary queuing network to each disruption at a fine scale,
not only temporal but also spatial. Here the system disrup-
tion rate and the cost both vary spatially and temporally.
Thus the disruption, recovery and cost processes are non-
stationary. A,““(v) and E[G,(v,t)liES(v)] are also coupled
with state S(v), resulting in non-linear relationships in
general.

Example: While the cost G,(v,t) can take a general form,
a special case is given by

G,(vi)=c; min {D,(v),;-v}, (39)

where c; is the number of interrupted customers by disrup-
tion i. When D,(v)<t-v, G,(v,t)=c,D,(v). Such cost is the
aggregated customer minutes of interruption (CMI), a com-
monly used performance metric by Distribution System
Operators (DSOs).

Generalized Scaling-Law of Disrupted Customers
Empirical Scaling-Law:

To characterize the extent of affected customers by a local
disruption, define a generalized scaling law as a mapping
between the two quantities: W(x):P(x). W(x) is the condi-
tional probability for a customer to be interrupted given that
a system-disruption affects more than x customers. P(x) is
the probability for a disruption to interrupt more than x
customers (or the probability that a system disruption inter-
rupts more than x customers). Such a generalized scaling
law extends the 80-20 rule where W (x)~0.8 and P(x)~0:2 to
other values, i.e., 0=sW(x), P(x)=1 for a range of x. Define
empirical complementary cumulative distribution functions
(CCDF) B(x) and W(x) as follows, where x is the number of
customers affected by one disruption.

Given the data set {x,, X, . . ., X,,}, where X, is the number
of customers disrupted by the i-th disruption. For x>0,
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(40)

Z I[x; > x]

Pl = —

P(x) and W(x) can be estimated using bootstrapping meth-
ods, with a procedure given below. Algorithm 1—estimating
P(x) and W(x):

1. Construct an empirical probability distribution for
boostrap from the data set {x,, X, . . ., X,,}, where x,
is the number of customers affected by the i-th system
disruption. For simplicity choose a uniform distribu-
tion, where each sample is randomly drawn with prob-
ability 1/n.

2. At each iteration k, draw a set of random samples of
size n (or smaller) with replacement. Compute P, (x)
and W,(x) for a given x through Equation (40).

3. Repeat Step 2 K times to obtain a set of estimators
{P,(x), ..., Px(®)}. P() is the sample mean of {P,(x),
k=1, ..., K}, and the estimation error E[P(x)) is the
sample variance. Obtain a confidence interval d(P(x))=
O VEPX)) at level (1-a), where @ refers to the
standard normal distribution.

4. Obtain W(x) and the error bound (W (x)) similarly to
Step 3.

Recovery and Cost:

Delays in Recovery. For simplicity, the number of pend-
ing repairs can be used to characterize delays in recovery.
Specifically, the delay of a disruption can be counted as the
number of others that occur after but recover before its own
restoration. Such delay reflects a centralized view of a DSO,
although local repairs can occur simultaneously at multiple
areas of a service territory. Delays characterized in this way
consider a service region as a centralized queue. Occur-
rences of system-disruptions are analogous to arrivals at the
queue. Recoveries are departures from the queue. A proce-
dure is provided below on finding the delays. Algorithm
2—finding delays given data set {(v,t,); l=i=n}, where v,
and t; are respectively the occurrence and recovery-time of
disruption i:

1. Find the sequence of disruption occurrences: Sort the

occurrences v,’s from minimum to maximum.

2. Find the sequence of recoveries: Sort the recovery time
t,’s from minimum to maximum.

3. Find delay: Consider disruption j which occurs after but
recovers before disruption i, i.e., v,<v; and t,<t, for j=i.
The delay of recovery for disruption i counts the
number of such disruptions,

5;=ZI[V;SVJ',IJ'<[;]. (41)

J#E

Here 3,0 indicates that the disruption i is recovered either
immediately without delay or with priority (i.e., restored
prior to the disruptions occurred earlier). A positive 9,
indicates delay.

