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Abstract—Before a building can participate in a demand
response program, its facility managers must characterize the
site’s ability to reduce load. Today, this is often done through
manual audit processes and prototypical control strategies. In
this paper, we propose a new approach to estimate a building’s
demand response capacity using detailed data from various
sensors installed in a building. We derive a formula for a prob-
abilistic measure that characterizes various trade-offs between
the available demand response capacity and the confidence level
associated with that curtailment under the constraints of building
occupant comfort level (or utility). Then, we develop a data-driven
framework to associate observed or projected building energy
consumption with a particular set of rules learned from a large
sensor dataset. We apply this methodology using testbeds in two
buildings in Singapore: a unique net-zero energy building and
a modern commercial office building. Our experimental results
identify key control parameters and provide insight into the
available demand response strategies at each site. 1

I. INTRODUCTION

An efficient demand response (DR) program should take
full advantage of the DR potential of each participating con-
sumer. In order to facilitate this, it is crucial to determine
the maximum reduction in energy consumption that can be
reliably achieved in a building. We refer to this consumption
as the demand response capacity of the building, and it can
be achieved with a certain probability.

To determine the DR capacity of a building, a large
number of building-specific models and parameters need to
be estimated. It is also necessary to predict the building’s
energy consumption behavior with respect to various parameter
settings. Current approaches for achieving these requirements
have several limitations. One common approach is to apply
standardized regression models using power meter data to find
a rough estimate of DR capacity. This often fails to capture the
unique characteristics of a particular building that determine
its DR capacity. Alternatively, one can use advanced simu-
lation tools to precisely evaluate DR capacity under various
parameters settings. This, however, requires detailed build-
ing specifications and in-depth domain knowledge to model
buildings with appropriate parameters. Hence, such simulation
approaches do not scale well when applied to several buildings.

1 c©2014 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
Available on IEEE Xplore DOI: 10.1109/SmartGridComm.2014.7007703

Furthermore, none of the aforementioned methods can quantify
and estimate the DR capacity with respect to a well-defined
reliability measure in a way that is consistent across buildings.

In this paper, we introduce a data-driven approach to
estimate DR capacity using a probabilistic measure and a rich
dataset obtained from two buildings. Our proposed measure
captures insightful trade-offs between DR capacity and its
associated reliability. We derive a formula for this measure
that is analogous to the Bit Error Rate (BER) formula [1],
which is a fundamental performance metric in communication
theory. Hence, our work can be potentially extended to more
complex scenarios (that may contain multiple DR participants
and DR aggregators) employing many useful concepts and
mathematical tools developed in communication theory.

We adopt a data-driven approach, using sensor data, that
makes no assumptions about physical or regression models
for the building’s power consumption. In this approach, we
use a look-up table that associates observed or projected
consumption with a particular set of conditions (or rules)
learned from a large historical data set. Our approach will
become increasingly attractive as building data becomes more
readily available to building stakeholders through building
management systems, sensor devices, and public databases.
Those resources allow us to obtain highly granular information
about indoor/outdoor conditions (e.g., lighting, air temperature,
and humidity), occupant movements (via passive infrared sen-
sors) and electricity consumption (via smart plugs) for a more
precise look-up table.

In this paper, we apply our proposed DR capacity measure
and data-driven approach using historical data from two testbed
sites in Singapore: an office in a net-zero energy building [2],
and an office in a typical commercial building. Specifically,
we demonstrate the usefulness of our method in designing DR
strategies by means of a systematic examination of various
trade-offs between DR capacity and reliability with respect to
several key factors.

The paper is organized as follows. In Section II, we discuss
related work. In Section III, we introduce the testbed sites and
the system implementation that was used to drive this study. In
Section IV, we present a theoretical framework for estimating
DR capacity based on available control actions and occupant
comfort constraints. We then apply this approach to assess the
DR capacity of the two testbeds in Section V. Finally, we
conclude in Section VI.
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II. CONTEXT AND RELATED WORK

There are two stages of demand response capacity evalu-
ation for buildings: (i) audit stage [3], (ii) measurement and
verification (M&V) stage [4]. An audit takes place before the
site enrolls in a DR program; its purpose is to identify the
amount of responsive load at the site, and the control actions
that will be taken in an event. The M&V stage occurs after
a DR event, and allows aggregators or market authorities to
confirm that a specified curtailment did indeed occur. In this
work, we are concerned with the demand response audit stage.

