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Abstract—We consider stochastic electro-mechanical dynamics contribution addresses the problem of stochastic flucinati
of an overdamped power system in the vicinity of the saddle- of power system state vector close to voltage or phase-angle

node bifurcation associated with the loss of global stabily such
as voltage collapse or phase angle instability. Fluctuatics of
the system state vector are driven by random variations of lads
and intermittent renewable generation. In the vicinity of collapse
the power system experiences so-called phenomenon of aril
slowing-down characterized by slowing and simultaneous apii-

fication of the system state vector fluctuations. In generic ase
of a co-dimension 1 bifurcation corresponding to the thresbld
of instability it is possible to extract a single mode of the gstem
state vector responsible for this phenomenon. We charactere
stochastic fluctuations of the system state vector using tfermal

perturbative expansion over the lowest (real) eigenvalue fathe
system power flow Jacobian and verify the resulting expresshs
for correlation functions of the state vector by direct numeical

simulations. We conclude that the onset of critical slowinglown
is a good marker of approach to the threshold of global instabity.

It can be straightforwardly detected from the analysis of shgle-
node autostructure and autocorrelation functions of syste state
variables and thus does not require full observability of the grid.

|I. INTRODUCTION

instabilitieﬁ

The amplification of stochastic fluctuations of the system
state vector in pre-critical operating regimes is also dadiye
related to the phenomenon of critical slowing-down often
observed in power grids on the brink of failure [11], [12],
[13], [14]. Naturally, detecting the onset of critical sling-
down by itself can provide an efficient way for early detectio
of approach to a large-scale instability [11], [12], [1314].

As will be explained below, the onset of critical slowingvdo

is naturally associated with a strong growth of fluctuatiohs

the system state vector. This growth can in turn be locally
identified well befiore the event of collapse from local syn-
chrophasor measurements of voltage phase and magnitude on
a given node of the smart grid.

The contributions of our work can be summarized as fol-
lows. We provide a formal mathematical description of caiti
slowing-down phenomenon, and characterize it in terms of
power flow Jacobian as well as generator inertia and damping
matrices. Second, we derive a closed form equation for the

Most of the US national power grid has ultimately beegytocorrelation and autostructure functions as well asepow
shaped and built during the quick urbanization period of thgyectral density of state vector that completely charaeter
beginning of 20" century. Increasing power demand continugge probabilities of arbitrary system trajectories. Rekaély,
to put enormous strain on the infrastructure of the agind.grithe autocorrelation and autostructure functions are esgebin

forcing utilities to maximally utilize its existing resaces.

terms of steady-state power flow Jacobian and its eigemgecto

As a consequence, many parts of the grid often operateda|ly, we validate all our results with numerical simidat

nearly critical regimes with significantly increased prbitigy

of IEEE 39 and IEEE 57 test systems.

of large scale failures 1], [2],[3]. In the modern world it
becomes crucially important to be able to read the state of

the pre-critical smart grid in a timely and precise manner, t 1.

effectively control parameters of smart grids operatingrie-

critical regimes minimizing the probability of their largeale
failures. Unfortunately, commonly used used power syst
state estimation and control algorithms, working extrgme
well for stable operating regimes, become less efficiers (s
for example [4], [5]) when the operating point of the grid is

close to the threshold of instability.

As we shall discuss below, a partial reason for the decreas?éfO

(S)

POWER FLOW AND LOAD MODELS

To describe dynamics of system variables close to the
reshold of instability, we use the structure-preservirgglel
E?‘S] which reduces to the system of coupled swing equations
an (P, V) (generator) nodes of the power grid

H; d?0;
dt?

db;
Ay ——
dt

= Z yzg‘/z‘/g sin(@i—t?j—'yij)—l-Pm_’i (1)

g~

of efficiency of state estimation procedures is related to
a strong amplmcatlon of fluctuations of the power SyStemlThe stochastic models of power system dynamics have begiedtoefore

state vector closer to the threshold of instability. Thespre

in a number of papers, such as [6]] [7]] [€]! [9]._[10]
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and power flow equations ofP, Q) (consumer) nodes of the 102

grid o1l |
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Here §; is a voltage phase on a busH; is inertia constant 107 -
of a generator on the nodg parametersy; describe droop e

controls of generators and/or load dependence on frequency

fluctuationsw; = 6; on the (P,Q) nodes,V; is a voltage Fig. 1. Time profile of aggregated power lo&i(t) and the absolute value

magnitude on a bus (for the (P,V) nodes,V; = E;), O©fits Fourier transform.

