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Abstract—Transportation electrification is one of the essential
components in the future smart city planning and electric vehicles
(EVs) will be integrated into the transportation system seamlessly.
Charging stations are the main source of energy for EVs and their
locations are critical to the accessibility of EVs in a city. They
should be carefully situated so that an EV can access a charging
station within its driving range and cruise around anywhere
in the city upon being recharged. In this paper, we formulate
the Electric Vehicle Charging Station Placement Problem, in
which we minimize the total construction cost subject to the
constraints for the charging station coverage and the convenience
of the drivers for EV charging. We study the properties of the
problem, especially its NP-hardness, and propose an efficient
greedy algorithm to tackle the problem. We perform a series
of simulation whose results show that the greedy algorithm can
result in solutions comparable to the mixed-integer programming
approach and its computation time is much shorter.

I. INTRODUCTION

Modern civilization relies heavily on fossil fuels to support
construction, military protection, and people’s mobility. Due to
the world’s shortage of fossil fuels, nations compete to secure
enough reserves of natural resources for sustainability. Seeking
alternative energy sources becomes crucial to a nation’s future
development. One of the major sources of fossil fuel consump-
tion is transportation. Most of our daily heavily demanded
transportation, including buses and private cars, is powered by
gasoline. A major consequence of burning fossil fuels is the
release of tremendous amount of harmful gases, which partially
constitutes the global warming effect and deteriorates people’s
health. Electricity is considered as the most universal form of
energy, which can be transformed from and to another form
effectively. By converting the endurable renewable energy, like
solar and wind, to electricity, we can manipulate energy in
a much cleaner manner. Electrification of transportation like
deployment of electric vehicles (EVs) can not only alleviate
our demand on fossil fuels, but also foster a better environment
for living. Therefore, EVs will become the major components
in the future transportation system.

Incorporating EVs into an existing self-contained trans-
portation system is challenging. Solely expanding the pop-
ulation of EVs in a city without enough road connections
and corresponding charging and parking infrastructure will
suppress the practicability of EVs due to their limiting moving
ranges. Conversely, constructing the facilities with low utiliza-
tion will result in a waste of resources. Moreover, existing gas
stations are primarily designed for gas refueling; combining
charging infrastructure with the conventional gas stations may
not be appropriate as the relatively longer charging process
will saturate the limited space of the gas stations. We need to

carefully plan EV charging facilities to modernize our cities.
To be precise, we study how EVs will be integrated into
the transportation system seamlessly and this will help make
our cities “smart”. To do this, we study the Electric Vehicle
Charging Station Placement Problem (EVCSPP) by finding the
best locations to construct charging stations in a city.

Technology advances rapidly while the smart city plan
should take a much longer timespan. The plan should cater
for the residents. Hence we focus on the long-term human
aspects rather than the technological ones. An EV can always
access a charging station within its capacity anywhere in the
city. Charging stations should be built widely enough such
that the moving range of an EV can be extended to every
corner of the city by having the EV recharged at a charging
station available nearby. We study where charging stations
should be constructed in a city such that we can minimize the
construction cost with coverage extended to the whole city and
fulfillment of drivers’ convenience. In this paper, we formulate
the problem as an optimization, based on the charging station
accessibility and coverage in the city. We also propose methods
to solve the problem.

EVs take the central role in this paper and they have been
being studied since the boom of the smart grid. Most of the
existing work on EVs is related to studying the relationship
between EVs and the grid, i.e., how power is transferred
from and to the grid. Besides scheduling charging [1], [?],
in vehicle-to-grid (V2G) systems, hundreds of EVs coordinate
to act as a power source selling power back to the grid or
to support auxiliary services like regulation. A multi-layer
market for V2G energy trading was proposed in [2]. The
market price was settled via double auction and the mechanism
could maximize the EVs’ revenues. In [3], a queueing network
was utilized to model the dynamics of EVs participating in
V2G. The model could facilitate service contract engagement
for regulation ancillary services. [4] investigated the joint
scheduling of EV and unit commitment and this allowed us
to optimize the system’s total running cost with the presence
of EVs. [5] discussed the incorporation of photovoltaic (PV)
equipment into charging stations. It considered that charging
facilities equipped with PV panels and the stored solar energy,
together with the power requested from the grid, can be used
to power EVs. [6] and [7] studied the impact of EV charging
to the performance of power distribution networks with the
presence of charging stations, which can represent rapid heavy
loads. [6] illustrated the effect of fast-charging EVs in terms
of power-flow, short-circuit and protection while [7] proposed
a new smart load management strategy to coordinate EVs
for peak load shaving, power loss minimization, and voltage
profile improvement. However, in this paper, we no longer



focus on a standalone system but enlarge the scope to the city
level, with particular interest in charging stations. We concern
more about how EVs influence the growth of a smart city.

