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Abstract—This paper considers the problem of charging station
pricing and plug-in electric vehicles (PEVs) station selection.
When a PEV needs to be charged, it selects a charging station
by considering the charging prices, waiting times, and travel
distances. Each charging station optimizes its charging price
based on the prediction of the PEVs’ charging station selection
decisions and the other station’s pricing decision, in order to
maximize its profit. To obtain insights of such a highly coupled
system, we consider a one-dimensional system with two compet-
ing charging stations and Poisson arriving PEVs. We propose
a multi-leader-multi-follower Stackelberg game model, in which
the charging stations (leaders) announce their charging prices in
Stage I, and the PEVs (followers) make their charging station
selections in Stage II. We show that there always exists a unique
charging station selection equilibrium in Stage II, and such
equilibrium depends on the charging stations’ service capacities
and the price difference between them. We then characterize
the sufficient conditions for the existence and uniqueness of the
pricing equilibrium in Stage I. We also develop a low complexity
algorithm that efficiently computes the pricing equilibrium and
the subgame perfect equilibrium of the two-stage Stackelberg
game.

I. INTRODUCTION

Since the sales of the first highway-capable all electrical
vehicle Tesla Roadster in 2008, there have been more than
290,000 similar plug-in electrical vehicles (PEVs) sold in the
US as of December 2014. As PEVs help reduce the emission
of greenhouse gas, there has been a growing interest from
both industry and academia in terms of the technology and
economics aspects of PEV deployment [1]-[9].

One important limitation for the PEV is its limited battery
capacity. A wide deployment of PEVs requires an extensive
charging station network, which fortunately is being deployed
in many countries. For example, today there are more EV
charging points than gas stations in Japan [10]. In the US,
operators such as CarCharging provide national-wide public
PEV charging services. As the number of charging operators
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in the electrical vehicle market increases, the issue of compet-
itive pricing among charging stations is getting increasingly
important and practical. For example, in some Chinese cities
including Beijing and Qingdao, PEV owners have to pay
service fees in addition to electricity bills to charge their cars.
The government declares the maximally allowed service fee,
and the operators such as Tellus Power and Potevio set their
own charging prices (i.e., the sum of electricity price and
service price) to maximize their own revenue subject to the
government rules.

The owners of the PEVs, on the other hand, are able
to identify multiple close-by charging stations using mobile
applications such as PlugShare [11], and choose those that
offer the best cost and distance tradeoff. The interactions
between the charging stations and (owners of) PEVs will
determine the dynamics and equilibrium of such a charging
market.

In this work, we aim to answer the following key research
questions:
• How should a PEV select a charging station based on

the charging prices, travel distances, and the expected waiting
times of multiple close-by stations?
• How should a charging station optimize its charging

price to maximize its profit, considering the decisions of the
competing charging stations and the responses of the PEVs?

Addressing these questions are challenging due to the tight
coupling, among different PEVs, among multiple charging
stations, and between PEVs and charging stations.

To shed some insights on this complicated problem, we
consider a stylized one-dimensional system model, with two
competing charging stations and dynamically arriving PEVs.
The charging stations announce their charging prices simulta-
neously at the beginning of a day, and the PEVs make their
selections asynchronously during the day as their charging
needs arise. We formulate the problem as a multi-leader-
multi-follower Stackelberg game [12], in which the charging
stations are the leaders making decisions in Stage I, and the
PEVs are the followers making decisions in Stage II. We
then characterize the charging stations’ pricing and the PEVs’
selection behaviors at the equilibria of this game.

Our main contributions are summarized as follows.
• Novel and Practical Model: To the best of our knowledge,

this is the first work that jointly studies competitive charging
station pricing and PEV station selection. Our model considers
the heterogenous service capabilities and asymmetric locations
of charging stations. It also captures a PEV’s waiting time
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before it receives the charging service, hence is different from
existing PEV station selection models in the literature.
• Analysis and Insights: Under any fixed charging station

prices, we show that there always exists a unique PEV
station selection equilibrium. We further show that such an
equilibrium can be one of five types (three pure-strategy ones
and two mixed-strategy ones), depending on the prices and
the service capacities. Then we characterize the sufficient
conditions for the existence and uniqueness of charging station
pricing equilibrium, considering the PEVs’ station selection
behaviors. Our analysis suggests that a charging station with a
position advantage usually declares a higher equilibrium price
than its competitor.
• Efficient Algorithm: We propose a low complexity al-

gorithm to compute the pricing equilibrium, which may not
require explicit information exchange between the charging
stations and is provably convergent.

The remainder of this paper is organized as follows. Section
II discusses the related work. Section III presents the system
model. We analyze the equilibria for our proposed games in
Sections IV and V, respectively. In Section VI, we propose
the algorithm to compute the pricing equilibrium. Numerical
results are provided in Section VII, followed by the concluding
remarks in Section VIII.

II. RELATED WORK

A. Pricing behaviour of charging stations

Existing literature on multi-station pricing models can be
divided into two categories depending on the relationship
among charging stations: non-competitive and competitive.

1) Non-competitive pricing: Bayram et al. in [13] assumed
that all charging stations have the same charging prices, and
proposed a method to optimize the prices to maximize the sum
of the utilities of all charging stations. In [14], Bayram et al.
proposed a single-leader-multi-follower Stackelberg game, in
which the charging network operator acts as the leader and
the EV customers are the followers. The leader optimizes
the prices of charging stations, and each follower makes a
selection between the nearest station and a less busy one. Ban
et al. in [15] investigated the PEV allocation and dynamic
price control for multiple charging stations. Different from
[13], the authors in [15] considered heterogeneous prices.
Assuming that each PEV prefers the charging station with
the lowest price, the authors of [15] proposed a price control
scheme to implement optimal PEV allocation.

2) Competitive pricing: Escudero-Garźas and Seco-
Granados in [16] studied the competitive pricing of multiple
charging stations using the Bertrand’s oligopoly model. The
demand for each charging station was assumed to be a
linearly decreasing function of its price. Lee et al. in [17]
assumed that the EVs are uniformly distributed and select
their charging station based on the prices, the distances,
and the preferences. Furthermore, every charging station is
able to generate electricity and can sell its electricity to the
power grid and the EVs. The authors of [17] formulated
the price competition among multiple charging stations as a

supermodular game model. A key assumption of [17] is that
the choices of PEVs are independent of each other, which is
not the case in our model.

B. Hotelling game model

Our model is related to the hotelling game [18], where two
geographically separated sellers compete to serve customers
at different locations. However, most hotelling game models
cannot be directly used to understand the interplay between
charging stations and PEVs, since they do not consider the
dependence among the customers’ decisions [18]-[20]. Gallay
and Hongler in [21] extended the hotelling game by introduc-
ing the waiting time cost, hence the customers’ decisions are
coupled due to the consideration for waiting time. However,
the model in [21] did not consider the competition among
stations and assumed that all stations announce the same price.

C. Summary

This work differs from the existing results in two respects.
1) In our system, the PEVs take into account their ex-

pected waiting times when selecting charging stations.
The waiting time is non-negligible for the PEVs due
to their relatively long charging times [22][23]. This
is a key difference between our work and the existing
models developed for gasoline stations [24] [25], where
the queueing delay at the station is considerably shorter.

