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Abstract—To facilitate more efficient control, massive amounts
of sensors or measurement devices will be deployed in the Smart
Grid. Data collection then becomes non-trivial. In this paper,
we study the scenario where a data collector is responsible for
collecting data from multiple measurement devices, but only some
of them can communicate with the data collector directly. Others
have to rely on other devices to relay the data. We first develop a
communication protocol so that the data reported by each device
is protected again honest-but-curious data collector and devices.
To reduce the time to collect data from all devices within a certain
security level, we formulate our approach as an integer linear
programming problem. As the problem is NP-hard, obtaining
the optimal solution in a large network is not very feasible. We
thus develop an approximation algorithm to solve the problem.
We test the performance of our algorithm using real topologies.
The results show that our algorithm successfully identifies good
solutions within reasonable amount of time.

I. INTRODUCTION

One of the significant hallmarks of the Smart Grid (SG)

initiative is the pervasive data sensing to facilitate a more

efficient control. While the existing Supervisory Control And

Data Acquisition (SCADA) system already collects data from

various sensors, the scale and scope of the data collection

in the SG are expected to pose new challenges. Applications

of data sensing in the SG include conditional and structural

monitoring of Distributed Energy Resources and renewables in

the generation; State-of-Charge monitoring; substation, trans-

former, underground and overhead lines in the transmission

and distribution; and collection of information from smart

meters in the Advanced Metering Infrastructure (AMI) [1].

In addition to the emerging and new sensing in the SG, data

collection from the legacy telemetric devices widely deployed

in the field needs to be accommodated as part of the infrastruc-

ture, at the very least, in the transitional period. An example

of such legacy telemetric collection need is provided in [2].

In this scenario, a mobile data collector (DC) moves along

a road, or a certain path, to collect data from measurement

devices (MDs). It can only connect directly to the MDs that

are within DC’s proximity. We call the MDs that can talk to

the DC directly root MDs. Those MDs that are outside the

communication range of the DC have to send data to the DC

through root MDs in a multihop manner. Figure 1 presents a

simple example where only root MDs (MD1, MD2, MD3) can

talk to the DC directly. Other remote MDs should send their

data to one of the root MDs. Note that the underlying data

collection paradigm of the aforementioned case is present in

many other emerging sensing and measurement scenarios [1],

[3], especially when sequential data collection is needed over
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Fig. 1. An Example SG Network.
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Fig. 2. Disjoint Trees.

a multihop communications topology. To reduce the number

of messages needed for the whole data collection, we propose

generating several disjoint trees, each rooted at a certain MD,

such that the trees reach all MDs. Fig. 2 shows an example,

where bold edges show the trees formed from the roots.

In this paper, we are interested in secure, scalable, and

optimized data collection in the SG. Our objective is to reduce

the total data collection time while ensuring the confidentiality

of the data. We encrypt data in a way that while allowing

the relaying MDs to verify the message integrity, they cannot

read the content under the honest-but-curious model. The data

collection time is reduced through identifying data collection

trees that have minimum sum of depths. We develop an

optimization problem for the secure data collection, which is

NP-Hard, and then develop an approximation algorithm.

The rest is organized as follows: Sec. II presents the

related work. Tree-based secure data collection is detailed

in Sec. III. Sec. IV develops the optimization problem and

solution together with an approximation algorithm. Simulation

results are given in Sec. V. Sec. VI concludes the paper.

II. RELATED WORK

To the best of our knowledge, confidential data collection

with integrity validation by means of forming disjoint trees

to minimize the total collection time has not been studied in

the literature. We dissect our problem into three constituents

in order to present a discussion of the partially related work:

(1) Multi-sink data collection in Wireless Sensor Networks

(WSNs) and opportunistic networks [4], (2) Tree or cluster

formation, and (3) Secure data collection.

There is some similarity in our formulation to data collec-

tion via mobile relay nodes [5], except that the objective of

our approach is not energy efficiency Data collection by means

of mobile sinks [6] is somewhat related in the sense that we

are looking to choose the root of trees to relay the data to.