Demand response audits [3] generally involve a high
degree of human effort. Within the last decade, researchers
have adopted top-down approaches to characterize typical
DR actions and audit procedures. For example, the authors
of [5] analyze utility meter data from dozens of buildings
and propose methods to help facility managers identify de-
mand response opportunities. Following a similar direction, [6]
provides a high-level overview of demand response strategies
for commercial buildings. Simulation tools have also been
developed to allow building owners to estimate their demand
response potential based on a variety of site-specific inputs and
typical control strategies [7].

At a more detailed level, a growing body of work has
emerged examining specific building loads for demand re-
sponse purposes. Such efforts often include the use of sensor
networks in the built environment. In this area, much attention
has been devoted to plug loads or miscellaneous power [8], [9],
including specific sources of plug load such as laptops [10].
Outside of plug loads, the other dominant building energy end-
uses tend to be lighting and heating, ventilation, and air con-
ditioning (HVAC). For both systems, researchers have studied
optimal control using inputs from sensor networks [11]–[13].

Our work differs from the above efforts in several important
ways. Since we use indoor sensor networks rather than utility
metering data, we are able to provide a more detailed view of
building energy consumption and demand response potential
than top-down audit approaches [5], [7]. Although several
related works (e.g., [9], [11]) also leverage wireless sensor
networks, our scope is more holistic in that it includes multiple
electricity end-uses (HVAC, lighting, plug load), as well as
consideration for occupants’ thermal and visual comfort.

III. TESTBED SITES

For this work, we deployed wireless sensor networks inside
two office spaces in Singapore to gather data on occupancy,
occupant comfort, and energy usage. These data are used
to develop a DR capacity model that incorporates occupant
comfort constraints. In this section we provide details about
the two testbed sites, as well as the sensor networks deployed
and the resulting data that was collected.

A. Site Details

Both testbeds are office spaces, however the features of the
buildings are very different. Testbed #1 (ZEB testbed) is in
a net-zero energy building (ZEB) [2] owned by the Building
and Construction Authority (BCA) of Singapore. The testbed is
located in the office of BCA’s Centre for Sustainable Buildings
and Construction (CSBC). The ZEB has several energy saving
features that are not common in most buildings today, such
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(a) ZEB testbed: estimated occupancy
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(b) ADSC testbed: estimated occupancy

Fig. 1. Real-time occupancy in two office testbeds over a 10 week period
in 2014. Occupancy is estimated using the methodology in [14].

as light pipes and light shelves (to bring more daylight into
the indoor space), as well as displacement ventilation and
personalized fresh air supply at individual desks2. Testbed
#2 (ADSC testbed) is in the authors’ office at the Advanced
Digital Sciences Center. This testbed is typical of a modern
commercial office building in Singapore.

In addition to differences in construction, these two sites
differ markedly in size, operating hours, and occupancy pat-
terns (see Figure 1). The ZEB testbed occupies a 154.5m2

area on a single floor of the building, and typically has 10−12
people working during the day. In contrast the ADSC testbed is
much larger (although still on a single floor), at 824.5m2, and
has a typical occupancy of roughly 40 people. The working
hours at the ADSC testbed are less regular than the ZEB
testbed, with the space typically occupied past 8pm. In both
spaces, personal computers are the primary source of plug load.
In the ZEB, however, all employees use laptops rather than
desktops, which significantly lowers energy consumption.