2) Our Stackelberg game (i.e., leader-follower game) jointly
studies the PEVs’ station selecting and the charging
stations’ pricing decisions, instead of treating only one
of them in the literature. More specifically, we consider
two leaders (i.e., charging stations) who choose prices to
optimize their own revenues. This is different from the
single-leader model studied in [14][22][23].

Due to the high complexity of solving the general form
of the considered problem, here we focus on a simple one-
dimensional system with two stations. The insights from the
work can help us understand more general systems involving
more than two stations with more general locations.

III. PROBLEM FORMULATION AND GAME MODEL

STA1 STA2

x1 x2-L L

……………

1 h 2 h

Determine the prices

Select the charging stations 
asynchronously

0 hour 24 h

………

Time

Fig. 1: The considered system.

As shown in Fig. 1, our system is represented by a line
segment, denoted by [−L,L]. The line model also applies to
the scenario where both stations are along a zigzag or curving
road without major branches within a significant distance.
The charging stations, which belong to different operators, are
located at x1 and x2 (−L < x1 < x2 < L), respectively1. We

1In practice, the charging stations in the same small region may be
controlled by different operators. In Frisco, Texas, USA, for example, the
distance between two charging stations owned by two different operators
(Voltaic Electrical and Blink Network) can be shorter than 10 Kilometers.



allow the two stations to be asymmetrically located on the
line, i.e., x1 6= −x2.

Each charging station serves its customers (i.e., the PEVs
waiting in its queue) on a first come first served basis.2

Suppose that charging station i ∈ {1, 2} has ki ≥ 1 identical
charging ports, and the service (charging) time for a PEV
follows a general distribution with a mean 1

µi
(µi > 0 is the

average charging rate) and a variance σ2
i . Accordingly, we can

use kiµi to measure the service capacity of charging station i.
Without losing of generality, we assume that k1µ1 ≥ k2µ2. In
practice, it is possible to have µ1 6= µ2 if the charging stations
use different levels of charge specifications [16] or different
chargers (such as AC Level 2 charger and DC Fast charger).

The system works in two stages:
• In Stage I, two charging stations simultaneously determine

their charging prices at the beginning of a time period3, and
periodically broadcast the (fixed) prices together with the sta-
tions’ locations to the potential customers (PEVs) throughout
the day (e.g., through a mobile app such as PlugShare).
• In Stage II, given the charging prices and the locations

of both charging stations, every PEV independently selects
a charging station to recharge its battery. We assume that the
PEV driver does not have any prior preference regarding which
direction he would drive on the road.

Note that the decisions among the PEVs, among the charg-
ing stations, and between PEVs and charging stations are
actually interdependent. To characterize the interplay of PEVs
and charging stations, we propose a two-stage Stackelberg
model, which consists of two games at two different levels:
• Charging Station Pricing Game (CSPG): In Stage I, the

charging stations engage in a CSPG game, in which they
determine their charging prices by considering each other’s
pricing choices and the PEVs’ selection choices in Stage II.
• PEV Station Selection Game (PSSG): In Stage II, the

PEVs engage in a PSSG game, in which each PEV selects its
charging station under fixed prices from the charging stations,
by considering the station choices of other PEVs.

With this hierarchical game, we aim to derive a stable
decision outcome for charging stations and PEVs.

A. PEV Station Selection Game in Stage II

The PSSG game is defined as follows:

• Players: The PEVs.
• Strategies: The strategy of a PEV n corresponds to its

station choice sn(x) ∈ {1, 2}, where x is the location of
PEV n.

• Payoffs: The payoff of a PEV is the negative value of its
cost, which includes three parts: traveling cost, waiting
time, and charging cost.

2In this work, we do not consider the stations with a battery replacement
strategy [3].

3Different time periods can have different PEV arrival rates and electricity
prices.

1) Traveling Cost: We assume that the there is no traffic
jam and the traveling delay is determined by the traveling
distance only. Let ln,sn denote the distance from the current
location of PEV n (i.e., x) to the selected charging station sn.
Then we have ln,sn = |x−xsn |. The traveling cost of PEV n
is klln,sn , where kl > 0.

2) Charging Cost: For simplicity, we assume all PEVs have
the same battery capacity, start to charge when their battery is
close to empty (or to the same level of charging level suggested
by the manufacturer), and want to get fully charged before
leaving the station. Hence all PEVs have the same demand4.
We use d to denote charging demand of an PEV, and psn to
denote the price of the selected charging station. The charging
cost is kpdpsn , where kp > 0.

3) Waiting time: Now we estimate the waiting time using
queueing theory. The inter-arrival time between two consec-
utive PEVs arriving at the same charging station depends on
two factors: 1) the time interval between the time instances at
which these two PEVs decide to seek charging service, and 2)
the difference between the travel times to the station. Since a
PEV will only consider charging stations close-by, we assume
that the difference between the travel times to these two sta-
tions are negligible5. We further assume that the time interval
between the charging decisions of two consecutive PEVs at the
same location (the time instances when they decide seeking
charging services) is exponentially distributed. If all the PEVs
generated from this location select the same charging station,
then the time interval between the arrivals of two consecutive
PEVs at the station is exponentially distributed. Accordingly,
we can consider the PEV stream generated from this location
as Poisson arrivals, or a Poisson stream [2][13][26]-[29]. We
also assume that the PEV streams are uniformly distributed
in the entire one-dimensional system. Then, we consider the
stream of PEVs from any line segment as an aggregation of
PEV streams, which is also Poisson [30].

Suppose that the arrival rate of the PEVs coming from a
unit line segment is λ > 0. Let Ai ⊆ [−L,L] be the set of
locations of the PEVs who select charging station i. In general,
Ai might include multiple disjoint segments. We use |Ai| to
denote the total length of Ai. Then, the arrival rate of the
PEVs selecting charging station i is |Ai|λ.

Due to the small penetration of PEVs in today’s market, λ
is usually small and the probability that a station having no
waiting room for a PEV will be very small. For simplicity,
here we employ the theory of M/G/k queue [32] to estimate

4Another way to understand the homogeneous demand assumption is to
consider the charging station’s perspective. Since the charging station does
not have complete information of the PEVs, then it will be difficult for the
station to predict the precise demand of each PEV. As considering the M/G/k
queueing model used in this paper is already complicated enough, we simply
use the average demand of the PEVs to represent the demand of each PEV,
so that the charging station can compute the competitive charging price.

5Take charging station 1 as an example. The difference between the travel
times of two PEVs is no more than L−x1

v
, where v is the speed of PEVs. If

v equals to 60 kph and |L−x1| is 5 km, it will be no more than 5 mins. On
the other hand, if a PEV is charged on a standard 120-volt outlet, it usually
needs 8 hours to be fully charged. If the PEV uses a dedicated 240 circuit, it
may need 3 hours. If the PEV uses a 480V circuit, it needs 20 to 30 mins [31].



the waiting time of a PEV at a station.6 Then the mean waiting
time of a PEV at charging station i is given by

qi(|Ai|) ≈
|Ai|λ(σ2

i + 1
µ2
i
)ρki−1i

2(ki − 1)!(ki − ρi)2[
∑ki−1
m=0

ρmi
m! +

ρ
ki
i

(ki−1)!(ki−ρi) ]
(1)

where ρi = |Ai|λ
µi

. In (32), ki, µi and σi are the parameters of
charging stations, and λ is the parameter of PEVs.