The optimization part of our problem is similar to the Base



Station Problem from [7] where the problem of positioning

data collecting nodes in a WSN is studied as a maximum

flow problem with the objective of finding the optimal data

rate. The NP-completeness proof of the problem is also

given in [7]. While retaining the complexity1, our problem

is about the minimization of total time of the data collection

and incorporates the security aspect. The tree formation of

our approach connotes clustering algorithms, especially in

WSNs [9]. However, unlike the goals of WSN clustering on

node reachability and network longevity, we focus on security

and data collection time minimization.

Finally, as for the security of the data collection task, there

are two major approaches: One is to ensure the protection of

the data content directly without regard to the data seman-

tics. An approach presented in [10] is based on symmetric

cryptography to provide data confidentiality and authentica-

tion between sensors and the base station. [11] describes

a protocol for DC to collect data from an MD, but direct

communication between DC and MD is assumed. Another

category for providing security exploits the aggregate statistics

of the sensed data, such as summation, average, minimum,

maximum, etc. These approaches take advantage of in-network

data processing (also referred to as aggregation) to induce

some obfuscating operations on the transmitted data [12]–

[20]. Our problem formulation does not assume any statistical

property for in-network processing.

III. SECURE DATA COLLECTION VIA TREES

A. Overview

A Power Operator (PO) delegates a DC to collect data

from a certain number of MDs. We assume each entity in

the system possesses a pair of public and private key as long-

term secrets. We denote the public key and private key of node

A as A+ and A−, respectively. Before an MD is installed in

the field, it is configured with its own public/private key pair

and the public key of PO, but not the public key of DC. Our

architecture does not require an MD to know the public keys

of its neighbors, either. Apart from the keys, all entities are

also configured with Diffie-Hellman (DH) parameters g and p

for shared key establishment2. PO, DC, and MDs all agree to

use the following basic cryptographic functions.

1) PKE(K,M) : Public key encryption on message M using

key K

2) SKE(K,M) : Symmetric key encryption on M using K

3) SIG(A,M) : Signature of M by A (created using A−)

4) HASH(K,M) : Compute the keyed-hash of M using key K

The security objective of the data collection is to protect the

data reported by each MD such that only the PO can read the

data generated by MDs. That is, even though the data reported

has to be relayed by other MDs and the DC, these MDs and

1Complexity of the optimization part of our problem may also be obtained
from the classical multi-facility location problem [8].

2 p is a prime number, and g is a primitive root mod p. Let A pick a secret
a and B pick a secret b. A sends gamod p to B, and B sends gbmod p to A.
A can then compute the shared key by (gbmod p)amod p. B computes the
key by (gamod p)bmod p.

DC should not be able to read it. To achieve this efficiently,

data should be encrypted by a shared key between a certain

MD and the PO using symmetric key cryptography. We adopt

the DH mechanism to develop the shared keys. On the other

hand, to allow intermediate MDs to perform integrity checks,

all the MDs within the same disjoint tree share a Group Key

GK (to be explained below) with PO and DC.

We now briefly describe the whole procedure of data

collection. First, the PO determines the disjoint trees to be

used for data collection. Then, it provides the tree information

and the necessary key information to the DC. The DC then

talks to each root MD along its path to collect data. Root MD

sends the key information along each branch on its tree to

collect data. After it receives data from all MDs in its tree, it

sends the data to DC.

B. Data Collection on a Branch

We first describe a simple situation that data is collected

along a certain branch on the tree. We then describe the data

collection of a whole tree. Fig. 3 presents how DC collects data

on a tree branch spanning from MD1, the root MD, to MD2,

DC MD1 MD3MD2

C = gc ||GK,

M
k
= SKE(GK, gdk) || SIG(MD

k
, gdk) || DATA

k
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+, C)

DC+||SIG(PO, C) || (DC, C)
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Fig. 3. Data Collection on a Tree Branch.