B. Sensor Network and Data Collected

In both testbeds, a wireless sensor network was deployed
to carry out real-time occupancy estimation and energy use

2https://www.bca.gov.sg/zeb/daylightsystems.html

https://www.bca.gov.sg/zeb/daylightsystems.html
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(b) ADSC testbed: power consumption from lighting

Fig. 2. Measured lighting power consumption from two office testbeds over
a 10 week period in 2014.

analysis using the EnergyTrack system [14]. The sensor types
deployed include temperature/humidity/light (THL) sensors,
carbon dioxide (CO2) sensors, passive infrared (PIR) sensors,
and smart plug power meters. Figure 1 contains heat maps
showing real-time occupancy estimates for the two testbeds.
These estimates are derived from CO2 measurements and PIR
trigger events, as described in [14]. Knowledge of precise
occupancy information is valuable for identifying energy effi-
ciency opportunities, as well as demand response actions that
have minimal impact on occupant comfort (see Section IV).

In the ZEB testbed, lighting and HVAC power consump-
tion data are obtained from the building management system
(BMS). In the ADSC testbed, the BMS data were not made
available, so lighting power is measured from the electricial
distribution panels, and HVAC power consumption is estimated
from an EnergyPlus [15] model. Figure 2 shows heat maps
depicting the measured lighting power consumption in each
testbed over the 10 week data collection period. Similarly,
Figure 3 shows the average lighting power per unit floor area
for weekdays in each of the testbeds. The impact of daylight
and dimmable lighting in the ZEB testbed is apparent from
the significantly lower lighting power density.
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Fig. 3. Average lighting power consumption per unit floor area on weekdays,
over a 10 week period in 2014.

IV. MEASURE OF DEMAND RESPONSE CAPACITY

In this section, we derive a model to evaluate the DR
capacity of a building. In particular, we develop a metric to
evaluate the maximum reduction of the building’s consumption
given an occupancy distribution, energy saving features, and
external weather conditions. In our DR model, we focus our
attention on a single energy consumer who responds to a single
energy provider (or retailer). We assume that a DR event is
successfully cleared if an energy consumer reduces its energy
consumption by an amount that is greater than a pre-agreed
quantity. This is done with respect to a baseline consumption,
within a pre-determined DR period.

A. Building Energy Consumption and Control Parameters

Now, we formally describe our model given the aforemen-
tioned assumptions. Let z′(t) denote the total power consump-
tion of a building at time t, with upper and lower bounds
as follows: 0 ≤ zl ≤ z′(t) ≤ zh. We use α to denote the
pre-determined DR period. Then the total energy consumption
during the DR period α from the DR start time ts can be
expressed by

z(ts, α) =

∫ ts+α

ts

z′(τ) dτ.

We can approximate this energy consumption by

z(ts, α) ≈
∑

ti∈(ts,ts+α)

z′(ti)∆Ts,

where ∆Ts is the sampling rate of power measurements, z′(ti).
Without loss of generality, let us assume that ∆Ts = 1sec by
which

z(ts, α) =

α∑
i,ti∈(ts,ts+α)

z′i,

where z′i is ith sample collected for (ts, ts + α).

Now let us model z(ts, α) as a random variable in
R[αzl,αzh]. We use θ to denote a set of parameters that affect
the total power consumption z′(t) such as weather conditions,
occupancy level or building-specific controls. Let us assume
that the samples z′i are i.i.d Gaussian random variables for
(ts, ts + α) such that

z′i(θ) ∼ N(µz′(θ), σz′(θ)),



where µz′(θ) and σz′(θ) are the expectation and the standard
deviation of z′ given θ. Note that, in order to define the
Gaussian distribution over a finite real line z′ ∈ R[zl,zh],
we make the mapping of z′ such that (z′ < zl) 7→ zl and
(z′ > zh) 7→ zh. Equivalently, we can model z′i by

z′i(θ) = µz′(θ) + εz′(θ),

where εz′(θ) is a zero-mean i.i.d Gaussian random variable
with variance σ2

z′(θ). This variance is the uncertainty in z′i(θ)
that is captured by µz′(θ). Now it can be easily seen that
z(ts, α) is a random variable, denoted by zα(θ) that fol-
lows a Gaussian distribution with mean αµz′(θ) and variance
ασz′(θ), i.e.

zα(θ) ∼ N(αµz′(θ),
√
ασz′(θ)).