[8] investigated the location and sizing issues of EV
charging station planning. It considered environmental factors
and service radius of EV charging stations when selecting
candidate sites, but the focus was on determining the charging
station sizing in terms of power system factors, e.g., trans-
former capacity, reaction power, voltage, current, etc. The
site selection method was over-simplified. [9] considered the
location and sizing problem of charging station placement with
traffic flow by minimizing the annual integrated and operating
cost of charging stations, and charging cost. Particle swarm
optimization heuristic was adopted to compute the solution of
the non-convex problem. [10] discussed the design of power
architectures and power electronics circuit topologies for high
power superfast EV charging stations with enhanced grid
support functionality. However, none of them examines the
placement issue in terms of EVs’ reachability and accessibility
for city planning.

The rest of this paper is organized as follows. We give
the necessary backgrounds to define the problem in Section
II and formulate the problem and discuss its complexity in
Section III. Section IV presents two solution methods, one of
which is our greedy algorithm. In Section V, simulation results
are provided for performance evaluation and we conclude this
paper in VI.

II. BACKGROUNDS

In this section, we give the system model and the basic
requirements for defining EVCSPP.

We model a city with an undirected graph G = (N , E),
where N and E denote the sets of possible sites for construct-
ing charging stations and connections between pairs of sites,
respectively. Suppose |N | = n. Let d : N × N → R+ be
the distance function, where d(i, j) denotes the distance of the
shortest path from nodes i to j by traversing the connections.1
Let fi be the capacity of node i representing the average
capacity of charging service supported if a charging station
is constructed at location i. It is related to the size of the site
and traffic conditions around. Each node i also has a demand
requirement Fi, which refers to its average local charging
demand. The more EVs are based at location i, the higher
Fi is. The values of Fi can be estimated from the population
density and the EV penetration rate.

We define D to be the average distance able to be traversed
by most typical EV models available in the market when being
fully charged. A subset of nodes N ′ ⊂ N is said to be
reachable by D if the following conditions hold:

C1) For each i ∈ N ′, there exists a node j ∈ N ′ such that
d(i, j) ≤ D;

C2) For each i ∈ N , the total capacity, constituted from those
nodes j ∈ N ′ such that d(i, j) ≤ αD with discount factor
α ∈ (0, 1], is greater than or equal to Fi; and

1The distance d(i, j) refers to the distance of an actual path connecting
locations i and j but not the Euclidean distance.

C3) For any i, j ∈ N ′, suppose hij be the number of hops of
the shortest path from i to j in G. The distance of the
path d(i, j) should be smaller than or equal to hijD.

N ′ represents the set of locations which have been selected
to have charging stations constructed. A city is well planned
if N ′ is reachable by D. With condition C1, an EV, which has
been fully charged at a location, can recharge again at another
site within distance D away. C1 guarantees that EVs will not
be confined in one single location (or area). Condition C2 says
that the local charging demand at a location (e.g., Fi at node
i) must be satisfied by the total charging capacities contributed
by those charging stations located within distance αD away. α
is used to model the tolerance of drivers to move away from its
location for charging. Its maximum value is one because an EV
can traverse for a distance at most D. The smaller α, the more
conservative the model is, i.e., more charging stations should
be placed around every possible location. With condition C3,
the charging station network, where each charging station is
separated with another of at most distance D, spans the whole
city. To summarize, the conditions all together guarantee that
the serving areas of the charging stations cover every corner
of the city.

III. PROBLEM DEFINITION

In this section, we formulate EVCSPP based on the system
model and the requirements defined in the previous section. We
also prove the problem NP-hard.

A. Formulation

Let xi be the decision (boolean) variable indicating if node
i is chosen for placement and ci be its construction cost. We
minimize the total cost as the objective, i.e.,

∑n
i=1 cixi.

For each i, we define NαD
i = {j ∈ N|d(i, j) ≤ αD},

representing the set of nodes (including node i itself) within
distance αD from i. We can re-state condition C2 as∑

j∈NαD
i

fjxj ≥ Fi,∀i ∈ N .