and then MD3. Let the branch be MD1 → MD2 → . . .MDl ,

where MD1 is the root MD. The public DH key of PO is gc

(mod p is dropped for brevity), and the group key is GK. The

key information created by the PO is denoted by C = gc||GK,

where || represents the concatenation operation. Each MD on

the branch must receive C to develop a shared key with the

PO. The detailed procedure of data collection is as follows:

1) DC → MD1: DC+||SIG(PO,C)||SIG(DC,C)||
[PKE(MD+

k ,C),1 ≤ k ≤ l]
To protect C from eavesdroppers, C is encrypted using the

public keys of the MDs. As only the PO knows the public

keys of all the MDs, PKE(MD+
k ,C) for 1 ≤ k ≤ l are

created by PO and sent to DC, which will be discussed in

Section III-C. MD1 authenticates C by verifying the signature

SIG(PO,C). MD1 verifies the legitimacy of DC by verifying

SIG(DC,C). MD1 then signs C using its public key and sends

the signature together with other information to the next MD

along the branch.

2) MD1 → MD2: MD+
1 ||SIG(PO,C)||SIG(MD1,C)||

[PKE(MD+
k ,C),2 ≤ k ≤ l]

Note that as MD1 also sends MD+
1 to MD2 so that MD2

does not need to know any public key of any MD before the

communication. When MD2 receives the message, it performs



similar operations as MD1 that it authenticates C and MD1. It

then passes the key information to the next MD (more details

will be provided in Section III-C).

3) MDi → MDi+1: MD+
i ||SIG(PO,C)||SIG(MDi+1,C)||

[PKE(MD+
k ,C), i+1 ≤ k ≤ l]

Intermediate MDs on a tree branch keep forwarding the key

information to the next MD after retrieving GK and gc from

C.

4) MDl−1 → MDl : MD+
l−1||SIG(PO,C)||SIG(MDl−1,C)||

PKE(MD+
l ,C)

MDl is the last MD on the branch. After verifying C, it

prepares the reported data. It first generates its own DH

half key gdl and develops the shared key between itself and

the PO, which is gcdl . Let DATAl be the data encrypted

and integrity protected using gcdl . MDl then sends DATAl

to MDl−1 for relaying to DC and finally to PO. To allow

MDl−1 to perform authentication check on DATAl , MDl

computes the hash of DATAl using gdl . MDl should also

let MDl−1 and the PO knows what gdl is. Let message

Mk = SKE(GK,gdk)||SIG(MDk,g
dk)||DATAk for 1 ≤ k ≤ l.

Ml contains the DH half key and the encrypted data to be

delivered to the PO.

5) MDl → MDl−1: MD+
l ||Ml ||HASH(gdl ,DATAl)

MDl−1 first retrieves gdl from SKE(GK,gdl ) contained in

Ml and verifies SIG(MDl ,g
dl ). It then can authenticate the

message by verifying the hash. Note that although MDl−1

knows gc and gdl , according to the property of DH protocol,

MDl−1 still cannot compute gcdl to decrypt DATAl . Thus,

DATAl remains secret to MDk for all k = 1, . . . , l−1 and the

DC. After verifying the message, MDl−1 prepares its own

encrypted data DATAl−1 and sends both DATAl and DATAl−1

to MDl−2 together with the required key information.

6) MDl−1 → MDl−2:

MD+
l−1||Ml−1||Ml ||HASH(gdl−1 ,DATAl−1||Ml)

MDl−2 processes the message in a similar manner as MDl−1

does. Finally, MD1 would receive a message from MD2 that

contains all the data from MD2 to MDl . It can then prepare a

message that contains all the data on the branch for the DC.

7) MD1 → DC:

MD+
1 ||M1||M2|| . . . ||Ml ||HASH(gd1 ,DATA1||M2|| . . . ||Ml)

C. Tree Structure Representation

To facilitate a root MD to collect data for its tree, it has to

know which neighbors belong to its tree. The root MD also

needs to inform its children of their children. In other words,

the tree structure has to be embedded in the message from the

DC to the root MD, and passed along to the MDs on the tree.