parameterg encode dependence of the power load on the volt-

age magnitudé/;. Finally, coefficientsT; describe a (weak)

dependence of the power load on the rajeof the voltage here B(t — ¢') is a diagonal covariance matrix. Note that

change with time. The power losses are important for tigenerally B(t — t') # Const. Alternatively, the fluctua-

dynamics of system state variables, thus generally£ 0. tions can be represented with the power spectral density
We consider the load modéll(2[] (3) with such parameteRdP(f)PT(—f)), which is simply a Fourier transform of

chosen thag; = 0 for simplicity, the choice ofy; corresponds the autocorrelation functiorii(4), see for examplel [17]. eder

to 1 =~ 2% change of the load pet% change in system and in the forthcoming paragraphs the averaging correspond

frequencyf and 10 = 20% change in power generation peito summation over possible realization of the load fluctureti

1% change inf [16], while parameter§; — to 0.1% change For stationary stochastic processes, the same resultd beul

in power load pei % change inV’. For simplicity we assume, recovered by averaging over long time peridds

that all the loads have fixed power factdt$; = k;/+/1 + k7, Whenever the random load profile is composed of a contin-

and all fluctuate with time in the vicinity of the averageiing sequence of independent individual “jumps”, the power

(base) loadP;(t), constantly deviating from the base valuepectral density3(f) behaves likeBy/((27 f)* +7~2), where

and returning back, so that;(t) = P;(t) + dP;(t), Qi(t) = r is the characteristic time of power load correlations. We as

Qi(t)+6Q;(t) [6], [7]. The same applies to generated powegume that this time is much longer than the typical timescale

especially if the grid is exposed to intermittence of rena@a of 1—30s that are considered in this work, but smaller than the

energy sources. Thug}; generally behave as stochastic proscale of several hours. On the time scales correspodingge la

cesses [17]. The base load valbgt) itself changes with time enough frequencies, such that> 7', one approximately

but relatively slowly, with significant changes only notit¥e hasB(f) = By/(2wf)%. The same approximation has been

attime scales of several hours. In principle, a given, agafesl also proposed and justified in [18]. Importantly, this moidel

load P;(t) can be thought of as an aggregation of a hugtifferent from the ones considered in a number of other studi

number of power-consuming devices connected to the nathat rely on a more traditional “white noise” model [10], 14

i of the grid, which get online and offline, connected anfi9]. The latter implies that the correlation propertiestiog

disconnected from the grid. A resulting overall time profilfluctuating power loads are described By P(f)dP(—f)) ~

of the aggregated active lodd(t) is represented on the Fig.5,, independent off. The power of such fluctuations ¢t

. The characteristic time scalg, s Of step-like changes does not diminish with frequency, which is not realistic.

depicted there i).1 — 1 sec. These relatively fast power cjose to the equilibrium operating point, the nonlinear

load fluctuations on different nodes of the grid are sta#dly sysiem of equation§l(1)](25(3) can be linearized:
independent from each other, and their correlation pragert

of the vectorsd P, 6Q) can be considered Gaussian|[17]. The
latter have mean zero and are thus completely characterized
by the expectation values

Mi + Di + Kz = 6P, (5)

wherez is the system state vector respreseting the deviations

E(SP(t)sPT (') = B(t —t'), (4)  of voltage phases and magnitudes from the equilibrium value
while K is the power flow Jacobian, the diagonal matkik encodes
EGQ)QT(t)) = kB(t — kT, inertia of the turbines, while the diagonal matriX corre-
sponds to the frequency damping. The sysfem (5) of Stochasti
and Differential Equations (SDE in what follows) will be the mai

EPt)0QT (1) = kB(t —t'), subject of our study.