Scaling Law of Recovery. A scaling law of recovery can
be derived to quantify the difference in restoration between
the hurricane period and daily operations. Let W,(3) be the
conditional probability of interrupted customers given that
system disruptions are not yet restored at delay 8. Let P (3)
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be the probability of disruptions that are restored within J.
The mapping from P(d) to W(d) forms a scaling-law for
customers to recover. Such a scaling-law shows how the
generalized scaling-law of disrupted customers is reduced
provided the delay of recoveries. The longer the delay
(time), the more service should be restored, and thus the
more disrupted-customers are reduced. The corresponding
empirical probabilities are

42)

Z 16 = 8]
W,.(6) = Z—x

Z 1[6; < 6

Po)= —

where X, is the number of customers affected by disruptioni
and n is the total number of disruptions. The mapping for
recovery is in fact similar to that for disruptions except that
delay is now a variable. Hence the empirical scaling-law
W,(8): P.(8) can be learned from data following similar
steps to those in Algorithm 1. Parameters used are the same
as those in estimating the generalized scaling-law.

Referring next to FIG. 19, shown is a flow chart illus-
trating an example of distribution modeling and/or evalua-
tion of a power distribution network. Beginning at 1903,
operational information associated with the distribution net-
work is received. The operational information can include
historical information related to previous operation of the
distribution network and stored in a data store that can be
locally and/or remotely located. The operational information
can also include real time information that is received from
one or more distribution monitoring devices located in the
distribution network. The information can include opera-
tional information of network components such as, but not
limited to, transmission lines, switch gear, generators, etc.

At 1906, failure and recovery neighborhoods are identi-
fied. The neighborhoods can be determined based at least in
part upon the topology of the power distribution network
and/or the operational information associated with the dis-
tribution network. A resilience metric associated with at
least a portion of the distribution network is determined at
1909. The resilience metric can be associated with a geo-
graphical region of the power distribution network. At 1912,
one or more vulnerability of the power distribution network
can then be identified based at least in part upon the
resilience metric and a response can be determined at 1915.
For example, a region may be identified as being highly
vulnerable to failure because of transmission line or switch
gear conditions. A response team can then be dispatched to
address the situation or planning for repairs and/or mainte-
nance can be adjusted based upon the identified vulnerabili-
ties.

Referring now to FIG. 20, shown is an example of a
system 2000 that may be utilized in the monitoring and
control of soil conditions. The system 2000 includes one or
more computing device(s) 2003 and one or more distribution
monitoring device(s) 2006 that can be distributed about a
power distribution network to provide indications of failures
and/or recoveries in the power distribution network. For
example, the distribution monitoring device(s) 2006 can
monitor availability of electrical power by monitoring con-
ditions of components of the distribution network. The
computing device 2003 includes at least one processor
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circuit, for example, having a processor 2009 and a memory
2012, both of which are coupled to a local interface 2015. To
this end, the computing device(s) 2003 may comprise, for
example, a server computer or any other system providing
computing capability. The computing device(s) 2003 may
include, for example, one or more display devices such as
cathode ray tubes (CRTs), liquid crystal display (LCD)
screens, gas plasma-based flat panel displays, LCD projec-
tors, or other types of display devices, etc. The computing
device(s) 2003 may also include, for example various
peripheral devices. In particular, the peripheral devices may
include input devices such as, for example, a keyboard,
keypad, touch pad, touch screen, microphone, scanner,
mouse, joystick, or one or more push buttons, etc. Even
though the computing device 2003 is referred to in the
singular, it is understood that a plurality of computing
devices 2003 may be employed in the various arrangements
as described above. The local interface 2015 may comprise,
for example, a data bus with an accompanying address/
control bus or other bus structure as can be appreciated.

Stored in the memory 2012 are both data and several
components that are executable by the processor 2009. In
particular, stored in the memory 2012 and executable by the
processor 2009 include a distribution modeling and/or resil-
ience application 2018 and potentially other applications.
Also stored in the memory 2012 may be a data store 2021
and other data. The data stored in the data store 2021, for
example, is associated with the operation of the various
applications and/or functional entities described below. For
example, the data store may include sample analysis results,
corrective measures, and other data or information as can be
understood. In addition, an operating system 2024 may be
stored in the memory 2012 and executable by the processor
2009. The data store 2021 may be may be located in a single
computing device or may be dispersed among many differ-
ent devices.

The distribution monitoring device 2006 is representative
of a plurality of devices that may be communicatively
coupled to the computing device 2003 through a network
2027 such as, e.g., the Internet, intranets, extranets, wide
area networks (WANs), local area networks (LANs), wired
networks, wireless networks, networks configured for com-
munication over a power grid, or other suitable networks,
etc., or any combination of two or more such networks. The
distribution monitoring device 2006 may comprise, for
example, a processor-based system such as a computer
system or other application specific monitoring system with
communication capabilities. In some embodiments, a distri-
bution monitoring device 2006 may be directly connected to
the computing device 2003.