C = gc||GK has to be encrypted using the public key of each

MD on the tree. We use PKE(MD+
i ,C) for all MDi on the

tree to represent the tree. Let E(i) = PKE(MDi,C), and let

T (i) be the tree representation rooted at MDi. We further let

MDch1
, . . . , MDchm

be the children of MDi if it is not a leaf.

The representation is as follows:

T (i) =

{

[E(i),T (ch1), . . . ,T (chm)] if MDi is not a leaf

E(i) if MDi is a leaf

Refer to the tree rooted at MD2 in Fig. 2, T (2) =
[E(2),E(6), [E(8),E(9)]].

When MDi receives T (i), it can retrieve C from

E(i). It can also identify its children to forward key

information. Let MD j be a child of MDi, it sends

MD+
i ||SIG(PO,C)||SIG(MDi,C)||T ( j) to MD j.

An MD should wait for all its children to report

data before sending its data to its parent. Data report-

ing does not have to follow the tree structure. A par-

ent MD can simply append all Mk of descendant MDk

together. For example, MD2 in Fig. 2 can send DC

MD+
2 ||M2||M6||M8||M9||HASH(gd2 ,DATA2||M6||M8||M9).

D. Completing the Protocol

We now complete the protocol by describing the communi-

cation between the PO and the DC. Fig. 4 illustrates the infor-

mation exchange. They first use the DH protocol to establish

PO DC

PKE(DC+, ga||nonce) SIG(PO, ga)

PKE(PO+, gb) SKE(K, nonce)

K = gab mod p

SKE(K, C1 || SIG(PO, C1)) || T(r1),

SKE(K, C2 || SIG(PO, C2)) || T(r2),

:

SKE(K, C
k
|| SIG(PO, C

k
)) || T(r

k
)

C
k
= gck || GK

k

SKE(K, M1 || M2 || … )

Contact the head MDs

Fig. 4. Communication between PO and DC.

a shared secret K to secure the subsequent conversation. PO

picks the group keys to be used. The tree structure and the

key information are then encrypted using K. Suppose there

are k root MDs, MDr1
,MDr2

, . . . ,MDrk
. PO can use different

DH half keys and group keys to develop shared keys with the

MDs on different trees. Let the DH half key and the group

key for the tree rooted at MDhi
be gci and GKi, respectively.

We further let Ci = gci ||GKi. For root MD MDhi
, PO sends

SKE(K,Ci||SIG(PO,Ci))||T (hi) to DC. DC can then verify

the signature for each Ci and talk to the root MDs to collect

data as described earlier. After all data are collected, DC

encrypts M j for each MD j it collects using K. Note that

M j = SKE(GKi,g
d j)||SIG(MD j,g

d j)||DATA j, which belongs

to the tree of MDi, contains enough information for the PO to

retrieve and verify the data.

E. Security Discussion and Its Complexity

In our protocol, the confidentiality of the data is ensured

through the Diffie-Hellman keys. The DH half keys are trans-

mitted under encryption. Eavesdroppers cannot read them. The

data remains confidential to the honest-but-curious DC and

intermediate MDs as well because, although they can read the

public DH keys exchanged between the PO and the MD, they

cannot establish the DH key themselves. Key information from

the root to the leaves are authenticated through signatures,

while data from the leaves to the root are authenticated through

the hashes in a hop-by-hop manner. Although a tampering on

data can be detected by the PO eventually, by authenticating



the data in a hop-by-hop manner, tampering can be identified

early so that network resources would not have been spent on

transmitting the tampered data from the leaf to the PO. Our

protocol is thus secure from both active and passive attacks

when the keys are not leaked. (We consider the risk of leaking

the group key in our problem formulation in Sec. IV-A).

We now study the computational complexity of an MD. We

only consider public key and DH operations since symmetric

key and hash operations are not expensive. The leaf MD

receives one message from its parent and sends one message

to its parent in each data collection cycle. It has to decrypt

the key information and verify two signatures for the message

received. To prepare the reply, it generates a DH half key and

signs it. Five operations are needed in total for a leaf node.