As condition C3 holds for any pair of nodes, C3 implies C1.
To re-state C3, we first create a graph Ĝ = (N̂ , Ê), where N̂ is
set to N and Ê is equal to {(i, j)|i, j ∈ N , d(i, j) ≤ D, i 6= j}.
Consider the example of G, composed of 8 nodes, given in Fig.
1(a), where the number on a connection indicates the distance
between the nodes on the two ends. With D = 6, we have the
corresponding Ĝ in Fig. 1(b) (ignore node 01, which will be
explained later). Consider those nodes i in G with xi = 1 (i.e.,
N ′) and they constitute the corresponding induced subgraph
H of Ĝ. Condition C3 is equivalent to having H connected. In
other words, H has one single connected component. Instead
of inspecting the original graph G, we can focus on Ĝ to
define the problem. Similar to [11], we adopt a network flow
model to address C3. Imagine that there is a source node 0i

attached to node i and it has n units of flow available to be
sent along Ĝ through node i. Let 0 ≤ xi0 ≤ n be the residue of
flow not consumed by the network. Each node j with xj = 1
will consume one unit of flow. For each edge (j, k) ∈ Ê ,
we indicate the amount of flow on (j, k) originated from 0i

with variable yijk. Hence, we can guarantee those nodes j with



xj = 1 being reached from node i on Ĝ with the following
constraints:

xi0 + yi0i = n, (1)

0 ≤ yijk ≤ nxk,∀(j, k) ∈ Ê ∪ (0i, i), (2)∑
j|(j,k)∈Ê

yijk = xk +
∑

l|(k,l)∈Ê

yikl,∀k ∈ N̂ (3)

∑
j∈N̂

xj = yi0i, (4)

0 ≤ xi0. (5)

Eq. (1) says that the total amount of flow going out of yi0i and
retained xi0 in the source 0i is n. Eq. (2) confines that only
a sink can receive incoming flow. Eq. (3) describes that the
total incoming flow to a node is equal to the total outgoing
flow plus the amount for a sink. Eq. (4) explains that the total
flow getting out of the source is equal to the total absorbed
by the sinks and (5) restricts non-negative residue remained in
the source.

Note that (1)–(5) require node i to be selected for charging
station construction. Otherwise, no flow from the Source 0i

is allowed to be delivered to the sinks. To cater for this
requirement, we attach a source node to each node in N̂ and
the overall mathematical formulation of EVCSPP is modified
accordingly as follows:

minimize
n∑
i=1

cixi (6a)

subject to
∑

j∈NαD
i

fjxj ≥ Fi,∀i (6b)

xi = {0, 1},∀i (6c)

xi0 + yi0i = n, ∀i ∈ N̂ (6d)

0 ≤ yijk ≤ nxixk,∀(j, k) ∈ Ê ∪ (0i, i),∀i ∈ N̂
(6e)∑

j|(j,k)∈Ê

yijk = xixk +
∑

l|(k,l)∈Ê

yikl,∀i, k ∈ N̂

(6f)

xi
∑
j∈N̂

xj = yi0i,∀i ∈ N̂ (6g)

0 ≤ xi0,∀i ∈ N̂ . (6h)

B. Complexity

The decision version of the problem can be framed as
follows:

Let N(H) be the set of nodes associated to the induced
subgraph H . Each node i has a capacity fi ∈ Z+ and a
demand Fi and is associated with the node set NαD

i . Given
an undirected graph Ĝ = (N̂ , Ê), with node cost ci ∈ Z+,∀i,
a cost bound C ∈ Z+, does there exist an induced subgraph
H of Ĝ such that

1) For each i ∈ N̂ ,
∑
j∈NαD

i ∩N(H) fj ≥ Fi,
2) H is connected, and
3)

∑
i∈N(H) ci ≤ C?
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Fig. 1. An example of 8 nodes.

Theorem 1: The decision version of EVCSPP is NP-
complete.

Proof: Similar to [11], we construct a reduction from
the vertex cover problem (VCP) to EVCSPP. In graph G̃ =
(Ñ , Ẽ), a vertex cover is a subset of nodes N ′ ⊂ Ñ such that
each edge (i, j) ∈ Ẽ has i, j, or both in Ñ . Without loss of
generality, we assume Ẽ 6= ∅. VCP determines if there exists
a vertex cover N ′ of G̃ with |N ′| ≤ C.