The components executed on the computing device 2003
include, for example, a distribution modeling and/or resil-
ience application 2018 and other systems, applications,
services, processes, engines, or functionality not discussed
in detail herein. The distribution modeling and/or resilience
application 2018 can receive information regarding the
monitored distribution network that is provided to a distri-
bution monitoring device 2006. The computing device 2003
may also receive stored information regarding a power
distribution network for modeling and evaluation of the
network.

It is understood that there may be other applications that
are stored in the memory 2012 and are executable by the
processor 2009 as can be appreciated. Where any component
discussed herein is implemented in the form of software, any
one of a number of programming languages may be
employed such as, for example, C, C++, C#, Objective C,
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Java, Java Script, Perl, PHP, Visual Basic, Python, Ruby,
Delphi, Flash, or other programming languages.

A number of software components are stored in the
memory 2012 and are executable by the processor 2009. In
this respect, the term “executable” means a program file that
is in a form that can ultimately be run by the processor 2009.
Examples of executable programs may be, for example, a
compiled program that can be translated into machine code
in a format that can be loaded into a random access portion
of the memory 2012 and run by the processor 2009, source
code that may be expressed in proper format such as object
code that is capable of being loaded into a random access
portion of the memory 2012 and executed by the processor
2009, or source code that may be interpreted by another
executable program to generate instructions in a random
access portion of the memory 2012 to be executed by the
processor 2009, etc. An executable program may be stored
in any portion or component of the memory 2012 including,
for example, random access memory (RAM), read-only
memory (ROM), hard drive, solid-state drive, USB flash
drive, memory card, optical disc such as compact disc (CD)
or digital versatile disc (DVD), floppy disk, magnetic tape,
or other memory components.

Also, the processor 2009 may represent multiple proces-
sors 2009 and the memory 2012 may represent multiple
memories 2012 that operate in parallel processing circuits,
respectively. In such a case, the local interface 2015 may be
an appropriate network that facilitates communication
between any two of the multiple processors 2009, between
any processor 2009 and any of the memories 2012, or
between any two of the memories 2012, etc. The local
interface 2015 may comprise additional systems designed to
coordinate this communication, including, for example, per-
forming load balancing. The processor 2009 may be of
electrical or of some other available construction.

Although the distribution modeling and/or resilience
application 2018, and other various systems described
herein, may be embodied in software or code executed by
general purpose hardware as discussed above, as an alter-
native the same may also be embodied in dedicated hard-
ware or a combination of software/general purpose hardware
and dedicated hardware. If embodied in dedicated hardware,
each can be implemented as a circuit or state machine that
employs any one of or a combination of a number of
technologies. These technologies may include, but are not
limited to, discrete logic circuits having logic gates for
implementing various logic functions upon an application of
one or more data signals, application specific integrated
circuits having appropriate logic gates, or other components,
etc. Such technologies are generally well known by those
skilled in the art and, consequently, are not described in
detail herein.

The flowchart of FIG. 19 shows functionality and opera-
tion of an implementation of portions of a distribution
modeling and/or resilience application 2018. If embodied in
software, each block may represent a module, segment, or
portion of code that comprises program instructions to
implement the specified logical function(s). The program
instructions may be embodied in the form of source code
that comprises human-readable statements written in a pro-
gramming language or machine code that comprises numeri-
cal instructions recognizable by a suitable execution system
such as a processor 2009 in a computer system or other
system. The machine code may be converted from the
source code, etc. If embodied in hardware, each block may
represent a circuit or a number of interconnected circuits to
implement the specified logical function(s).
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Although the flowchart of FIG. 19 shows a specific order
of execution, it is understood that the order of execution may
differ from that which is depicted. For example, the order of
execution of two or more blocks may be scrambled relative
to the order shown. Also, two or more blocks shown in
succession in FIG. 19 may be executed concurrently or with
partial concurrence. Further, in some embodiments, one or
more of the blocks shown in FIG. 19 may be skipped or
omitted. In addition, any number of counters, state variables,
warning semaphores, or messages might be added to the
logical flow described herein, for purposes of enhanced
utility, accounting, performance measurement, or providing
troubleshooting aids, etc. It is understood that all such
variations are within the scope of the present disclosure.