Note that the DR start time ts in (ts, ts + α) is implicitly
encoded by θ in zα(θ).

Let us define two mutually exclusive sets of parameters
such that θ = (θr, θc), where θr is a set of reference
parameters that govern the baseline consumption of a building
and θc is a set of demand response control parameters to be
modified for DR. We make the following assumptions for the
parameters in developing our model:

Assumption 1: An energy provider and a consumer agree
on the amount of energy reduction for a DR event with respect
to specific settings of the reference parameter before the DR
program starts.

Assumption 2: The building control parameters θc are set
to their respective constant default values given θr unless a
DR event occurs.

Assumption 3: Changing building control parameters θc
will cause a deterministic change in total power consumption
without changing θr.

Assumption 4: The optimal control policy θ∗c for a DR
event does not change during its DR period.

We use z̄α(θ) to denote the expectation of zα(θ), or a
conditional expectation of z(ts, α) given θ. Hence, zα(θr, θc)
can be interpreted as the expected baseline energy consump-
tion of a building. Since θc is deterministic given θr from
Assumption 2 we will use a shorthand notation, zα(θr) instead
of zα(θr, θc) when it is clear from context.

B. Demand Response Capacity Formulation

Let u′(t) denote a utility function that quantifies the occu-
pant comfort level at time t as a real number between 0 and 1.
Then let us define u(ts, α) = 1

α

∫ ts+α

ts
u′(τ) dτ , i.e. the aver-

age utility during the DR period (ts, ts + α). Then, similar to
zα(θ), we define a conditional random variable uα(θ) ∈ R[0,1]

for u(ts, α), and its expectation ūα(θ) = E[u(ts, α)|θ] . Let
θ∗c denote the optimal control parameters for the optimization
problem in (1),

θ∗c = argmin
θc

z̄α(θr, θc)

subject to ūα(θr, θc) ≥ umin(θr)
(1)

where umin(θr) is the minimum utility value required for
occupants in the building, which depends on θr. We define

the DR capacity of a building Cα(ε) as follows:

Cα(ε) = argmax
β
{ Pr(z̄α(θr)− zα(θr, θ

∗
c ) ≤ β) ≤ ε} (2)

where β ≥ 0 is the amount of energy reduction requested
by an energy provider during the DR period α. We consider
β = 0 as a special case where an energy provider requests
zero energy reduction during α, i.e. request to maintain the
expected energy consumption. We can interpret Cα(ε) as the
maximally pre-agreed energy reduction capacity for DR given
ε, which is a tolerance limit for the uncertainty associated with
successfully clearing a DR request.

Let us derive a formula for the probability of successfully
clearing a demand response event, as a function of the re-
quested energy reduction β:

fθ(β) = Pr(z̄α(θr)− zα(θr, θ
∗
c ) ≤ β). (3)

We define the amount of energy reduction by demand response
control θ∗c as

∆zα(θr, θ
∗
c ) = zα(θr, θc)− zα(θr, θ

∗
c ), (4)

where ∆zα(θr, θ
∗
c ) ≥ 0. From Assumption 3, ∆zα(θr, θ

∗
c )

is a deterministic quantity given θ∗c as opposed to a random
variable zα(θr). Hence, it represents the intrinsic curtailment
capability of the building’s controllable loads given θr. We will
use a shorthand notation, ∆zα(θ∗c ) instead of ∆zα(θr, θ

∗
c ).

By rearranging terms we have

fθ(β) = Pr (z̄α(θr) + ∆zα(θ∗c )− β ≤ zα(θr))

(∗)
= Q

(
z̄α(θr) + ∆zα(θ∗c )− β − E[zα(θr)]√

V ar(zα(θr))

)
(∗∗)
= Q

(
∆zα(θ∗c )− β√

ασz′(θr)

)
(5)

where Q(x) is the Q-function: the tail probability of the
standard normal distribution N(x|0, 1), which can be defined
by Q(x) = 1−

∫ x
−∞N(x′|0, 1) dx′. The equality (*) in (5) is

derived by expressing P (x ≤ zα(θr)) by Q(x). The equality
(**) holds by the definition z̄α(θr) = E[zα(θr)].