Using the above notations, the payoff of PEV n is defined
as

Un(s) = −klln,sn − kqqsn(s)− kpdpsn (2)

where s = {sn, n ∈ N} is the strategy profile of all PEVs
(which can also be captured by A1 and A2), N is the set of
all PEVs, and kq > 0.

Since there are no direct communications between PEVs,
we assume that a PEV does not know other PEVs’ decisions
when making its decision. Hence, although the PEVs make
charging station selection asynchronously during the day, we
can model PSSG as a simultaneous move (or static) game7.

B. Charging Station Pricing Game in Stage I

The PSSG game is defined as follows:
• Players: The charging stations.
• Strategies: The strategy of a charging station i is its price
pi.

• Payoffs: The payoff of a charging station includes two
parts: 1) the revenue of providing charging service to the
PEVs, and 2) the fixed and operational costs.

In CSPG, the charging stations simultaneously determine
their charging prices p1 and p2. We assume that pi ∈
[pmin, pmax], and the unit electricity cost paid by a charging
station i to the utility company is ci ≤ pmin. Charging station
i has a fixed cost či for providing the service (such as labour
cost), which is assumed to be independent of the number of
PEVs requesting the service. The payoff of charging station i
can be written as

Qi(pi, pj) = (pi − ci)Di(pi, pj)− či. (3)

Here Di(pi, pj) = |Ai|d is the total demand of the PEVs
selecting charging station i, which depends on the prices of
both stations.

Next we will derive the subgame perfect equilibrium (SPE)
of the Stackelberg game, which represents a Nash Equilibrium
(NE) of every subgame of the game. Under an SPE, neither
PEVs nor charging stations have incentives to change their
strategies. Hence SPE corresponds to the stable pricing and
station selection outcome. We use backward induction to
derive the SPE. More specifically, we start with Stage II
(PSSG) and analyze the PEVs’ selection given prices p1

6It should be pointed out that the M/G/K model is a statistic model, and it
does not reflect the actual waiting time realization experienced by a certain
PEV.

7Even though the decisions may be made at different time instances, the
game is “simultaneous” because each player has no information about the
decisions made before or after his.

and p2. Then, we look at Stage I (CSPG) and analyze how
charging stations make the pricing decisions, taking the PEVs’
responses in Stage II into consideration.

IV. PEV STATION SELECTION GAME IN STAGE II

Under a given price pair (p1, p2), every PEV selects a
charging station to maximize its payoff in (2). If too many
PEVs select the charging station i such that |Ai|λ

kiµi
≥ 1,

the queue at charging station i grows to infinity. Clearly,
the PEVs will try to avoid overloading a charging station
due to the concern about the waiting time. However, when
k1µ1 + k2µ2 ≤ 2Lλ holds, overload is inevitable since the
total serving capacity of two stations is not enough to serve all
the PEVs. In this situation, one should increase the number of
ports (i.e., ki) or introduce better (faster) charging technologies
(e.g., DC Fast charging). In this paper, we will consider the
more meaningful case of k1µ1 + k2µ2 > 2Lλ, which means
that by appropriately selecting their stations, the PEVs can
avoid overloading any charging station.

The above discussions reveal that the service capacity of
a charging station, i.e., kiµi, has a significant impact on the
PEVs’ decisions. For example, if 2Lλ

kiµi
approaches 1, some

PEVs must select charging station j 6= i to avoid overloading
charging station i. For the convenience of later discussions,
we can classify different levels of a charging station’s service
capacity in terms of FULL, HIGH, MIDDLE and LOW.

FULL
HIGH

MIDDLE
LOW

STA1 STA2
-L L

x1 x2

Fig. 2: Levels of service capacity of charging station 1. The
length of the line in each case illustrates the maximum number
of PEVs that station 1 can serve.

Take charging station 1 for example. As shown in Fig. 2,
FULL means that station 1 alone can serve all the PEVs in
the system (along the entire segment of length 2L) without
being overloaded. HIGH, MIDDLE, and LOW indicate that
the station can serve the PEVs in a segment with a length
x + L, where x2 < x < L for HIGH, x1 < x < x2 for
MIDDLE and −L < x < x1 for LOW. Such a terminology
allows us to classify the system model into nine scenarios8:

1) FULL-FULL: k1µ1 > 2Lλ and k2µ2 > 2Lλ.
2) FULL-HIGH: k1µ1 > 2Lλ and (L − x1)λ < k2µ2 ≤

2Lλ.
3) FULL-MIDDLE: k1µ1 > 2Lλ and (L− x2)λ < k2µ2 ≤

(L− x1)λ.
4) FULL-LOW: k1µ1 > 2Lλ and k2µ2 ≤ (L− x2)λ.
5) HIGH-HIGH: (L+x2)λ < k1µ1 ≤ 2Lλ and (L−x1)λ <

k2µ2 ≤ 2Lλ.

8It should be pointed out that the scenarios LOW-LOW and MIDDLE-LOW
do not exist in a stable system, as the charging stations cannot serve all the
PEVs in these scenarios.



6) HIGH-MIDDLE: (L + x2)λ < k1µ1 ≤ 2Lλ and (L −
x2)λ < k2µ2 ≤ (L− x1)λ.

7) HIGH-LOW: (L + x2)λ < k1µ1 ≤ 2Lλ and k2µ2 ≤
(L− x2)λ.

8) MIDDLE-HIGH: (L + x1)λ < k1µ1 ≤ (x2 + L)λ and
(L− x1)λ < k2µ2 ≤ 2Lλ.

9) MIDDLE-MIDDLE: (L+x1)λ < k1µ1 ≤ (x2+L)λ and
(L− x2)λ < k2µ2 ≤ (L− x1)λ.

As an example, let us look at the FULL-HIGH scenario. In
this scenario, charging station 1 has the full service capacity
and can serve all the PEVs. Charging station 2 has a limited
service capacity, specified by (L − x1)λ < k2µ2 ≤ 2Lλ.
Therefore, it can serve only some of PEVs in the system due
to |A2| < k2µ2

λ < 2L. For example, it is able to serve the
PEVs in the segment (L− k2µ2

λ , L] alone.
Since there are many PEVs in this model, we can view the

Stage II game as a population game [33], where a single PEV’s
selection change will not affect the lengths of sets A1 and A2

and the corresponding waiting times at the two stations. Let
us use Un(sn;A1, A2) to denote PEV n’s payoff, where other
PEVs’ station choices are represented by sets A1 and A2. To
maximize its payoff, a PEV compares the payoffs of selecting
two charging stations. If Un(i;A1, A2) ≥ Un(j;A1, A2), PEV
n will select charging station i instead of j. When no PEV
has an incentive to change its selection unilaterally, a stable
decision outcome emerges. Such outcome corresponds to the
NE of PSSG, which is define as follows.