I1l. STOCHASTIC DYNAMICS OF SYSTEM VARIABLES NEAR M of inertia constants appears only in the second order in
THE THRESHOLD OF INSTABILITY. THEORETICAL e and is negligible in the vicinity of the bifurcation points a
DESCRIPTION e — 0. The frequency of the leading mode is purely imaginary

We discuss the general case of a power grid with a larfethe orderO(e) unlesse > (a”Db)* /4a” M, i.e., when the
number of(P, V) nodes (generators) a®, Q) nodes (loads). System is underdamped.
It is natural to assume that the graph of the grid under con-Estimating the integral{6) near the leading singulafity-
sideration does not have any specific translational/mtati .fcorr, ONe finally finds to the leading order in

symmetries, in which case the saddle-node bifurcation, cor b(a” Ba)b”|6t]
responding to the global collapse of the power system, has S(lot]) = 5 + (10)
a co-dimension 1. The autocorrelation functiéi(dt) = ¢
E((z(t + 6t)xT (t)) of the system state vectaris given by b(a® Ba)(a® Db)bT ( el 1)
53 e oI Db — .

cist = [ are ey, (6)
Note that the matrix elemenis’ Ba and " Db are simple
where numerical factors, so that the dominating direction in thage
B 1 . t . space of the system where the fluctuations of the systemrvecto
o) = (2mf)2 + 772 AT (NBAT(S) @) x grow coincides with the direction of the right eigenvector
and the system matrix is b corresponding to the lowest eigenvalef the power flow
—A(f) = M@2rf)? + j2rDf + K.

JacobianC, [20], [21].

The value of the integral16) is determined by the singuksit
of the integrand in the complex plane ffwhich in particular
include zeros of the determinandet.A(f) and det A(—f) According to the expression {10), as+ 0 and the operat-
as well as poles ofB(f) at f = 4(2x7)~!. When the ing regime of the grid approaches the bifurcation, ampétud
autocorrelation function of the system state vector in tef the fluctuations of the system state vectagrows ase—*H
frequency domain is analyzed, the contribution of the tHepo Simultaneously, theT characteristic correlation time ofsth
of B(f) can be filtered out by a high-pass filter. In time domaifiuctuationsr.,, = "TDb grows ase~! ate — 0. These two
one can study the autostructure functigitjt — ¢'|) instead of effects explain the phenomenon of critical slowing-dowieof
C(|t — t'|), where the large contribution of the pole Bff) observed during large-scale failures of power grids [112][
is cancelled out. [13], [14]. The growth of both the amplitude of fluctuations

Naturally, among the remaining singularities, the oneeasbs and the correlation time imply that close to collapse dyrami
to the realf axis undermines behavior of the autostructuref the system vectox can be represented as a sequence of
function [8) at largejt. To identify this singularity, we recall relatively long time intervals with weakly changing valuafs
that near a co-dimension 1 saddle node bifurcation one (asybtem variables. However, these values significantly deviate
only one) of the eigenvalues of the power flow Jacobfan from the equilibrium onesz,, determined by the stationarity
vanishes[20]. Close to the bifurcation, the inverse of thegr conditionz, = 0. This in turn (at least partially) explains why

IV. DETECTING CRITICAL SLOWING-DOWN IN FREQUENCY
AND TIME DOMAINS

flow Jacobian can be written as it is technically hard to correctly and rapidly identify tetate
P T T of the power system close to an unstable regime using the
K= = gba T~ ;ba ’ (8)  standard power flow estimated procedures [4], [5]: away from

the threshold of instability stochastic fluctuations of system

wherec is the eigenvalue ofC vanishing at the bifurcation, 4. while ¢l his threshold th
while a andb are the corresponding left and right eigenvector§Fate vector are suppressed, while close to this threshold they

Under these assumptions, the leading singularity of thee inf® strongly amplified. T_he same applie_s to numeri_cal errors
grand in [6) coincides with a zero dbt A(f) (or det A(— f) of power flow estlmgtors in operating regimes near bifuccati
depending on the sign of the differencet’). Such singularity and prevents effective convergence of numerical scheres. |

is a simple pole by assumption that the center manifold of g very tempting to use the very signatures of critical sfuyvi
power system is one-dimensional. Constructing pertushati

down as markers of approach to stability Iass| [11], [12]]]13
theory in powers of smalk and assuming the overdampecﬂl“]' In this Section we shall consider how the critical siog¢

operating regime, one finds that the dominating mode detng‘Nn affects be_hawor of the autocorrelation fuqctlon il th
mining behavior of the expectation valug (6)[at- /| — oo frequency domain and then compare our conclusions to sesult
is given by of numerical simulations.