If ∆zα(θ∗c ) ≥ 0, fθ(β) is an increasing function of β
and the building’s demand response capacity is determined by
the uncertainty threshold value ε. Each building will exhibit
a unique trade-off between DR capacity and the uncertainty
of realizing that curtailment. This is illustrated in Figure 4 for
two hypothetical buildings (not the testbeds) and an uncertainty
threshold of ε = 0.3.

The final formula for fθ(β) in (5) is analogous to the
Bit Error Rate (BER): a fundamental performance metric in
communication theory [1]. The BER is the number of bit errors
divided by the total number of transferred bits during a studied
time interval, and it is often expressed as a Q-function of the
Signal-to-Noise Ratio. In (5), we draw the following parallels:

•
√
ασz′(θr) can be interpreted as the additive white

Gaussian noise (AWGN) of a communication channel
(background power fluctuation without DR)

• ∆zα(θ∗c ) can be interpreted as the transmitted signal
strength (energy reduction when loads are controlled
during DR)



0 2 4 6 8 10
Demand reduction capacity- β (kW)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
nc

er
ta

in
ty

-
f θ

(β
)

ε0

Cα
A(ε0)

Cα
B(ε0)

Uncertainty vs Demand reduction capacity

Building A
Building B

Fig. 4. Illustrative example of relationship between DR capacity and
uncertainty. Building B exhibits more ideal behavior compared to Building
A as an increase in capacity leads to a lesser increase in uncertainty.

TABLE I. CLASSIFICATION OF REFERENCE PARAMETERS FOR
DEMAND RESPONSE EVENT

State 0 1 2 3 4 5

θwd
r

Sat,Sun Mon ∼ - - - -,Pub.Hd Friday
θhr
r 21-7 7-10 10-12 12-14 14-18 18-21
θoccr 0 0-25 25-50 50-75 >75 -
θsolr 0 0-200 200-400 400-600 >600 -
θtemp
r <21 21-24 24-27 27-30 >30 -

Note: the units for (θhrr , θoccr , θsolr ,θtempr ) are (hrs, (%), (W/m2), ◦C)

• β in fθ(β) can be interpreted as the decision threshold
for a bit (pre-agreed energy reduction for a successful DR
event)

The formula for fθ(β) also reveals some interesting
insights into the interactions between β, α, σz′(θr), and
∆zα(θ∗c ). First, the uncertainty fθ(β) will increase for higher
σz′(θr) if β < ∆zα(θ∗c ), where the amount of requested energy
reduction for DR is within the building’s intrinsic curtailment
capability. In this case, σz′(θr) represents noise. However,
the opposite occurs if β > ∆zα(θ∗c ), where the requested
energy reduction is higher than the building’s capacity (i.e.
over-committed DR). Higher background power fluctuation
opportunistically helps to meet the over-committed DR. Note
that we have fθ(β) ≥ 0.5 if β > ∆zα(θ∗c ) which should not
be considered for any DR program.

Given that Q(−x) is an increasing function of x, the final
exact solution of the demand response capacity Cα(ε) in (2)
can be simply found by its boundary value at ε as follows:

Cα(ε) = ∆zα(θ∗c )−
√
ασz′(θr)Q

−1(ε)) (6)

where Q−1(x) represents the inverse function of Q(x). It is
easily seen that Cα(ε) is an increasing function of ε and the rate
of capacity reduction for ε given DR period α is determined
by
√
ασz′(θr).

V. DEMAND RESPONSE CAPACITY ANALYSIS

In this section, we apply the DR capacity model derived in
Section IV to the datasets from the BCA and ADSC testbed
described in Section III. We construct a look-up table from
each testbed site’s sensor dataset to search the parameters as
well as other quantities to estimate DR capacity.

TABLE II. LOOKUP TABLE EXAMPLE FOR PARAMETERS AND TOTAL
CONSUMPTION STATISTICS WITHOUT DR

(θwd
r , θhr

r , θoccr , θsolr , θtemp
r ) θlight

c θhvac
c Z̄′(θ) σz′ (θ)

(1, 4, 2, 2, 3) ON 23◦C 1.2 kW 0.2 kW
...