Similar operations are needed for the messages to and from the

parent for each non-leaf MD. To send messages to its children,

an MD has to sign the key information. For each reply from a

child, it has to verify the signature of the half key provided by

the child. Therefore, the total number of operations a non-leaf

MD needs to perform is 6 + number of children.

IV. COLLECTION TREE FORMATION

A. Problem Description

In this section, we describe how PO constructs the disjoint

data collection trees on the network connectivity graph G of

MDs. Since the PO has complete information of the topology,

graph G, a connected vertex set of all MDs, is known a priori.

We use set M = {1,2, · · ·} to denote the index set of these

MDs. Furthermore, if there is a direct connectivity between

two MDs then an undirected edge exists between them in

graph G. Furthermore, we define the set of all MDs that can

potentially be selected as the root MDs candidate set, and we

use R to denote the set of indices of these candidate root MDs.

The largest possible candidate set consists of all the MDs that

can be physically within the communication range of the DC

when it is traveling along the predefined data collection path.

For example, in Fig. 1, R= {1,2,3}.

Our objective is to minimize the sum of the data collection

time over all trees. We further assume identical link delays.

Then, we can use the depth of a data collection tree to

represent the time needed to collect data from this particular

tree and the summation of the depths over all constructed trees

to represent the overall data collection time.

Apart from the time to collect data, we also consider the

security level of the group key. As the MDs may not be in a

very secure physical environment, there is a risk of leaking the

group key. If the group key is stolen, the attacker can decrypt

SKE(GK,gdk) in Mk to obtain gdk and create the correct hash

of fake data. Although the PO can finally detect the data were

not legitimate, network resource will be wasted in transmitting

the message. Assume that every MDi (i ∈M) leaks the group

key with probability pi. Then the probability that the group

key of a tree T is leaked is Pleak(T ) = 1−∏i:MDi∈T (1− pi).
To ensure the security level of every constructed tree T , we

limit Pleak(T ) to be no larger than some predefined threshold.

We assume identical pi’s. Then, if we limit the group key

leaking probability to be no larger than some threshold value

Pthreshold , we have:

Pleak(T ) = 1− ∏
i:MDi∈T

(1− pi) = 1− (1− p)|T | ≤ Pthreshold

In other words, the cardinality of every constructed tree

should satisfy

|T | ≤
log(1−Pthreshold)

log(1− p)
= Nthreshold (1)

As detailed in the next subsection, we formulate the opti-

mization problem with a Min−Sum−Max objective to mini-

mize the summation of the depths over all constructed trees

with the aforementioned security constraint.

B. Mathematical Formulation

We state the optimal collection tree formation (CTF) prob-

lem into a binary integer programming formulation as follows:

min ∑
j∈R

(

max
i∈M

∑
k∈Ki j

xk
i jLi j

)

(2)

s.t. ∑
i∈M

∑
k∈Ki j

xk
i j ≤ Nthreshold ,∀ j ∈R (3)

∑
j∈R

∑
k∈Ki j

xk
i j = 1,∀i ∈M (4)

xk
i j ≤ xl

m j,∀i ∈M,m ∈Ni,P
l
m j ⊆ Pk

i j (5)

xk
i j ∈ {0,1},∀i ∈M, j ∈R,k ∈ Ki j (6)

Ni: the set of neighbors of MDi. Pk
i j: the kth shortest path

from MDi to MD j in graph G. There can be multiple equal

length shortest paths between any pair of MDs in graph G.

For example, in Fig. 1 two shortest paths, MD8 → MD2 →
MD1 and MD8 → MD6 → MD1 exist between MD8 and MD1.

Then, we have P1
18 =MD8 →MD2 →MD1 and P2

18 =MD8 →
MD6 → MD1. Ki j: set of indices of the shortest paths between

MDi and MD j. For example, in Fig. 1 because two shortest

paths exist between MD8 and MD1, we have K81 = {1,2}.