We create a graph Ĝ = (N̂ , Ê), where N̂ = Ñ ∪ Ẽ and
Ê is constructed as follows. For each pair of distinct nodes
i, j ∈ Ñ , we create an edge (i, j) in Ê ; for each e = (i, j) ∈ Ẽ ,
we append (i, e) and (e, j) to Ê . For each i ∈ Ñ , its cost is set
as ci = 1 and zero otherwise. For each e ∈ Ẽ , we set fe = 1
and zero otherwise. We also set NαD

i = Ẽ and Fi = |Ẽ | for
all i ∈ N̂ .

We claim that CVP on G̃ with cost upper bound C if and
only if EVCSPP has a solution with cost at most C.

Let N ′ be a vertex cover of G̃ with |N ′| ≤ C and H be the
induced subgraph of Ĝ by nodes N ′∪Ẽ . It is easy to verify that
|NαD

i ∩N(H)| = |Ẽ | and thus
∑
j∈NαD

i ∩N(H) fj = |Ẽ | = Fi.
As N ′ is a vertex cover, each e = (i, j) ∈ Ẽ must have at least
one of i and j in Ñ and thus H must contain an edge (e, k)
for some k ∈ N ′. Moreover, Ñ forms a clique in Ĝ. Hence,
H must be connected. Since each e ∈ Ẽ ⊂ N̂ imposes no
cost, H has the same cost as N ′ in G̃. Therefore, EVCSPP
has a solution with cost at most C.

Consider that an induced subgraph H is a solution of
EVCSPP. We set N ′ = N(H)∩ Ñ . H contains Ẽ : As fj = 1
for j ∈ Ẽ , for any i ∈ N̂ , Fi = |Ẽ | guarantees Ẽ ⊂ N(H).



Since H is connected, each i ∈ N ′ must have an edge with
an e ∈ Ẽ in Ĝ. Moreover, N ′ has at most C nodes. Hence,
N ′ is a vertex cover of G̃ with |N ′| ≤ C.

Corollary 1: EVCSPP is NP-hard.

IV. PROPOSED SOLUTIONS

Since there are quadratic terms in some of the equality
constraints, problem (6) is neither a mixed-integer linear
program (MILP) nor a mixed-integer quadratic program, and
thus solvers for standard mixed-integer programming (MIP)
may not be applied. However, we will show that the problem
can be transformed to a number of MILP’s. We will also
discuss a greedy algorithm which even works for the original
formulation (6).

A. Mixed-Integer Linear Programs

Eqs. (1)–(5) can be used to guarantee that the solution
subgraph constituted by all nodes j with xj = 1 is connected
as long as xi = 1. If we assume that node i will be one
of locations for charging station construction, i.e., xi = 1,
problem (6) becomes

minimize
n∑
i=1

cixi (7a)

subject to
∑

j∈NαD
i

fjxj ≥ Fi,∀i, (7b)

xi = {0, 1},∀i (7c)
xi0 + yi0i = n, (7d)

0 ≤ yijk ≤ nxk,∀(j, k) ∈ Ê ∪ (0i, i), (7e)∑
j|(j,k)∈Ê

yijk = xk +
∑

l|(k,l)∈Ê

yikl,∀k ∈ N̂ (7f)

∑
j∈N̂

xj = yi0i, (7g)

0 ≤ xi0. (7h)

Problem (7) is an MILP and it can be solved with standard
MIP solvers applying methods like branch-and-bound. Now
the question becomes which node i should be chosen for
this purpose. As there is no trivial way to choose such a
node i, we need to apply (7) to every possible node. In other
words, we solve (7) n times, each of which has i set to one
of {1, . . . n}. The solution of (6) is the best feasible one of
the MILPs’ solutions.2 However, they are usually subject to
long computation time and only applicable to small problem
instances.

B. Greedy Algorithm

Here we provide another method to tackle the problem. We
present an efficient greedy algorithm and requires much shorter
computation time. Before discussing its details, we have the
following lemma to facilitate its development.

2The MILPs for some fixed nodes may result in infeasible solutions to the
original problem. The best solution is selected among the feasible ones.

Lemma 1: Problem (6) is feasible if and only if x =
[x1, . . . , xn] = [1, . . . , 1] is a feasible solution, which gives
an upper bound with the objective function values

∑n
i=1 ci.