Je The complete dominance of a single mode close to collapse
27 feorr = " oTDh ©) implies that in the frequency domain expressibh (7) reduces

to the leading order ire. The O(e?) contribution can be _ , _ _
Note that the actual behavior of the amplitude of fluctuaties a function

T2 /(TP -1 T
neglected as long as< (a” Db)*/(a ’D. K="Db — a” Mb). of ¢ depends on the load model, in particular, on the dependehdheo
Note that the dependence of the leading mode on the matigectation value of fluctuating loads on frequerfcg~ f~2 in our case).



to more than an order of magnitude in the pre-critical opegatin

2b(a” Ba)b” regime. The prediction of the theory for the value of the auto

C(f) = YR TRV s +O(e).  (11) correlation function af ~ 0.01Hz is~ 3 for the case ~ 0.08
(27 f)2((aTDb)? (27 f)? + €2) )
p.u. and= 0.1 for the case ~ 0.57 p.u., in a good agreement

Thus, at very small angular frequenciesf < —7; ONe \ith the results of simulation.
finds a quadratic behavior of the Fourier-transformed artoc  As expected, we have found that the low-frequency behavior
relation function[(¥) withf~': S(f) ~ %, while in  of different inter-node/single-node structure functiafsthe
the intermediate range of frequencies this behavior istquarsystem state vectar is rather similar irrespective whether
instead:S(f) ~ %. These two types of behaviorthe power load is fluctuating or fixed on the given node.
are rather universal and can be seen even if the dynamicsTbfs implies that a single-node autocorrelation functiéthe
the power system does not yet exhibit critical slowing-dowsystem state vector, in particular, its behavior at srhatian be
Closer to the threshold of instability, as— 0, the quadratic a good indicator of the approach to the loss of stability. The
behavior of [I1l) is realized in a smaller and smaller randeehavior at large frequencies differed noticeably, wittein
of frequenciesr—! < 27f < —55- This in turn leads to a node correlations decaying more rapidly wjttior nodes with
strongerl/ f* amplification of the amplitude of fluctuations atfixed power loads. The results of simulations of the IEEE 57
small f: the matching poin2rf ~ —%; betweenf~—* and test power system are essentially similar.
f~2regimes is reached at smaller and smaflewhile e — 0. The results of simulations of the autostructure function
Corresponding amplification of the amplitude of fluctuationS(|dt|) in time domain demonstate its amplification|é&t| ~
of x particularly noticeable at small frequencies is a very godd— 10 sec. The singular value decomposition of the system
marker of approach to stability loss.

In order to check these predictions, we have performed r 10 ‘ ‘
merical simulations of the stochastic behavior of IEEE 38 ar
IEEE 57 test power systems close to the threshold of in#iabil 10" ¢ 1
in both frequency and time domains. Bifurcation points fc
both power systems discussed here were first localized us
continuation power flow proceduré [22], [23] implemente:
in PSAT Toolbox for Matlab[[24] and then identified more . ' - A il
precisely using MATPOWER library for Matlah [25]. 0 Y “ i

For the case of the IEEE 39 test power system two chos 10l \ iy
values of the continuation power flow parameter correspdnd
to the smallest eigenvalue of the power flow Jacokian0.57 w7
p.u. (operating regime relatively far from the thresholdrof "
stability) ande ~ 0.08 p.u. (pre-critical operating regime).The 107 10 10°
loads were allowed to fluctuate only on the buses 3, 10 anu
21 in order to check the difference in correlations of theéestagig 2. Detecting critical slowing-down in frequency domasimulations
vector between the nodes with and without fluctuating powefr IEEE 39. Inter-node correlation functio(z5(f)z19(f)), the load on
loads. On each of these nodes, a single realization of thesacP?th nodess and 19. The regimec ~ 0.08 p.u. is close to the threshold

. . .. of instability, while the regime withke =~ 0.57 p.u. is relatively far from the
power load fluctuations was considered (although reatinati threshold. Amplification of the amplitude of fluctuationssatall frequencies
of 0 P; of course differed between the nodes). Other parametérby more than an order of magnitude is clearly seen. The maihyses
of the model were chosen similarly o [26], [13], which br&'ngthe log-log scale. The inset represents behavior of thesladion function at

. . . small f using the normal scale.
the system into an overdamped operating regime.