...
...

...
...

A. Parameters

For the reference parameters θr, we consider working or
non-working days (θwdr ), hours of the day (θhrr ), occupancy
level (θoccr ), external solar irradiance (θsolr ), and external tem-
perature (θtempr ). Non-working days include Saturday, Sunday,
and public holidays. Non-working days include Saturday, Sun-
day, and public holidays. We assume that the energy consumer
and the provider agree to the classification of the state spaces
of θr to evaluate a baseline consumption zα(θr) before the
demand response program starts. Hence, well-classified states
of reference parameters allow them to reduce uncertainty in
demand response. We use the same classification of θr for both
ADSC and BCA testbed to make fair comparisons between
them in demand response capacity. Table I explains the details
of the classification.

For control parameters θc, we consider only two types of
loads: HVAC and lighting. These are denoted by θhvacc and
θlightc , respectively. As opposed to reference parameters, the
control parameters are defined separately for ADSC and BCA
in order to take account of their particular control capabilities.
Note that we assume plug loads are not controllable for
DR. This is generally true for our testbeds as most plug
loads are computers. Hence, a large variance in plug load
consumption will cause a higher σz′(θ). For θhvacc , we consider
a temperature set-point control for ADSC and an ON/OFF
control of the ventilation fans for the ZEB. For θlightc , we
consider an ON/OFF control for ADSC and a dimmer switch
for ZEB.

Next, we build and update a look-up table that stores
the default control parameters (θlightc , θhvacc ) and the to-
tal power consumption statistics (Z̄ ′(θ), σz′(θ)) for each
instance of an observed state of reference parameters
(θwdr , θhrr , θ

occ
r , θsolr , θtempr ) as shown in Table II. The control

parameter states of each row in the table represent the default
control setting, without a DR event, under the conditions given
by the reference parameters.

Figure 5 shows examples of the conditional distribution of
z′(θr) for specific values of θr from Table II. In the figure, the
distribution of total power consumption samples given θr can
be well approximated by a Gaussian distribution, validating
our assumption z′i(θ) ∼ N(µz′(θ), σz′(θ)).

B. Demand Response Controls

It is often impractical to solve the optimization problem in
(1) since generally we do not have an accurate model for the
objective z̄α(θr, θc) and the constraint function ūα(θr, θc)).
Instead, we build a look-up table to search θ∗c for lighting
and HVAC. Table III shows an example of such look-up table
for ZEB and ADSC. In the table, we use indoor tempera-
ture/humidity and lux measurements to evaluate visual and
thermal comfort level which are mapped into a 0 to 1 scale
by their respective utility functions. More details about the
utility functions for visual and thermal comfort can be found
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TABLE III. MINIMUM UTILITY REQUIRED GIVEN OCCUPANCY STATES

θoccr 0 1 2 3 4

Thermal umin 0.1 0.5 0.7 0.8 0.9
Comfort ◦C 30 27 27 26 26
ADSC θ∗c 30 27 27 26 26

z′(θ∗c )(kW ) 0 0 0 2.778 2.778
ZEB θ∗c OFF OFF OFF ON ON

z′(θ∗c )(kW ) 0 0 0 1.5 1.5

Visual umin 0.1 0.5 0.7 0.8 0.9
Comfort Lux 0 500 500 600 600
ADSC θ∗c OFF OFF OFF OFF OFF

z′(θ∗c )(kW ) 0 0 0 0 0
ZEB θ∗c OFF OFF OFF 600 600

z′(θ∗c )(kW ) 0 0 0 0.136 0.136
Note: values based on (θwdr ,θhrr , θsolr ,θtempr ) = (1,4,2,3), α = 1hr

in our previous work [14]. Then, ∆zα(θ∗c ) is found by cross-
referencing Table III and Table II for θr.