Proof: First we consider the only if-direction. As the
problem is feasible, there exists a feasible x′ = [x′1, . . . , x

′
n],

composed of some 0’s and/or 1’s, satisfying constraints (6b)–
(6h). If x′i = 1 for all i, then we have the result. Consider
that there is at least one j such that x′j = 0. If we produce
another x′′ by modifying x′j with value one, besides (6c), x′′
will always satisfy constraint (6b), as we will stay unchanged
or increase the sum on the left-hand side of (6b). Moreover,
as 0 < α ≤ 1, if x′j = 0 satisfies (6b), there exists at least one
node k with x′k = x′′k = 1 within distance D away from node
j. In this way, if we have x′′j = 1, we will attach node j to
the subgraph induced by x′ through node k. In other words,
the subgraph induced by x′′ is still connected, i.e., satisfying
(6d)–(6h). We can repeat this process until we change all 0’s
to 1’s and this produces x with upper bound

∑n
i=1 ci.

The if-direction is trivial. We complete the proof.

Corollary 2: If x = [x1, . . . , xn] = [1, . . . , 1] is not
feasible, EVCSPP is infeasible.

Corollary 2 can be used as a test to check the feasibility of a
problem instance.

Algorithm 1 Greedy Algorithm
1: Set xi = 1 for i = 1, . . . , n.
2: repeat
3: Construct a node set N composed of nodes i with xi =

1 where the induced subgraph is still connected when
xi is set to zero.

4: x′ ← x
5: flag ← 0
6: repeat
7: Select j with the largest cj in N .
8: Modify x′ by setting x′j = 0
9: if x′ satisfies (6b) then

10: x← x′

11: flag ← 1
12: else
13: x′j ← 1

14: Remove j from N
15: end if
16: until flag = 1 OR N = ∅
17: until N = ∅

Assume that we have a feasible problem instance. We apply
the greedy algorithm to the problem instance to generate a
suboptimal solution. Its pseudocode is given in Algorithm 1. In
Line 1, we start with the feasible x = [x1, . . . , xn] = [1, . . . , 1]
explained in Lemma 1 and then go through a certain number
of iterations (Lines 2–17). In each iteration, we select those
nodes in the subgraph induced by x which will not disconnect
the subgraph if we remove them from the subgraph and we
call this selection N (Line 3). For example, Fig. 2 shows a
graph Ĝ of six nodes, where a dot i and a hole j mean xi = 1
and xj = 0, respectively. In this case, we have N = {1, 3, 6}.
We can see that the resultant x′ formed by removing any one
node in N will still satisfy Constraints (6d)–(6h). Then we
attempt to deselect the one (e.g., node j) with the highest cost
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Fig. 2. Node selection in the greedy algorithm.

cj in N (Line 7). If the resultant x′ satisfies (6b), x′ is a
feasible point and we proceed to the next iteration (Lines 9–
11). Otherwise, we remove j from N (Line 14). Instead of
deselecting j (Line 13), we deselect the one with the next
highest cost. The iterations terminate when no nodes remain
in N (Line 17). The final solution x is the best determined by
the greedy algorithm.

V. SIMULATION

As discussed in Section IV, if the demand requirements
are all positive, we have two approaches to tackle EVCSPP,
i.e., the iterative method for MIP and our proposed greedy
algorithm. We perform a series of simulation to evaluate their
performance. All simulations are run on the same computer
with Intel Core 2 Quad CPU at 2.40GHz and 4GB of RAM,
and conducted in the MATLAB environment. For the MIP
approach, we adopt the CPLEX solver [12] with YALMIP [13].
Each instance of G is constructed by randomly placing n nodes
an area of 100× 100 km2, where the cost ci is assigned to a
random value in the range of (0, 1]. For simplicity, we assume
that the nodes are interconnected and the length of the shortest
path of each pair of nodes is determined by the Euclidean
distance between them. As explained in Section III, we can
produce Ĝ from G. Then we can check the feasibility of each
instance with Corollary 2.

