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Abstract—We consider stochastic electro-mechanical dynamics
of an overdamped power system in the vicinity of the saddle-
node bifurcation associated with the loss of global stability such
as voltage collapse or phase angle instability. Fluctuations of
the system state vector are driven by random variations of loads
and intermittent renewable generation. In the vicinity of collapse
the power system experiences so-called phenomenon of critical
slowing-down characterized by slowing and simultaneous ampli-
fication of the system state vector fluctuations. In generic case
of a co-dimension 1 bifurcation corresponding to the threshold
of instability it is possible to extract a single mode of the system
state vector responsible for this phenomenon. We characterize
stochastic fluctuations of the system state vector using theformal
perturbative expansion over the lowest (real) eigenvalue of the
system power flow Jacobian and verify the resulting expressions
for correlation functions of the state vector by direct numerical
simulations. We conclude that the onset of critical slowing-down
is a good marker of approach to the threshold of global instability.
It can be straightforwardly detected from the analysis of single-
node autostructure and autocorrelation functions of system state
variables and thus does not require full observability of the grid.

I. I NTRODUCTION

Most of the US national power grid has ultimately been
shaped and built during the quick urbanization period of the
beginning of 20th century. Increasing power demand continues
to put enormous strain on the infrastructure of the aging grid,
forcing utilities to maximally utilize its existing resources.
As a consequence, many parts of the grid often operate in
nearly critical regimes with significantly increased probability
of large scale failures [1], [2], [3]. In the modern world it
becomes crucially important to be able to read the state of
the pre-critical smart grid in a timely and precise manner, to
effectively control parameters of smart grids operating inpre-
critical regimes minimizing the probability of their largescale
failures. Unfortunately, commonly used used power system
state estimation and control algorithms, working extremely
well for stable operating regimes, become less efficient (see
for example [4], [5]) when the operating point of the grid is
close to the threshold of instability.

As we shall discuss below, a partial reason for the decrease
of efficiency of state estimation procedures is related to
a strong amplification of fluctuations of the power system
state vector closer to the threshold of instability. The present

contribution addresses the problem of stochastic fluctuations
of power system state vector close to voltage or phase-angle
instabilities.1

The amplification of stochastic fluctuations of the system
state vector in pre-critical operating regimes is also directly
related to the phenomenon of critical slowing-down often
observed in power grids on the brink of failure [11], [12],
[13], [14]. Naturally, detecting the onset of critical slowing-
down by itself can provide an efficient way for early detection
of approach to a large-scale instability [11], [12], [13], [14].
As will be explained below, the onset of critical slowing-down
is naturally associated with a strong growth of fluctuationsof
the system state vector. This growth can in turn be locally
identified well befiore the event of collapse from local syn-
chrophasor measurements of voltage phase and magnitude on
a given node of the smart grid.

The contributions of our work can be summarized as fol-
lows. We provide a formal mathematical description of critical
slowing-down phenomenon, and characterize it in terms of
power flow Jacobian as well as generator inertia and damping
matrices. Second, we derive a closed form equation for the
autocorrelation and autostructure functions as well as power
spectral density of state vector that completely characterizes
the probabilities of arbitrary system trajectories. Remarkably,
the autocorrelation and autostructure functions are expressed in
terms of steady-state power flow Jacobian and its eigenvectors.
Finally, we validate all our results with numerical simulation
of IEEE 39 and IEEE 57 test systems.

II. POWER FLOW AND LOAD MODELS

To describe dynamics of system variables close to the
threshold of instability, we use the structure-preservingmodel
[15] which reduces to the system of coupled swing equations
on (P, V ) (generator) nodes of the power grid

Hi

πf0

d2θi
dt2

+αi
dθi
dt

=
∑

j∼i

YijViVj sin(θi−θj−γij)+Pm,i (1)

1 The stochastic models of power system dynamics have been studied before
in a number of papers, such as [6], [7], [8], [9], [10]
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and power flow equations on(P,Q) (consumer) nodes of the
grid

Pi ≈ P0,i + αp,iθ̇i + βp,i(Vi − V0) + Tp,iV̇i = (2)

=
∑

j∼i

YijViVj sin(θi − θj − γij),

Qi ≈ Q0,i + αq,iθ̇i + βq,i(Vi − V0) + Tq,iV̇i = (3)

=
∑

j∼i

YijViVj cos(θi − θj − γij).