Definition 1: A strategy profile s∗ = {s∗n,∀n ∈ N} is
an NE of the PSSG if Un(s∗n;A1, A2) ≥ Un(s′n;A1, A2)
for every n ∈ N , where s′n is the different charging station
selection than s∗n.

We will show that there exist at most five types of NEs in
PSSG, i.e., three pure-strategy NEs and two mixed-strategy
NEs, as shown in Fig. 3. Which type of NE will emerge
depends on the price difference between the charging stations
and the type of system model scenario.

*

1 2

Fig. 3: Five types of NEs in PSSG. Here red segments
correspond to A1 and blue segments correspond to A2. When
red and blue segments overlap, we have a mixed strategy
equilibrium.

A. The FULL-FULL Scenario

In the FULL-FULL scenario, all five types of NEs can
emerge under different prices.

1) Pure-strategy NE with an indifference point: In most
cases, every PEV has one preferred charging station. Accord-
ing to (2), under given A1 and A2, a PEV determines its
preferred charging station based on its location and the price
difference p1 − p2. We may find a particular location, where
a PEV at this location is indifferent of selecting between the
two charging stations, i.e., Un(1;A1, A2) = Un(2;A1, A2).
We call such location the indifference point, denoted by x∗.

The existence of an indifference point actually depends on
the price difference p1− p2. Intuitively, the indifference point
may not exist if |p1− p2| is too high (in which case all PEVs
prefer the same charging station). When an indifference point
exists, we have a pure-strategy charging station selection NE.

To characterize the conditions for such a pure-strategy NE,
we define two thresholds as follows,

θL1 = −kq(q1(L+ x2)− q2(L− x2)) + kl(x2 − x1)

kp · d
,

and

θR1 =
kq(q2(L− x1)− q1(x1 + L)) + kl(x2 − x1)

kp · d
.

Then we have the following theorem.
Theorem 1: In the FULL-FULL scenario, if p1 − p2 ∈

(θL1 , θ
R
1 ), then the NE strategy of PEV n at a location

x ∈ [x1, x2] is

s∗n(x) =

{
1, if x ∈ [−L, x∗),
2, if x ∈ [x∗, L],

(4)

where x∗ is the unique root of

kpd(p1 − p2) + kl(2x− x1 − x2)

+ kq(q1(x+ L)− q2(L− x)) = 0. (5)

The proof of Theorem 1 is given in Appendix A. At the
NE described in Theorem 1, all the PEVs on the left side
of the indifference point select charging station 1, and the
rest PEVs select charging station 2, as shown in Fig. 2 (a).
In other words, the one-dimensional system can be divided
into two continuous segments, each of which is served by one
charging station.

2) Mixed-strategy NE: By analyzing (5), we can show that
x∗ decreases with p1−p2. As p1−p2 increases, x∗ will move
closer to x1, and charging station 2 will attract more PEVs.
Once p1 − p2 = θR1 , the indifference point x∗ = x1. In this
case, charging station 2 attracts all the PEVs on the right side
of station 1 at the NE.

Once the price difference p1 − p2 > θR1 , a new type of
equilibrium emerges and it is no longer a pure-strategy NE.
At this equilibrium, some PEVs in the range of [−L, x1]
select charging station 1, while other PEVs in the same range
[−L, x1] select charging station 2. In fact, for a PEV in the
range of [−L, x1], whether selecting station 1 or station 2 no



longer depends on its location; it only depends on the values of
|A1| and |A2|. We illustrate such an equilibrium in Fig. 3 (b),
where the fraction of PEVs in the range of [−L, x1] selecting
charging station 1 (denoted by the red segment) needs to be
properly chosen, such that Un(1;A1, A2) = Un(2;A1, A2) for
all PEVs in this range, which corresponds to a mixed-strategy
equilibrium. Similarly, when p1 − p2 < θL1 , we have another
mixed strategy equilibrium, as shown in Fig. 3 (c).

More formally, under a mixed-strategy equilibrium, some
PEV will randomly select two strategies with some positive
probabilities for both. Let ω1(x) and 1 − ω1(x) denote the
probability of the PEV at a location x selecting charging
stations 1 and 2, respectively. Then we use (ω1(x), 1−ω1(x))
to represent the mixed-strategy of such a PEV.

Before characterizing the mixed-strategy NE, we further
define two more thresholds,

θL2 = −kqq1(2L) + kl(x2 − x1)

kp · d
,

and
θR2 =

kqq2(2L) + kl(x2 − x1)

kp · d
.

Theorem 2: (1) In the FULL-FULL scenario, if p1 − p2 ∈
[θR1 , θ

R
2 ), then the NE strategy of PEV n at a location x is

s∗n(x) =

{
(0, 1), if x ∈ [x1, L],

(ω1, 1− ω1), if x ∈ [−L, x1),
(6)

where ω1 is the unique root of the following equation in the
range of [0, 1],

kq(q1((x1 + L)ω1)− q2(L− x1 + (x1 + L)(1− ω1)))

+ kpd(p1 − p2) + kl(x1 − x2) = 0. (7)

(2) In the FULL-FULL scenario, if p1−p2 ∈ (θL2 , θ
L
1 ], then

the NE strategy of PEV n at a location x is

s∗n(x) =

{
(1, 0), if x ∈ [−L, x2],

(ω1, 1− ω1), if x ∈ (x2, L],
(8)

where ω1 is the unique root of the following equation in the
range of [0, 1],

kq(q2((L− x2)(1− ω1))− q1(x2 + L+ (L− x2)ω1))

+ kpd(p2 − p1) + kl(x1 − x2) = 0. (9)

The proof of Theorem 2 is given in Appendix B.
3) Pure-strategy NE with a dominant station: From (7) and

(9), we can show that ω1 decreases with p1−p2 in both cases.
When p1 − p2 reaches the critical point θL2 (or θR2 ), all the
PEVs select charging station 1 (or 2), as shown in Fig. 2
(d) (or Fig. 2(e)). This leads to a new type of pure-strategy
NE, where all PEVs adopt the same strategy and choose the
same “dominant” station. Furthermore, if charging station 1
(or 2) keeps decreasing below θL2 (or increasing above θR2 ),
the selection outcome will remain unchanged, as shown by the
following theorem.

Theorem 3: Consider the FULL-FULL scenario. If p1 −

p2 ∈ [θR2 , pmax − pmin], then the NE strategy for any PEV
is s∗n(x) = 2. If p1 − p2 ∈ [pmin − pmax, θ

L
2 ], then the NE

strategy of any PEV is s∗n(x) = 1.
The proof of Theorem 3 is given in Appendix C. According

to Theorems 1 to 3, we can conclude that PSSG always has a
unique NE.

B. The Other Eight Scenarios

In the other eight scenarios, however, not all types of NEs
can emerge due to the limited service capacity of at least
one charging station. For illustration, here we consider two
scenarios: HIGH-HIGH and MIDDLE-MIDDLE.