For the case of the IEEE 57 test power system the Ogpte vector:(t) shows that there exists a dominating mode
erational regimes chosen for simulations correspondet~o o the pre-critical regime ~ 0.01 p.u., while this is not the

0.01 p.u. (pre-critical regime) and~ 0.17 p.u. (normal stable -5se for the stable operating regime~ 0.17 p.u., where
operating regime). Parameters were chosen as described inhe contributions of many different modes 1o provide a
the Section 2. Inertia constants, of generators were chosenconribution of the same order of magnitude b (6), see Fig
according to the relatior/; ~ 0.04F;, which, as explained g Finally, we would like to emphasize that the contributign
in [27], effectively holds for many test power system modelgjifferent nodes into the right eigenvectoof the leading mode
As usual, the bus was the slack bus. The active power |Oad%latively weakly depends on the operating regime. Thus, th
were allowed to fluctuate only on the nodes, 28,45 with  gominant nodes of the grid contributing the most to this mode

characteristic amplitude of fluctuationéB/(2) ~ 0.1 p.u.  can be identified well before the threshold of instability is
The results of frequency domain simulations for the 'EEgpproached.

39 model are presented on the Hig$R2, 3. Th¢* behavior

along the relevant interval of frequencies is clearly semn f V. CONCLUSION

both cases ofe ~ 0.57 p.u. and0.08 p.u., as well as Inthe present contribution we have studied the phenomenon
an amplification of the fluctuations at small frequencies kof critical slowing-down often observed in power grids @ds

|><5(f)><19(f)| for different €; IEEE 39

2| ) ~\
01Vl

g, g0




Internode and single-node correlation functions; IEEE 39, £~0.08 p.u.
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Fig. 3. Detecting critical slowing-down in the frequencyntin; simulations
of IEEE 39. Comparison of different inter-node and singbel® structure
functions in the operating regime close to the thresholdchsfability. As can
be clearly seen, behavior of different inter-node struetfunctions is very
similar at small frequencies. The log-log scale is usedHerrhain plot. The
inset represents behavior of the same correlation fureta@nsmallf using
the normal scale. The difference in amplitude of correfafionctions at very
small f is fully explained by the difference in magnitudes of theresponding
components of the vectdr.

(3]

(4]

(5]
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Re(\,)
Fig. 4. 5 largest singular values of the system state vectof the IEEE 57 [12]

power system for pre-criticale (=~ 0.01 p.u.) and sub-criticale(= 0.17 p.u.)
operating regimes8 smallest eigenvalues of the power flow Jacobian for the
same regimes. [13]

the threshold of a large-scale failure such as voltage psdi@r 14]
a loss of synchrony [11][ [12]( [13]._[14]. As we have argue(;,
this phenomenon is directly related to (and can be explained
by) a strong amplification of fluctuations of the system sta(§§5]
variables - voltage phases and magnitudes on individua$o

of the grid - for operating regimes close to collapse.

We have explained how the phenomenon of critical slowinbl—q
down can be used to effectively detect approach to the thregir)
old of instability. A technically simple method of deteatits
based on analysis of single-node (or inter-node) autastreic
functions of the system state vector in the frequency domain
where approach to the threshold of instability is character
ized by a strong amplification of low frequency part of thgg]
correlation function. It is very important to note that the
onset of critical slowing-down can be detected using lichite20]
measurements of state variables, such as in the situation of
incomplete observability of the smart grid, when effectival

(18]

precise measurement of inter-area modes is impossible.
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Autocorrelation functions in time domain; IEEE 57
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