Here θi is a voltage phase on a busi, Hi is inertia constant
of a generator on the nodei, parametersαi describe droop
controls of generators and/or load dependence on frequency
fluctuationsωi = θ̇i on the (P,Q) nodes,Vi is a voltage
magnitude on a busi (for the (P, V ) nodes,Vi = Ei),
parametersβ encode dependence of the power load on the volt-
age magnitudeVi. Finally, coefficientsTi describe a (weak)
dependence of the power load on the rateV̇i of the voltage
change with time. The power losses are important for the
dynamics of system state variables, thus generallyγij 6= 0.

We consider the load model (2), (3) with such parameters
chosen thatβi = 0 for simplicity, the choice ofαi corresponds
to 1 ÷ 2% change of the load per1% change in system
frequencyf and 10 ÷ 20% change in power generation per
1% change inf [16], while parametersTi — to 0.1% change
in power load per1% change inV̇ . For simplicity we assume,
that all the loads have fixed power factorsPFi = ki/

√

1 + k2i ,
and all fluctuate with time in the vicinity of the average
(base) loadP̄i(t), constantly deviating from the base value
and returning back, so thatPi(t) = P̄i(t) + δPi(t), Qi(t) =
Q̄i(t)+ δQi(t) [6], [7]. The same applies to generated power,
especially if the grid is exposed to intermittence of renewable
energy sources. Thus,Pi generally behave as stochastic pro-
cesses [17]. The base load valueP̄i(t) itself changes with time
but relatively slowly, with significant changes only noticeable
at time scales of several hours. In principle, a given, aggregated
load Pi(t) can be thought of as an aggregation of a huge
number of power-consuming devices connected to the node
i of the grid, which get online and offline, connected and
disconnected from the grid. A resulting overall time profile
of the aggregated active loadPi(t) is represented on the Fig.
1. The characteristic time scaleton/off of step-like changes
depicted there is0.1 − 1 sec. These relatively fast power
load fluctuations on different nodes of the grid are statistically
independent from each other, and their correlation properties
of the vectorsδP , δQ can be considered Gaussian [17]. The
latter have mean zero and are thus completely characterized
by the expectation values

E(δP (t)δPT (t′)) = B(t− t′), (4)

while
E(δQ(t)δQT (t′)) = kB(t− t′)kT ,

and
E(δP (t)δQT (t′)) = kB(t− t′),
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Fig. 1. Time profile of aggregated power loadPi(t) and the absolute value
of its Fourier transform.

here B(t − t′) is a diagonal covariance matrix. Note that
generally B(t − t′) 6= Const. Alternatively, the fluctua-
tions can be represented with the power spectral density
E(δP (f)δPT (−f)), which is simply a Fourier transform of
the autocorrelation function (4), see for example [17]. Here
and in the forthcoming paragraphs the averaging corresponds
to summation over possible realization of the load fluctuations.
For stationary stochastic processes, the same results could be
recovered by averaging over long time periodsT .

Whenever the random load profile is composed of a contin-
uing sequence of independent individual “jumps”, the power
spectral densityB(f) behaves likeB0/((2πf)

2+ τ−2), where
τ is the characteristic time of power load correlations. We as-
sume that this time is much longer than the typical timescales
of 1−30s that are considered in this work, but smaller than the
scale of several hours. On the time scales correspoding to large
enough frequencies, such thatf ≫ τ−1, one approximately
hasB(f) = B0/(2πf)

2. The same approximation has been
also proposed and justified in [18]. Importantly, this modelis
different from the ones considered in a number of other studies
that rely on a more traditional “white noise” model [10], [14],
[19]. The latter implies that the correlation properties ofthe
fluctuating power loads are described byE(δP (f)δP (−f)) ≈
B0, independent off . The power of such fluctuations ofδP
does not diminish with frequency, which is not realistic.