First, we verify the performance of the two approaches
with respect to the computation time and the objective function
value. We produce 100 random graphs with 10 nodes, where
D, fi and Fi, for all i, are set to 80 km, 0.5, and 1, respectively.
The simulation results are given in Table I. The graphs are
feasible when α is equal to one. When α decreases, the number
of feasible cases resulted will also decrease as we have stronger
constraint (6b). The matched cases indicates the number of
cases out of the feasible ones producing the same objective
function values by the two approaches. The other columns
show the average results among the feasible cases. TimeMIP
and TimeGreedy indicate the computation times for MIP and the
greedy approaches, respectively. Both computation times do
not vary much with α. ObjMIP, ObjGreedy, and Objupper represent
the objective function values of the solutions obtained from
the MIP approach, the greedy algorithm, and the upper bound
mentioned in Lemma 1, respectively. In general, the MIP
approach produces better solutions than the greedy one but
the performance gap is very small (see Table I). The greedy

Fig. 3. Computation times for different problem sizes.

algorithm can generate the same solutions as the MIP does in
many cases. However, the MIP one suffers from much longer
computation time.

In the second test, we study how the computation time
changes with the problem size. The setting is similar here but
we fix α to one for different values of n. We generate 100
feasible cases for n equal to 10, 50, 100, 150, and 200. Fig. 3
shows the average computation times for the MIP and greedy
approaches. Both the computation times for both increase with
n but the one for MIP grows in a much faster fashion. Note that
the result of MIP for n = 200 is not shown because it is not
computable by YALMIP/CPLEX due to the out-of-memory
problem. This implies the MIP approach is not suitable for
large problems.

In the third test, we investigate how the computation time
varies with the number of “one” in the solution. Recall that
the greedy algorithm always start with the solution of all ones
and then it converts some ones to zeros according to the
network structure of the problem until no further changes are
possible. Hence, the greedy algorithm requires less time when
the optimal solution contains more ones. Now we focus on
cases with 50 nodes with all fi = 0.5. Fig. 4 gives the average
computation times with different value of F , where Fi’s for
all i are set to F . According to (6b), more charging stations
should be included in NαD

i with F . Hence, the computation
time for the greedy algorithm also decreases. However, the
computation time for MIP is steady with different values of
F . The reason is that the greedy algorithm makes use of the
network property while the MIP one does not.

To summarize, in terms of solution quality, the MIP ap-
proach is better than the greedy one. However, it is only ap-
plicable to problems of small dimensions and its computation
time is substantially longer than the greedy algorithm. On the
other hand, the greedy algorithm is much more efficient and
it can produce suboptimal solutions with very good quality.

VI. CONCLUSION

Gasoline is a heavily demanded natural resource and most
is consumed on transportation. Its electrification can relieve our



TABLE I. SIMULATION RESULTS FOR n = 10 AND D = 80

α Matched/Feasible cases TimeMIP (s) TimeGreedy (s) ObjMIP ObjGreedy Objupper

1 86/100 6.4384 0.0038 0.5579 0.5803 4.8883
0.9 88/100 6.3939 0.0039 0.7100 0.7353 4.8883
0.8 86/99 6.4003 0.0041 1.0263 1.0492 4.8883
0.7 80/97 6.2656 0.0042 1.3207 1.3624 4.8883
0.6 69/88 6.1545 0.0042 1.7492 1.7849 4.8883
0.5 54/63 6.1255 0.0042 2.3549 2.3902 4.8883
0.4 23/28 6.0744 0.0037 3.2389 3.2667 4.8883
0.3 5/5 5.7598 0.0036 3.6983 3.6983 4.8883

Fig. 4. Computation times for different numbers of ones in the solutions.

dependence on gasoline and tremendously reduce the amount
of harmful gases released, which partially constitute global
warming and worsen our health. In the 21st century, advancing
EV technologies has become one of the keys to boost a
nation’s economy and maintain (and improve) people’s quality
of living. For long-term planning, modernizing our cities with
EVs is of utmost importance. EVs will be integrated into
the transportation system seamlessly and this will help make
our cities “smart”. To do this, we need to determine the best
locations to construct charging stations in the city. In this paper,
we focus on human factors rather than technological ones. An
EV should always be able to access a charging station within
its driving capacity anywhere in the city.

Our contributions in this paper include: 1) formulating the
problem, 2) identifying the properties of the problem, and 3)
developing an efficient greedy algorithm. We formulate the
problem as an optimization model, based on the charging
station coverage and the convenience of drivers. We study the
NP-hardness of the problem and propose a greedy algorithm
based on the network properties of the problem. Simulation
results reveal that the greedy algorithm can result in solutions
comparable to those obtained from MIP but require much less
computation time.
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