1) HIGH-HIGH: In this scenario, kiµi ≤ 2λL for any i ∈
{1, 2}, and neither station can serve all the PEVs in the system.
Therefore, the NEs shown in Fig. (d) and Fig. (e) cannot be
achieved, and there exist three types of NE in this scenario,
as shown in Fig. 3(a), Fig. 3(b) and Fig. 3(c).

Theorem 4: (1) In the HIGH-HIGH scenario, if p1 − p2 ∈
(θL1 , θ

R
1 ), then the NE strategy of PEV n at a location x ∈

[x1, x2] is

s∗n(x) =

{
1, if x ∈ [−L, x∗),
2, if x ∈ [x∗, L],

(10)

where x∗ is the unique root of (5) and x∗ ∈ [x1, x2].
(2) In the HIGH-HIGH scenario, if p1 − p2 ≥ θR1 , then the
NE strategy of PEV n at a location x is

s∗n(x) =

{
(0, 1), if x ∈ [x1, L],

(ω1, 1− ω1), if x ∈ [−L, x1),
(11)

where ω1 is the unique root of (7) and 2Lλ−k2µ2

(L+x1)λ
< ω1 < 1.

(3) In the HIGH-HIGH scenario, if p1 − p2 ≤ θL1 , then the
NE strategy of PEV n at a location x is

s∗n(x) =

{
(1, 0), if x ∈ [−L, x2],

(ω1, 1− ω1), if x ∈ (x2, L],
(12)

where ω1 is the unique root of (9) and 0 < ω1 <
k1µ1−(L+x2)λ

(L−x2)λ
.

The proof of Theorem 4 is similar to the proofs of Theorems
1 and 2, and hence is omitted here.

2) MIDDLE-MIDDLE: In this scenario, the NEs shown
in Fig. 3 (b), Fig. 3 (c), Fig. 3 (d), and Fig. 3 (e) cannot
be achieved, as neither station has enough capacity (to serve
the PEVs neighbouring its competitor). Therefore, there exists
only one type of NE, as shown in Theorem 5.

Theorem 5: In the MIDDLE-MIDDLE scenario, the indif-
ference point is unique and the NE strategy of PEV n at
location x is

s∗n(x) =

{
1, if x ∈ [−L, x∗],
2, if x ∈ (x∗, L],

(13)

where x∗ is the unique root of (5) and L − k2µ2

λ < x∗ <
k1µ1

λ − L.
The proof of Theorem 5 is similar to that of Theorem 1 and
hence is omitted here.



TABLE I: NEs under various scenarios

Scenario Possible NEs Illustration
FULL-HIGH 2 pure, 2 mixed Fig. 3 (a),(b),(c),(d)

FULL-MIDDLE 2 pure, 1 mixed Fig. 3 (a),(c),(d)
FULL-LOW 1 pure, 1 mixed Fig. 3 (c),(d)
HIGH-HIGH 1 pure, 2 mixed Fig. 3 (a),(b),(c)

HIGH-MIDDLE 1 pure, 1 mixed Fig. 3 (a),(c)
MIDDLE-HIGH 1 pure, 1 mixed Fig. 3 (a),(b)

3) Summary: The above equilibrium analysis method is
also applicable to the other scenarios. Here we summarize the
equilibrium analysis for them in Table I. It should be pointed
out that our analysis is applicable to a more general system.
In Appendices D and E, we show how to extend our low-level
game to some more general scenarios.

V. CHARGING STATION PRICING GAME IN STAGE I

Now we analyze the Nash equilibrium of CSPG in Stage I,
given the NE of PSSG. Such analysis will lead to the SPE of
the entire two-stage game.

To calculate the payoffs of the charging stations, we first
derive the demand of each charging station. Take charging
station 1 in the FULL-FULL scenario as an example. Let
∆p = p1 − p2. According to Theorems 1 to 3, the demand of
charging station 1 is

D1 =



2Lλd, if ∆p ∈ [pmin − pmax, θ
L
2 ],

(ω1(L− x2) + L+ x2)λd, if ∆p ∈ (θL2 , θ
L
1 ],

(L+ x∗)λd, if ∆p ∈ (θL1 , θ
R
1 ),

(x1 + L)ω1λd, if ∆p ∈ [θR1 , θ
R
2 ),

0, if ∆p ∈ [θR2 , pmax − pmin].
(14)

Given its competitor’s price, a charging station can compute
the best price that maximizes its payoffs, defined by (3). We
denote the charging station i’s best pricing choice as its best
response, which is a function of the price pj , i.e., Bi(pj). We
have

Bi(pj) ∈ arg max
pi∈[pmin,pmax]

Qi(pi, pj). (15)

When the prices of both charging stations are mutual best
responses, we have achieved the NE of the CSPG game,
denoted by (p∗1, p

∗
2), which satisfies

Bi(Bj(p∗i )) = p∗i ,∀i ∈ {1, 2}. (16)

Next Theorem characterizes the condition for the existence
and uniqueness of the pricing equilibrium.9

Theorem 6: Suppose i, j ∈ {1, 2} (i 6= j) and consider a
region [a, b] with pmin ≤ a < b ≤ pmax. There exists a pure-
strategy pricing equilibrium (p∗1, p

∗
2) where p∗1 ∈ [a, b] and

p∗2 ∈ [a, b], if both of the following conditions are satisfied:
1) Bi(·) is monotonically increasing in [a, b], for any i.

9Even for a convex game, the uniqueness of the NE is not guaranteed.
Hence we cannot employ the convexity of Qi to prove the uniqueness of NE
in our game.

2) Bi(Bj(a)) ≥ a and Bi(Bj(b)) ≤ b, for some i.
The pure-strategy NE is unique if both conditions 1) and 2)

hold and
3) Bi(pj)− pj is strictly monotonically decreasing in [a, b],

for any i.10

The proof of Theorem 6 can be found in Appendix F. In
most of our simulations, conditions 2) and 3) are satisfied by
a = pmin and b = pmax. We can view Bi(pj) − pj as the
best price offset of charging station i. Condition 3) implies
that when the competitor’s price increases, a charging station’s
best price offset will decrease. This means that although
charging station i might increase its price pi by responding
to its competitor station j’s price increase, the price gap
will reduce. Condition 1), however, is not always easy to
satisfy in simulations. However, we note that conditions 1)
-3) are sufficient but not necessary conditions, and a pricing
equilibrium may exist even if these conditions are not satisfied
(as observed from our simulations). For the simplicity of
analysis, we will assume that all three conditions in Theorem
6 are satisfied by a = pmin and b = pmax.

VI. COMPUTING THE EQUILIBRIUM

As characterizing the closed-form pricing equilibrium in
CSPG in Stage I is very challenging, next we will focus on
developing a low-complexity algorithm to compute the pricing
equilibrium.

Proposition 1: Let Θi(pi) = Bi(Bj(pi))−pi. For any price
pi in [pmin, pmax], we have Θi(pi) < 0 if pi > p∗i , and
Θi(pi) > 0 if pi < p∗i .

The proof of Proposition 1 is given in Appendix G. Based
on Proposition 1, a charging station i can figure out whether
its current price pi is larger or smaller than the equilibrium
price, by evaluating the function of Θi.