Li j: number of MDs in the shortest paths between MDi and

MD j. In the example in Fig. 1, we have L18 = 3. With Eq. 1,

Nthreshold : maximum number of MDs allowed in one tree.

We associate a binary variable xk
i j with every shortest path

Pk
i j between MDi (∀i ∈M) and MD j (∀ j ∈R). For all MDi’s

out of the candidate set and MD j’s in the candidate set, that

is ∀i ∈M\R and ∀ j ∈R, we have

xk
i j =

{

1 if MDi’s data is collected along Pk
i j to MD j

0 if MDi’s data is not collected along Pk
i j to MD j

Furthermore, for all MDi belonging to the candidate set,

that is ∀i ∈ R, we have x1
ii = 1 if MDi is selected as a root;

otherwise, x1
ii = 0.

In the objective function (2), maxi∈M ∑k∈Ki j
xk

i jLi j for some

fixed j ∈R represents the depth of the tree rooted at candidate

root MD j. Furthermore, maxi∈M ∑k∈Ki j
xk

i jLi j = 0 if MD j is

not chosen as the root of any collection tree. Therefore, by

summing over ∀ j ∈ R, we have the objective function (2)

representing the total depth over all constructed trees.



The inequality constraints (5) ensure that any MDi can send

data to MD j over path Pk
i j only if one of MDi’s neighbors

MDm chooses to send data to MD j over P l
m j, a sub-path of path

Pk
i j. Refer to Fig. 1, suppose P1

51 = MD5 → MD4 → MD1 and

P1
41 = MD4 → MD1 with P1

41 ⊆ P1
51, then we have x1

51 ≤ x1
41,

which means MD5 can choose to send data to MD1 over path

P1
51 only if MD4 chooses to send data to MD1 along path P1

41.

In a word, the single path constraints (4) and the sub-

path constraints (5) together ensure that we construct multiple

disjoint trees rooted at all or a subset of the MDs in the

candidate set. Furthermore, the security constraints (3) further

ensure that the number of nodes in every constructed tree is

no larger than the threshold.

C. Solution and Analysis

To solve CTF, we firstly transform it into the standard

format by rewriting (2) as follows:

min ∑
j∈R

z j (7)

s.t. z j ≥ ∑
k∈Ki j

xk
i jLi j,∀i ∈M, j ∈R (8)

(7) and (8), together with constraints (3) to (6), form the

modified CTF. The modified-CTF problem is equivalent to

the original CTF problem in terms of the optimal objective

function value. Nevertheless, the mixed-integer programming

problem is an NP-hard problem. Thus, we propose to use an

approximation algorithm by means of a linear relaxation based

iterative rounding (LR-IR) [21] as shown in Algorithm 1. It is

Algorithm 1: LR-IR for Modified-CTF

Input: G, Nthershold , R
Output: Modified-CTF {xk

i j}
while true do1

solve the LP relaxation of the modified-CTF with2

xk
i j ∈ [0,1] and get optimal solution {xk∗

i j };

round the largest fractional solution within {xk∗
i j } to 1;3

if xk∗
i j ∈ {0,1} (∀i ∈M, j ∈R,k ∈ Ki j) then4

return {xk∗
i j };5

end6

end7

obvious that the worst-case number of iterations of Algorithm

1 is O(N) with respect to the number of decision variables xk
i j.

Also, Algorithm 1 terminates when each xk
i j equals to 0 or 1.

V. SIMULATION

In our simulation, we use the SG data set for Washington,

DC [22]. The data set contains the exact positions of all the

utility poles in the city. We extract the positions of 300 utility

poles from two portions of the DC map, as illustrated in Fig.

5 and Fig. 6.

Specifically, there are 8 stars in both figures representing

MDs in the candidate root set. In Fig. 5, we assume that the

DC is traveling along the southernmost street. In Fig. 6, the

DC is assumed to be traveling along the westernmost street.

�✁✂✄☎

Fig. 5. MD Topology I.

✆✝✞✟✠

Fig. 6. MD Topology II.