Also, any logic or application described herein, including
the distribution modeling and/or resilience application 2018,
that comprises software or code can be embodied in any
non-transitory computer-readable medium for use by or in
connection with an instruction execution system such as, for
example, a processor 2009 in a computer system or other
system. In this sense, the logic may comprise, for example,
statements including instructions and declarations that can
be fetched from the computer-readable medium and
executed by the instruction execution system. In the context
of the present disclosure, a “computer-readable medium”
can be any medium that can contain, store, or maintain the
logic or application described herein for use by or in
connection with the instruction execution system. The com-
puter-readable medium can comprise any one of many
physical media such as, for example, electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor media.
More specific examples of a suitable computer-readable
medium would include, but are not limited to, magnetic
tapes, magnetic floppy diskettes, magnetic hard drives,
memory cards, solid-state drives, USB flash drives, or
optical discs. Also, the computer-readable medium may be
a random access memory (RAM) including, for example,
static random access memory (SRAM) and dynamic random
access memory (DRAM), or magnetic random access
memory (MRAM). In addition, the computer-readable
medium may be a read-only memory (ROM), a program-
mable read-only memory (PROM), an erasable program-
mable read-only memory (EPROM), an electrically erasable
programmable read-only memory (EEPROM), or other type
of memory device.

It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible
examples of implementations set forth for a clear under-
standing of the principles of the disclosure. Many variations
and modifications may be made to the above-described
embodiment(s) without departing substantially from the
spirit and principles of the disclosure. All such modifications
and variations are intended to be included herein within the
scope of this disclosure and protected by the following
claims.

It should be noted that ratios, concentrations, amounts,
and other numerical data may be expressed herein in a range
format. It is to be understood that such a range format is used
for convenience and brevity, and thus, should be interpreted
in a flexible manner to include not only the numerical values
explicitly recited as the limits of the range, but also to
include all the individual numerical values or sub-ranges
encompassed within that range as if each numerical value
and sub-range is explicitly recited. To illustrate, a concen-
tration range of “about 0.1% to about 5% should be
interpreted to include not only the explicitly recited concen-
tration of about 0.1 wt % to about 5 wt %, but also include
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individual concentrations (e.g., 1%, 2%, 3%, and 4%) and
the sub-ranges (e.g., 0.5%, 1.1%, 2.2%, 3.3%, and 4.4%)
within the indicated range. The term “about” can include
traditional rounding according to significant figures of
numerical values. In addition, the phrase “about ‘X’ to ‘y’”
includes “about ‘x’ to about ‘y’”.

Therefore, at least the following is claimed:

1. A method for identifying vulnerabilities in power
distribution networks through node resilience of the power
distribution network, comprising:

defining, in a data store of a computing device, a topology

of a power distribution network, the power distribution
network comprising a plurality of nodes that each
represent a component in the power distribution net-
work, and the topology comprising a hierarchy of a
plurality of levels, each of the plurality of levels
comprising at least one node of the plurality of nodes,
the topology comprising indications of dynamic failure
and recovery neighborhoods in the power distribution
network;

monitoring, by the computing device, operational infor-

mation of the plurality of nodes to detect at least one
disrupted node in the power distribution network and at
least one disruption time associated with the at least
one disrupted node;

in response to detecting the at least one disrupted node,

determining, for each of the at least one disrupted node,
by the computing device, a plurality of nodes that
comprise a failure neighborhood of that respective
disrupted node, based at least in part upon the topology
of the power distribution network and operational
information associated with a subset of the plurality of
nodes of the power distribution network at a time after
the at least one disruption time of that respective
disrupted node;

detecting, by the computing device, that at least one of the

plurality of nodes that comprise the failure neighbor-
hood has recovered from a disruption condition;

in response to detecting that at least one of the plurality of

nodes has recovered, identifying, by the computing
device, a recovery neighborhood of the at least one of
the plurality of nodes that has recovered;

determining, by the computing device, a change in a

resilience metric, over a period of time, based at least
in part upon one or more changes in the operational
information, over the period of time, of each node in the
failure neighborhood of the at least one disrupted node
and the recovery neighborhood of the at least one of the
plurality of nodes that has recovered; and

identifying, by the computing device, a vulnerability of

the power distribution network based at least in part
upon the change in the resilience metric over the period
of time, generating an indication of the vulnerability
within the power distribution network, and determining
a response to the vulnerability which includes at least
one of: adjusting a configuration of the power distri-
bution network or modifying operation of the power
distribution network.