With Proposition 1, we propose an iterative Directional
SPE Search Algorithm (DSSA) that searches p∗1 in the region
of [pmin, pmax]. In the tth iteration of DSSA, the algorithm
updates p1(t) by

p1(t+ 1) = [p1(t) + d(t)δ(t)]pmax
pmin

, (17)

where [x]ab = min(max(x, b), a),

δ(t) =

{
δ(t− 1), if Θ1(p1(t)) ·Θ1(p1(t− 1)) > 0,

αδ(t− 1), if Θ1(p1(t)) ·Θ1(p1(t− 1)) < 0,
(18)

and

d(t) =


1, if Θ(p1(t)) > 0,

−1, if Θ(p1(t)) < 0,

0, if Θ(p1(t)) = 0.

(19)

In the above equations, d(t) represents the search direction,
δ(t) is the step size and α is a constant in (0, 1). Θ1(p1(t)) ·
Θ1(p1(t− 1)) < 0 indicates that DSSA has leaped over p∗1 in
the previous iteration. Accordingly, DSSA changes its search
direction and continues to search p∗1 with a smaller step size.

10Bi(pj) does not need to be a strictly monotonic function.



We show the details of DSSA in Algorithm 1. Notice that
each charging station i executes Algorithm 1 independently
without synchronization. In addition, if the charging stations’
locations, service capacity, unit electricity cost, and feasible
price range are public information, DSSA does not require any
explicit information exchange between the charging stations,
as each charging station i can compute the function Θi locally.

Algorithm 1: DSSA for Station i ∈ {1, 2}
Input: L, xi, µi, ki, ci, λ, pmin, pmax, α, δ(0), ε
Output: p∗1, p∗2
if |Θi(pmin)| ≤ ε then

p∗1 = p∗2 = pmin and terminate;

if |Θi(pmax)| ≤ ε then
p∗1 = p∗2 = pmax and terminate;

Set Θi(pi(0)) = 1, t = 1 and randomly choose pi(1)
from (pmin, pmax);
while |Θi(pi(t))|/pi(t) > ε do

Update d(t) and δ(t) with (19) and (18), respectively;
Update pi(t+ 1) with (17), and t = t+ 1;

p∗i = pi(t) and p∗j = Bj(p∗i );

Theorem 7: The DSSA algorithm converges to an SPE of
our Stackelberg game Q-linearly.

The proof of Theorem 7 is given in Appendix H.

VII. NUMERICAL RESULTS

We numerically verify our equilibrium analysis and the
performance of the proposed algorithm. Unless specified oth-
erwise, we choose system parameters as follows: L = 10,
x1 = −8, x2 = 5, k1 = k2 = 2, d = 60 11, kp = 4, kq = 5,
kl = 1.5, λ = 1, c1 = c2 = 0.15, pmin ≥ 0.15, pmax ≤ 0.3 12,
č1 = č2 = 1, and ε = 0.001.

A. Charging Station Selection Equilibrium in Stage II

1) FULL-FULL: We first consider the FULL-FULL sce-
nario with µ1 = 16 and µ2 = 14, in which both charging
stations are able to serve all PEVs. Fig. 4 and Fig. 5 show the
indifference point location x∗ and the probability of selecting
charging station 1 (ω1) under various values of price difference
p1 − p2, respectively. In this simulation, θL2 = −0.1063,
θL1 = −0.0981, θR1 = 0.0881, and θR2 = 0.0988.

Fig. 4 shows when p1 − p2 increases from θL1 to θR1 , x∗

decreases from x2 to x1. This corresponds to the result in
Theorem 1, and shows that a larger price difference p1 − p2
will lead to more PEVs choosing charging station 2.

Fig. 5 provides the values of probability ω1 of the PEVs
in the ranges of [−L, x1] and [x2, L], when p1 − p2 is either
smaller than θL1 or larger than θR1 . More specifically, when
p1 − p2 ∈ (θL2 , θ

L
1 ), ω1 of the PEVs in [x2, L] is between 1

11For EVs produced by Tesla, the battery capacities can be 60 kwh, 70
kwh, 85 kwh, etc. Here we assume d to be 60 kwh.

12In some Chinese cities, the electricity price is about 0.15 US dollar, and
the maximally allowed charging price is about 0.3 US dollar.
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Fig. 5: Probability ω1 in the FULL-FULL scenario.

and 0. In other words, all the PEVs in [−L, x2] select station 1,
and the PEVs in [x2, L] select station 1 with probability ω1 and
station 2 with probability 1−ω1. When p1−p2 ∈ (θR1 , θ

R
2 ), ω1

of the PEVs in [−L, x1] is between 1 and 0. These results are
consistent with Theorem 2. When p1− p2 ≥ θR2 or p1− p2 ≤
θL2 , we will have a pure-strategy equilibrium in which all PEVs
choose station 2 or station 1.

2) Other Scenarios: Now we consider the HIGH-HIGH
scenario with µ1 = 9.5 and µ2 = 9.1. Similar to Fig. 4,
Fig. 6 illustrates how the indifference point x∗ changes with
p1 − p2 in this scenario. It can be seen that the indifference
point is in the range of [x1, x2] = [−8, 5]. In Fig. 7, we provide
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Fig. 6: Indifference point x∗ in the HIGH-HIGH scenario.
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the values of ω1 of the PEVs in the ranges of [−L, x1] and
[x2, L]. Different from Fig. 5, however, Fig. 7 indicates that
ω1 cannot continuously span the entire range of [0, 1] when
p1 − p2 changes, since neither of the stations is able to serve
all the PEVs. In fact, when p1 − p2 < θL1 , we always have
ω1 < 0.8 = k1µ1−(L+x2)λ

(L−x2)λ
. When p1 − p2 > θR1 , we always

have ω1 > 0.9 = 2Lλ−k2µ2

(L+x1)λ
. This is consistent with Theorem

4.

Fig. 8 shows the location of the indifference point in the
MIDDLE-MIDDLE scenario with µ1 = 7 and µ2 = 6. It is
obvious that the indifference point is in the range of (−2, 4),
which coincides with (L− k2µ2

λ , k1µ1

λ −L). This is consistent
with Theorem 5.

Finally, we consider the HIGH-LOW scenario with µ1 = 9
and µ2 = 2. Fig. 9 provides the values of ω1 of the PEVs
in the range of [x2, L] in this scenario. It can be seen that
ω1 is within the range of (0.2, 0.6), which corresponds to
(1 − k2µ2

L−x2
, k1µ1−(L+x2)λ

L−x2
). Fig. 9 tells that if a station has

a sufficient service capacity but its competitor is limited in
service capacity, it can always attract some PEVs no matter
how high its price is. In our simulation, station 2 has a much
lower service capacity. Therefore, the PEVs on the right side
of station 2 still choose station 1 with a probability greater
than 0.2 even when the price difference is relatively high, e.g.
3.
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Fig. 10: Best price offsets with µ1 = 16, µ2 = 14 and pi ∈
[0.25, 0.3].