Close to the equilibrium operating point, the nonlinear
system of equations (1), (2), (3) can be linearized:

Mẍ+Dẋ+Kx = δP, (5)

wherex is the system state vector respreseting the deviations
of voltage phases and magnitudes from the equilibrium value,
K is the power flow Jacobian, the diagonal matrixM encodes
inertia of the turbines, while the diagonal matrixD corre-
sponds to the frequency damping. The system (5) of Stochastic
Differential Equations (SDE in what follows) will be the main
subject of our study.



III. STOCHASTIC DYNAMICS OF SYSTEM VARIABLES NEAR

THE THRESHOLD OF INSTABILITY: THEORETICAL

DESCRIPTION

We discuss the general case of a power grid with a large
number of(P, V ) nodes (generators) and(P,Q) nodes (loads).
It is natural to assume that the graph of the grid under con-
sideration does not have any specific translational/rotational
symmetries, in which case the saddle-node bifurcation, cor-
responding to the global collapse of the power system, has
a co-dimension 1. The autocorrelation functionC(δt) =
E((x(t + δt)xT (t)) of the system state vectorx is given by

C(|δt|) =
∫

df e−j2πf |δt|C(f), (6)

where

C(f) =
1

(2πf)2 + τ−2
· A−1(f)B(A†(f))−1 (7)

and the system matrix is

−A(f) = M(2πf)2 + j2πDf +K.

The value of the integral (6) is determined by the singularities
of the integrand in the complex plane off , which in particular
include zeros of the determinantsdetA(f) and detA(−f)
as well as poles ofB(f) at f = ±(2πτ)−1. When the
autocorrelation function of the system state vector in the
frequency domain is analyzed, the contribution of the the poles
of B(f) can be filtered out by a high-pass filter. In time domain
one can study the autostructure functionS(|t− t′|) instead of
C(|t − t′|), where the large contribution of the pole ofB(f)
is cancelled out.

Naturally, among the remaining singularities, the one closest
to the realf axis undermines behavior of the autostructure
function (6) at largeδt. To identify this singularity, we recall
that near a co-dimension 1 saddle node bifurcation one (and
only one) of the eigenvalues of the power flow JacobianK
vanishes [20]. Close to the bifurcation, the inverse of the power
flow Jacobian can be written as

K−1 =
1

ǫ
baT + K̃−1 ≈ 1

ǫ
baT , (8)

whereǫ is the eigenvalue ofK vanishing at the bifurcation,
while a andb are the corresponding left and right eigenvectors.

Under these assumptions, the leading singularity of the inte-
grand in (6) coincides with a zero ofdetA(f) (or detA(−f)
depending on the sign of the differencet−t′). Such singularity
is a simple pole by assumption that the center manifold of the
power system is one-dimensional. Constructing perturbation
theory in powers of smallǫ and assuming the overdamped
operating regime, one finds that the dominating mode deter-
mining behavior of the expectation value (6) at|t− t′| → ∞
is given by

2πfcorr = − jǫ

aTDb
(9)

to the leading order inǫ. The O(ǫ2) contribution can be
neglected as long asǫ ≪ (aTDb)2/(aTDT K̃−1Db− aTMb).
Note that the dependence of the leading mode on the matrix

M of inertia constants appears only in the second order in
ǫ and is negligible in the vicinity of the bifurcation point, as
ǫ → 0. The frequency of the leading mode is purely imaginary
to the orderO(ǫ) unlessǫ > (aTDb)2/4aTMb, i.e., when the
system is underdamped.

Estimating the integral (6) near the leading singularityf =
fcorr, one finally finds to the leading order inǫ

S(|δt|) = b(aTBa)bT |δt|
ǫ2

+ (10)

b(aTBa)(aTDb)bT

ǫ3

(

e−
ǫ|δt|

aT Db − 1
)

.

Note that the matrix elementsaTBa and aTDb are simple
numerical factors, so that the dominating direction in the phase
space of the system where the fluctuations of the system vector
x grow coincides with the direction of the right eigenvector
b corresponding to the lowest eigenvalueǫ of the power flow
JacobianK, [20], [21].