2. The method of claim 1, wherein the operational infor-
mation is received from a plurality of distribution monitor-
ing devices associated with the power distribution network.

3. The method of claim 1, wherein the operational infor-
mation is supplemented with historical information associ-
ated with the plurality of nodes of the power distribution
network.
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4. The method of claim 1, wherein the resilience metric is
based at least in part upon recovery rates associated with a
geographic region of the power distribution network.
5. The method of claim 1, wherein the vulnerability is
associated with a geographic location contained within the
power distribution network.
6. The method of claim 5, wherein the vulnerability is
associated with a group of nodes located in the geographic
location and a network location.
7. The method of claim 1, wherein each node in the
plurality of nodes is related to another node in the plurality
of nodes by a geographic relationship.
8. The method of claim 1, wherein the one or more
changes in the operational information of the each node in
the plurality of nodes is based at least in part on one or more
changes in the operational information of a node at a level
different than a level of the each node.
9. The method of claim 1, wherein the topology of the
power distribution network defined in the data store includes
a geolocation of each of the plurality of nodes and identi-
fying the vulnerability of the power distribution network
includes identifying a geolocation of the vulnerability.
10. The method of claim 1, wherein determining the
response is based at least in part upon the operational
information of the plurality of nodes of the power distribu-
tion network.
11. A system for identifying vulnerabilities within power
distribution networks through node resilience of the power
distribution network, comprising:
at least one processor;
a data store;
a memory device storing instructions, which when
executed by the at least one processor, cause the at least
one processor to, at least:
define, in the data store, a topology of a power distri-
bution network, the power distribution network com-
prising a plurality of nodes that each represent a
component in the power distribution network, and
the topology comprising a hierarchy of a plurality of
levels, each of the plurality of levels comprising at
least one node of the plurality of nodes, the topology
comprising indications of dynamic failure and recov-
ery neighborhoods in the power distribution net-
work;

monitor operational information of the plurality of
nodes to detect at least one disrupted node in the
power distribution network and at least one disrup-
tion time associated with the at least one disrupted
node;

in response to detecting the at least one disrupted node,
determine for each of the at least one disrupted node,
a plurality of nodes that comprise a failure neigh-
borhood of that respective disrupted node, based at
least in part upon the topology of the power distri-
bution network and operational information associ-
ated with a subset of the plurality of nodes of the
power distribution network at a time after the at least
one disruption time of that respective disrupted node;
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detect that at least one of the plurality of nodes that
comprise the failure neighborhood has recovered
from a disruption condition;

in response to detecting that at least one of the plurality
of nodes has recovered, identify a recovery neigh-
borhood of the at least one of the plurality of nodes
that has recovered;

determine a change in a resilience metric, over a period
of time, based at least in part upon one or more
changes in the operational information, over the
period of time, of each node in the failure neighbor-
hood of the at least one disrupted node and the
recovery neighborhood of the at least one of the
plurality of nodes that has recovered; and

identify a vulnerability of the power distribution net-
work based at least in part upon the change in the
resilience metric over the period of time, generate an
indication of the vulnerability within the power
distribution network, and determine a response to the
vulnerability which includes at least one of: adjust-
ing a configuration of the power distribution network
or modifying operation of the power distribution
network.

12. The system of claim 11, wherein the operational
information is received from a plurality of distribution
monitoring devices associated with the power distribution
network.

13. The system of claim 11, wherein the operational
information is supplemented with historical information
associated with the plurality of nodes of the power distri-
bution network.

14. The system of claim 11, wherein the resilience metric
is based at least in part upon recovery rates associated with
a geographic region of the power distribution network.

15. The system of claim 11, wherein the vulnerability is
associated with a geographic location contained within the
power distribution network.

16. The system of claim 15, wherein the vulnerability is
associated with a group of nodes located in the geographic
location and a network location.

17. The system of claim 11, wherein each node in the
plurality of nodes is related to another node in the plurality
of nodes by a geographic relationship.

18. The system of claim 11, wherein the one or more
changes in the operational information of the each node in
the plurality of nodes is based at least in part on one or more
changes in the operational information of a node at a level
different than a level of the each node.

19. The system of claim 11, wherein the topology of the
power distribution network defined in the data store includes
a geolocation of each of the plurality of nodes and identi-
fying the vulnerability of the power distribution network
includes identifying a geolocation of the vulnerability.

20. The system of claim 11, wherein the response is
determined based at least in part upon the operational
information of the plurality of nodes of the power distribu-
tion network.