B. Pricing Equilibrium of CSPG

We first illustrate the conditions in Theorem 6. Let us
consider the FULL-FULL scenario with µ1 = 16, µ2 = 14,
and pi ∈ [0.25, 0.3]. Fig. 10 and Fig. 11 show the best price
offset and the best response, respectively. According to Fig.
10, the best price offset, i.e., Bi(pj)) − pj (i 6= j), is strictly
decreasing with its competitor’s price. As shown in Fig. 11,
the best response curves of charging station 1 and 2 are both
increasing.
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Fig. 11: Best response curves with x1 = −8, x2 = 5 and
pi ∈ [0.25, 0.3].
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Fig. 13: Best response curves with x1 = −8, x2 = 9 and
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Next we numerically compute the NE of CSPG through
computing the intersection of the best response functions of
both charging stations. In Fig. 11, (pmin, pmax) = (0.25, 0.3),
and the intersection of the best response curves corresponds to
the NE (0.269, 0.282). Now we consider the other two FULL-
FULL scenarios.

• Fig. 12 shows the best response curves in the scenarios
with µ1 = 16, µ2 = 14 and (pmin, pmax) = (0.2, 0.27).
It can be seen that the intersection of the best response
curves indicates the NE (0.26, 0.27). In this simulation,
pmax is small and the candidate prices are relatively
low. As a result, the best price offset is often positive.
This means that each charging station has an incentive
to further increase its price. This explains why a high
equilibrium price is adopted by each station.

• In Fig. 13, we characterize the best response curves in
the scenario with µ1 = 16, µ2 = 14 and (pmin, pmax) =
(0.25, 0.3). Different from the case in Fig. 11, we set the
location of station 2 to x1 = 9 instead of x1 = 5 in
Fig. 13. Now we compare the NEs shown in Fig. 11 and
Fig. 13. Although station 2 declares a higher equilibrium
price than its competitor in Fig. 11, the opposite outcome
is true in Fig. 13. This is because station 2 is relatively
far away from the middle point in the case of Fig. 13 than
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Fig. 14: Iterations of DSSA with x1 = −8, x2 = 5 and pi ∈
[0.25, 0.3].
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Fig. 15: Iterations of DSSA with x1 = −8, x2 = 5 and pi ∈
[0.2, 0.27].

the case of Fig. 11, hence needs to announce a smaller
price to attract the PEVs.

C. The DSSA Algorithm

Finally, we demonstrate the convergence and computational
efficiency of DSSA. As mentioned in Section VI, when
|Bi(Bj(pi)) − pi|/pi ≤ ε, DSSA converges to the NE. We
consider the scenarios corresponding to Fig. 11 - Fig. 13, and
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Fig. 16: Iterations of DSSA with x1 = −8, x2 = 9 and pi ∈
[0.25, 0.3].



show the iterations of DSSA in Fig. 14 - Fig. 16, respectively.
In all cases, DSSA converges to the NEs within 25 iterations.
Furthermore, B1(B2(p1))− p1 is negative when p1 > p∗1, and
is positive when p1 < p∗1. When B1(B2(p1))− p1 approaches
zero, DSSA terminates at p∗1. The above phenomena verify the
principle of our DSSA algorithm.

VIII. CONCLUSION

This work studies the charging station pricing and PEV
station selection through a two-stage Stackelberg game. We
characterize the charging station selection equilibrium in Stage
II, and characterize the sufficient conditions for the existence
of the pricing equilibrium in Stage I. We also develop a low
complexity algorithm to compute the equilibria of the entire
game. In the future work, we will focus on more general
system models considering more than two charging stations,
networks of roads, and the impact of traffic conditions.
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APPENDIX A
PROOF OF THEOREM 1

Remark 1: Suppose a PEV n at x adopts a strategy s∗n at
an NE in PSSG. If s∗n = 1, all the PEVs at x

′
< x take the

strategy s∗n(x
′
) = 1 at that NE. If s∗n = 2, all the PEVs at

x
′
> x take the strategy s∗n(x

′
) = 2 at that NE.

According to Remark 1, we know that if when an indif-
ference point exists and a corresponding NE is achieved, the
PEVs on the left side of the indifference point choose station
1 and the PEVs on the right side of the indifference point
choose station 2.

Next we will first prove that the root to (5) is unique. Then
we will show that the strategy profile corresponding to (4) is
an NE. Finally, we will prove that no other NE exists.



A. Existence and uniqueness of the root to (5)

For convenience, let f(x) = kpd(p1−p2)+kq(q1(x+L)−
q2(L− x)) + kl(2x− x1 − x2). We have

f(x1) = kpd(p1 − p2) + kq(q1(x1 + L)− q2(L− x1))

+ kl(x1 − x2)

< kpdθ
R
1 + kq(q1(x1 + L)− q2(L− x1))

+ kl(x1 − x2) = 0
(20)

Similarly, we can prove that f(x2) > 0. Hence we can
conclude that f(x) = 0 holds for some x ∈ (x1, x2).

Furthermore, f(x) is a strictly monotonic increasing func-
tion. Hence there exists one unique root satisfying f(x) = 0.

B. Nash equilibrium

If every PEV adopts the strategy described by (4), |A1| =
x∗ + L and |A2| = L − x∗. We first consider the PEVs on
the left side of the indifference point. If a PEV n at x selects
station 1, its payoff is Un(1, s−n) = −kpdp1 − kqq1(|A1|)−
kl|x − x1|. If it selects station 2, its payoff is Un(2, s−n) =
−kpdp2 − kqq1(|A2|)− kl|x− x2|.

1) When x ≥ x1, we have Un(2, s−n) − Un(1, s−n) =
kpd(p1 − p2) + kq(q1(|A1|)− q2(|A2|)) + kl(2x− x2 −
x1) < kpd(p1−p2)+kq(q1(|A1|)−q2(|A2|))+kl(2x

∗−
x1 − x2) = 0.

2) When x < x1, we have Un(2, s−n) − Un(1, s−n) =
kpd(p1− p2) + kq(q1(|A1|)− q2(|A2|)) + kl(x1− x2) <
kpd(p1− p2) + kq(q1(|A1|)− q2(|A2|)) + kl(2x

∗− x1−
x2) = 0.

Hence, PEV n prefers station 1 to station 2.
Similarly, we can prove that the PEVs on the right side

of the indifference point prefers station 2 to station 1. In all,
with the strategy described by (4), no PEV has an incentive to
unilaterally change its station selection. That is, the strategy
profile corresponding to (4) is an NE.

C. Uniqueness of Nash equilibrium

We have proved that the NE is unique when an indifference
point exists. Now we consider the case where indifference
point does not exist.

The indifference point exists in the scenario where the
PEVs in the range of [−L, x∗) or (x∗, L] choose the same
equilibrium strategy. The situation where no indifference point
exists will emerge when some PEVs take different equilibrium
strategy. In the following, we prove that this situation will
never emerge by contradiction.