In our analysis we assume that the minimum utility require-
ment is only dependent on occupancy level, i.e. umin(θoccr ).
The optimal parameter θ∗c is determined by finding the setting
such that the utility is maintained above umin(θoccr ) with
the lowest energy consumption during the demand response
period α. Intuitively, θ∗c for HVAC is heavily dependent on a
building’s heating inertia as better thermal insulation can allow
buildings to maintain a desired indoor temperature longer after
the HVAC is turned off. Similarly, the design of a building
for natural lighting will greatly impact on θ∗c for lighting since
daylight penetrating inside building can be sufficient to support
the minimum lux requirement without internal lighting. For
both HVAC and lighting, a longer demand response period
α means fewer degrees of freedom are available for the
optimization of θc, which results in smaller ∆zα(θ∗c ).

C. Evaluation of Demand Response Capacity

In Figure 6 we evaluate and compare the DR capacity of
the ADSC and ZEB testbeds for different reference parameter
settings θr, with a demand response period of α = 1hr. For
each testbed we compute the uncertainty-DR capacity trade-off
for θoccr = 1, 3 (i.e. low and high occupancy states) while the
rest of reference parameters are fixed at θwdr =1 (i.e. working
day), θhrr =4 (i.e. 2-6pm), θsolr =1 (i.e. sunny to partly cloudy),
and θtempr =3 (i.e. warm weather).

For the ZEB, the DR capacity at the low-occupancy state
is higher than at the high-occupancy state for all uncertainty
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Fig. 6. Uncertainty-DR capacity trade-off comparison for α = 1hr, where
θr = (1, 4, θoccr , 2, 3) and θoccr = 1 (low) or 3 (high).
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Fig. 7. DR capacity comparison between ADSC and ZEB at low occupancy
given θr = (1, 4, 1, 2, 3) and α = 1hr.

values. For a given uncertainty of ε = 0.2 the gain in
DR capacity from low occupancy levels to high for ZEB is
1.438kWh compared to -3.212kWh for ADSC. The difference
in DR capacity gain can be explained by the fact there is
significantly greater variation in the loads at ADSC for low
occupancy levels leading to a high σz′(θr). This causes an
increase in the elasticity of capacity in response to changes in
uncertainty requirements, hence the slope is more gradual. The
great variation arises because low occupancy levels are rarely
seen during the 2-6pm period at ADSC and occupants may or
may not turn off their plug loads when they are not around.

In Figure 7 we compare the DR capacity Cα=1hr(ε) for
ADSC and the ZEB after normalizing the values by their floor
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Fig. 8. DR capacity comparison for different demand response periods α
given θr = (1, 4, 1, 2, 3).

area. It is clear from the figure that the ZEB has greater DR
capacity at low and moderate uncertainty tolerance values (<
60%). This is likely due to the presence of more precise control
capabilities, i.e. dimmable lighting (see Figure 3). When the
uncertainty tolerance exceeds 60%, ADSC does have a larger
DR capacity than the ZEB; however, such high uncertainty
about DR performance would likely be undesirable for building
owners and/or aggregators. This is particularly true in market
settings that enforce non-compliance penalties or compensate
demand resources based on the ratio of actual and expected
response during events [16].

Finally, we compare demand response capacity Cα(ε =
0.1) for different DR periods α = 0.5hr, 1hr, and 2hr for
ADSC and the ZEB testbeds in Figure 8. We normalize DR
capacity by the testbeds’ respective floor areas for each value
of α for a fair comparison. We refer to this as unit DR capacity.
The figure shows that both the ZEB and ADSC have the
highest unit DR capacity at α = 1hr. In particular, for ADSC
no DR capacity is available if the DR period is set to 0.5 hours
because the variance of uncontrollable loads (i.e. plug loads)
during the DR period always causes a larger uncertainty than
the tolerance limit of ε = 0.1. This implies that the demand
response period must be carefully chosen with respect to the
building’s particular reference parameters.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a framework to evaluate
the demand response capacity for buildings. We deployed
sensor networks in two testbeds, collected data from the
sensors over a period of 10 weeks and used our framework
to evaluate the DR capacity for these testbeds. In future work,
we will extended our model to more complex scenarios that
may contain multiple DR participants and DR aggregators.
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