IV. D ETECTING CRITICAL SLOWING-DOWN IN FREQUENCY

AND TIME DOMAINS

According to the expression (10), asǫ → 0 and the operat-
ing regime of the grid approaches the bifurcation, amplitude
of the fluctuations of the system state vectorx grows asǫ−3.2

Simultaneously, the characteristic correlation time of these
fluctuationsτcorr = aTDb

ǫ grows asǫ−1 at ǫ → 0. These two
effects explain the phenomenon of critical slowing-down often
observed during large-scale failures of power grids [11], [12],
[13], [14]. The growth of both the amplitude of fluctuations
and the correlation time imply that close to collapse dynamics
of the system vectorx can be represented as a sequence of
relatively long time intervals with weakly changing valuesof
system variablesx. However, these values significantly deviate
from the equilibrium ones,x0, determined by the stationarity
conditionẋ0 = 0. This in turn (at least partially) explains why
it is technically hard to correctly and rapidly identify thestate
of the power system close to an unstable regime using the
standard power flow estimated procedures [4], [5]: away from
the threshold of instability stochastic fluctuations of thesystem
state vectorx are suppressed, while close to this threshold they
are strongly amplified. The same applies to numerical errors
of power flow estimators in operating regimes near bifurcation
and prevents effective convergence of numerical schemes. It
is very tempting to use the very signatures of critical slowing-
down as markers of approach to stability loss [11], [12], [13],
[14]. In this Section we shall consider how the critical slowing-
down affects behavior of the autocorrelation function in the
frequency domain and then compare our conclusions to results
of numerical simulations.

The complete dominance of a single mode close to collapse
implies that in the frequency domain expression (7) reduces

2Note that the actual behavior of the amplitude of fluctuations as a function
of ǫ depends on the load model, in particular, on the dependence of the
expectation value of fluctuating loads on frequencyf (∼ f−2 in our case).



to

C(f) =
2b(aTBa)bT

(2πf)2((aTDb)2(2πf)2 + ǫ2)
+O(ǫ). (11)

Thus, at very small angular frequencies2πf ≪ ǫ
aTDb

one
finds a quadratic behavior of the Fourier-transformed autocor-
relation function (7) withf−1: S(f) ≈ 2b(aTBa)bT

(2πfǫ)2 , while in
the intermediate range of frequencies this behavior is quartic
instead:S(f) ≈ 2b(aTBa)bT

(aTDb)2(2πf)4 . These two types of behavior
are rather universal and can be seen even if the dynamics of
the power system does not yet exhibit critical slowing-down.
Closer to the threshold of instability, asǫ → 0, the quadratic
behavior of (11) is realized in a smaller and smaller range
of frequenciesτ−1 < 2πf < ǫ

aTDb . This in turn leads to a
stronger1/f4 amplification of the amplitude of fluctuations at
small f : the matching point2πf ∼ ǫ

aTDb betweenf−4 and
f−2 regimes is reached at smaller and smallerf , while ǫ → 0.
Corresponding amplification of the amplitude of fluctuations
of x particularly noticeable at small frequencies is a very good
marker of approach to stability loss.

In order to check these predictions, we have performed nu-
merical simulations of the stochastic behavior of IEEE 39 and
IEEE 57 test power systems close to the threshold of instability
in both frequency and time domains. Bifurcation points for
both power systems discussed here were first localized using
continuation power flow procedure [22], [23] implemented
in PSAT Toolbox for Matlab [24] and then identified more
precisely using MATPOWER library for Matlab [25].

For the case of the IEEE 39 test power system two chosen
values of the continuation power flow parameter corresponded
to the smallest eigenvalue of the power flow Jacobianǫ ≈ 0.57
p.u. (operating regime relatively far from the threshold ofin-
stability) andǫ ≈ 0.08 p.u. (pre-critical operating regime).The
loads were allowed to fluctuate only on the buses 3, 10 and
21 in order to check the difference in correlations of the state
vector between the nodes with and without fluctuating power
loads. On each of these nodes, a single realization of the active
power load fluctuations was considered (although realizations
of δPi of course differed between the nodes). Other parameters
of the model were chosen similarly to [26], [13], which brings
the system into an overdamped operating regime.