Then, we pick evenly distributed 8 MDs along the two streets

to be the candidate root sets. Furthermore, we assume that

MDs communicate with each other wirelessly with an identical

communication range of 100m. Also, topology II has a large

MD density(826/km2) than than topology I (722/km2). We

used GUROBI solver [23] for our simulations.

In our simulation, we construct a scenario by choosing |M|
MDs nearest to the reference streets. For example, in topology

I, 50 MDs that are nearest to the southernmost street in Fig. 5

are selected to construct the scenario.
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Fig. 7. Comparison of Total Tree Depth.

In Fig. 7, we compare the total depth of the constructed

trees in scenarios with different number of MDs generated by

three algorithms: The optimal algorithm is the solution from

GUROBI or the modified-CTF problem. The approximation

algorithm refers to Algorithm 1. In the random tree formation

algorithm, every MD randomly selects a neighbor which has

been included in a tree to be its parent. Also, in Fig. 7, two

cases are considered in both topologies, namely Nthreshold =
40%× |M| and Nthreshold = 80%× |M|. For example, if we

assume that every MD leaks the group key with probabil-

ity p = 0.01 and |M| = 100, then Nthreshold = 40% × |M|
means we set the threshold probability Pthreshold = 1− (1−
p)40%×|M| = 1− (1−0.01)40%×100 = 0.331.

In Fig. 7, our approximation algorithm yields a total tree

depth which is much smaller than that of the random tree

formation algorithm while staying fairly close to the optimal

value. Also, as the maximum tree size (Nthreshold) increases,

both the optimal and the approximation algorithms tend to

yield decreasing values of the total tree depth. This observation

actually captures the inherent trade-off between efficiency

and security of our optimization formulation. We will further

demonstrate it in Fig. 9.

The comparison of the completion time (in terms of sec-

onds) of the optimal algorithm and the approximation algo-

rithm with different numbers of MDs is provided in Table I.



|M| 25 50 75 100

Top. I Optimal 1.953 73.956 1418.134 6422.439

Top. I Approx. (40%) 0.048 1.892 12.309 15.319

Top. II Optimal 2.332 1650.730 6503.994 36009.112

Top. II Approx. (40%) 0.089 1.807 4.235 5.254

TABLE I
ALGORITHM COMPLETION TIME IN SECONDS.

We can readily observe that completion time of the optimal

algorithm increases exponentially with the number of MDs.

In contrast, our approximation algorithm has much lower

completion time.

Furthermore, from Table I, we observe that when |M| =
100, the optimal algorithm already has to take more than 6000s

to complete. This indicates that when solving the modified-

CTF problem for a network of more than 100 MDs, it is

better to turn to our approximation algorithm. Hence, we carry

out simulation in scenarios with up to 300 MDs whereby our

approximation algorithm terminates in reasonable time period.

From Fig. 8, we can observe that the approximation algo-

rithm outperforms the baseline random tree formation algo-
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(b) MD Topology II.

Fig. 8. Comparison of Total Tree Depth (Approximation vs. Random).

rithm in terms of the total tree depth when the number of

MDs is larger than 100.

In Fig. 9, we fix the number of MDs to be |M| = 50 and

vary the maximum percentage of MDs in one tree,
Nthreshold

|M|
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Fig. 9. Efficiency and Security Tradeoff

from 20% to 70%. As this ratio increases, we see an increasing

trend of the average constructed tree size and a decreasing

trend of the total tree depth. This observation reflects the

trade-off between efficiency and security of data collection

inherently in our problem formulation. More specifically, if

we allow MDs to form trees with larger sizes then the total

depth of constructed trees tends to be smaller.

VI. CONCLUSION

In this paper, we develop a secure and efficient protocol to

collect data from measurement devices (MD) in a multi-hop

manner through a mobile data collector (DC). MDs report data

via trees rooted at the MDs that have direct communication

with the DC. We formulate the secure and optimal tree

construction problem as an integer linear programming, and

develop an approximation algorithm to compute a solution.

The simulations conducted using real topologies reflect that

our algorithm performs well and efficiently.
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