For the case of the IEEE 57 test power system the op-
erational regimes chosen for simulations corresponded toǫ ≈
0.01 p.u. (pre-critical regime) andǫ ≈ 0.17 p.u. (normal stable
operating regime). Parametersαi were chosen as described in
the Section 2. Inertia constantsHi of generators were chosen
according to the relationHi ≈ 0.04Pi, which, as explained
in [27], effectively holds for many test power system models.
As usual, the bus1 was the slack bus. The active power loads
were allowed to fluctuate only on the nodes12, 28, 45 with
characteristic amplitude of fluctuations

√
B/(2π) ≈ 0.1 p.u.

The results of frequency domain simulations for the IEEE
39 model are presented on the Figs.2, 3. The1/f4 behavior
along the relevant interval of frequencies is clearly seen for
both cases ofǫ ≈ 0.57 p.u. and 0.08 p.u., as well as
an amplification of the fluctuations at small frequencies by

more than an order of magnitude in the pre-critical operating
regime. The prediction of the theory for the value of the auto-
correlation function atf ≈ 0.01Hz is≈ 3 for the caseǫ ≈ 0.08
p.u. and≈ 0.1 for the caseǫ ≈ 0.57 p.u., in a good agreement
with the results of simulation.

As expected, we have found that the low-frequency behavior
of different inter-node/single-node structure functionsof the
system state vectorx is rather similar irrespective whether
the power load is fluctuating or fixed on the given node.
This implies that a single-node autocorrelation function of the
system state vector, in particular, its behavior at smallf , can be
a good indicator of the approach to the loss of stability. The
behavior at large frequencies differed noticeably, with inter-
node correlations decaying more rapidly withf for nodes with
fixed power loads. The results of simulations of the IEEE 57
test power system are essentially similar.

The results of simulations of the autostructure function
S(|δt|) in time domain demonstate its amplification at|δt| ∼
1 − 10 sec. The singular value decomposition of the system
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Fig. 2. Detecting critical slowing-down in frequency domain; simulations
of IEEE 39. Inter-node correlation functionC(x5(f)x19(f)), the load on
both nodes5 and 19. The regimeǫ ≈ 0.08 p.u. is close to the threshold
of instability, while the regime withǫ ≈ 0.57 p.u. is relatively far from the
threshold. Amplification of the amplitude of fluctuations atsmall frequencies
f by more than an order of magnitude is clearly seen. The main plot uses
the log-log scale. The inset represents behavior of the correlation function at
small f using the normal scale.

state vectorx(t) shows that there exists a dominating mode
for the pre-critical regimeǫ ≈ 0.01 p.u., while this is not the
case for the stable operating regimeǫ ≈ 0.17 p.u., where
the contributions of many different modes tox provide a
contribution of the same order of magnitude into (6), see Fig.
4. Finally, we would like to emphasize that the contributionof
different nodes into the right eigenvectorb of the leading mode
relatively weakly depends on the operating regime. Thus, the
dominant nodes of the grid contributing the most to this mode
can be identified well before the threshold of instability is
approached.

V. CONCLUSION

In the present contribution we have studied the phenomenon
of critical slowing-down often observed in power grids close to
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the threshold of a large-scale failure such as voltage collapse or
a loss of synchrony [11], [12], [13], [14]. As we have argued,
this phenomenon is directly related to (and can be explained
by) a strong amplification of fluctuations of the system state
variables - voltage phases and magnitudes on individual nodes
of the grid - for operating regimes close to collapse.

We have explained how the phenomenon of critical slowing-
down can be used to effectively detect approach to the thresh-
old of instability. A technically simple method of detection is
based on analysis of single-node (or inter-node) autostructure
functions of the system state vector in the frequency domain,
where approach to the threshold of instability is character-
ized by a strong amplification of low frequency part of the
correlation function. It is very important to note that the
onset of critical slowing-down can be detected using limited
measurements of state variables, such as in the situation of
incomplete observability of the smart grid, when effectiveand

precise measurement of inter-area modes is impossible.
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