We first consider the case where a different pure-strategy
NE exists. Suppose at least one PEV at x < x∗ selects station
2 at such NE. Assume that among these PEVs, PEV n has the
smallest position, i.e., x̃. Clearly, all the PEVs on the right side
of PEV n select station 2 at this NE since they are closer to
station 2 than PEV n. As for the PEVs on the left side of PEV
n, all of them select station 1 13. This results in the situation
where the PEVs in the segment [−L, x̃) or (x̃, L] choose the

13Otherwise, PEV n is not the one with the smallest position.

same equilibrium strategy, which is impossible. Similarly, we
can analyze the case where at least one PEV at x > x∗ selects
station 1 when a different NE is achieved.

The proof for the case where some PEV chooses a mixed
strategy at a different NE is similar and hence is omitted.

APPENDIX B
PROOF OF THEOREM 2

We consider the case of p1 − p2 ∈ [θR1 , θ
R
2 ). The proof in

the case of p1 − p2 ∈ (θL2 , θ
L
1 ] is similar, and is omitted here.

A. Existence and uniqueness of the root to (7)

For convenience, let f(ω) = kpd(p1 − p2) + kl(x1 − x2) +
kq · (q1((x1 +L)ω)− q2(L−x1 +(x1 +L)(1−ω))). We have

f(0) = kpd(p1 − p2) + kl(x1 − x2)− kq · q2(L− x1 + (x1 + L))

< kpdθ
R
2 − kl(x2 − x1)− kq · q2(L− x1 + (x1 + L)) = 0

(21)
Similarly, we have f(1) ≥ 0. Hence we can conclude that
there exists an ω ∈ [0, 1] satisfying f(ω) = 0. Furthermore,
f(ω) is a strictly monotonic increasing function. Hence there
exists one unique ω ∈ [0, 1] satisfying f(ω) = 0. In addition,
it can be proved that ω ∈ [0, 1] satisfying f(ω) = 0 cannot be
less than 0 or greater than 1.

B. Nash equilibrium

When every PEV adopts the strategy given by (6), |A1| =
ω1(x1 + L) and |A2| = (1 − ω1)(x1 + L) + L − x1. In the
following, we consider a PEV n at x in two cases: 1) x1 <
x < x2, and 2) x2 ≤ x ≤ L.

In case 1, we have

Un(2, s−n)− Un(1, s−n)

= kpd(p1 − p2) + kq(q1(|A1|)− q2(|A2|)) + kl(2x− x1 − x2)

> kpd(p1 − p2) + kq(q1(|A1|)− q2(|A2|)) + kl(x1 − x2)

= 0
(22)

In case 2, we have

Un(2, s−n)− Un(1, s−n)

= kpd(p1 − p2) + kq(q1(|A1|)− q2(|A2|)) + kl(x2 − x1)

> kpd(p1 − p2) + kq(q1(|A1|)− q2(|A2|)) + kl(x1 − x2)

= 0
(23)

In both cases, selecting station 2 is better than station 1.
Therefore, all the PEVs on the right side of station 1 have no
incentives to unilaterally change its strategy.

Next, we consider the PEVs on the left side of station 1.
When a PEV m at y (−L ≤ y ≤ x1) adopts the strategy given
by (6), we have

Um(1, s−m) = −kpdp1 − kqq1(|A1|)− kl(x1 − y) (24)

and

Um(2, s−m) = −kpdp2 − kqq2(|A2|)− kl(x2 − y) (25)



Since ω1 solves (7), we have Um(1, s−m) = Um(2, s−m).
If PEV m take the strategy given by (6), its payoff is
= ω1Um(1, s−m) + (1− ω1)Um(2, s−m).

If PEV m takes a different mixed strategy s
′

m = (ω
′

1, 1 −
ω

′

1), its payoff is

Um(s
′

m, s−m) = ω
′

1Um(1, s−m) + (1− ω
′

1)Um(2, s−m)

= Um(1, s−m) = Um(2, s−m)

= ω1Um(1, s−m) + (1− ω1)Um(2, s−m)
(26)

The above equation indicates that PEV m cannot benefit from
deviating from the mixed strategy (ω1, 1− ω1) unilaterally.

In all, we can conclude that the strategy profile correspond-
ing to (6) is an NE. Similar to the proof of Theorem 1, we
can prove that the NE is unique.
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Here, we consider the case of p1− p2 ∈ [θR2 , pmax− pmin].
The proof for p1−p2 ∈ [pmin−pmax, θ

L
2 ] is similar and hence

is omitted.
Consider a PEV n at x ∈ [−L,L]. We have

Un(2, s−n)− Un(1, s−n) = kpd(p1 − p2) + kq(q1(|A1|)
− q2(|A2|)) + kl(|x− x1| − |x− x2|)

(27)
In the following, we consider three cases.
In case 1, x1 < x < x2 holds. We have

Un(2, s−n)− Un(1, s−n) = kpd(p1 − p2) + kq(q1(|A1|)
− q2(|A2|)) + kl(2x− x1 − x2)

≥ kpd(p1 − p2) + kq(0− q2(2L)) + kl(2x− x1 − x2)

≥ kpdθR2 − kqq2(2L)− k1(x2 − x1) = 0
(28)

In case 2, −L ≤ x ≤ x1 holds. We have

Un(2, s−n)− Un(1, s−n) = kpd(p1 − p2) + kq(q1(|A1|)
− q2(|A2|)) + kl(x1 − x2)

≥ kpd(p1 − p2) + kq(0− q2(2L)) + kl(x1 − x2)

≥ kpdθR2 − kqq2(2L)− k1(x2 − x1) = 0
(29)

In case 3, x2 ≤ x ≤ L holds. We have

Un(2, s−n)− Un(1, s−n) = kpd(p1 − p2) + kq(q1(|A1|)
− q2(|A2|)) + kl(x2 − x1)

≥ kpd(p1 − p2) + kq(0− q2(2L)) + kl(x2 − x1)

≥ kpdθR2 − kqq2(2L) + k1(x2 − x1)

> kpdθ
R
2 − kqq2(2L)− k1(x2 − x1) = 0

(30)
It can be seen that selecting station 2 is always the better

strategy of all the PEVs. Hence, the NE strategy of each PEV
is 2. In addition, it is clear that there exists no other NE in
the game.

λ λ λ λ

Uniform Distribution

STA1 STA2 STA3

A BS E

STA1 STA2 STA3

A BS E

Fig. 17: Two indifference points.

λ λ λ λ

Uniform Distribution

STA1 STA2 STA3

A BS E

STA1 STA2 STA3

A BS E

Fig. 18: One unique indifference point.

APPENDIX D
EXTENSION FOR MULTIPLE CHARGING STATIONS

In Section IV, we characterize the conditions for the exis-
tence of an indifference point between two charging stations.
Now we consider a one-dimensional system with three charg-
ing stations. A similar analysis can be generalized to the case
with an arbitrary number of stations in a one-dimensional
system.

As shown in Fig. 17, it is possible to have two indifference
points in this case, denoted by A and B. At point A, a
PEV is indifferent from selecting between stations 1 and 2,
but is unwilling to select station 3. At point B, a PEV is
indifferent from selecting between stations 2 and 3, but is
unwilling to select station 1. Under an NE characterized by
these indifference points, the PEVs in the line segment S-A
select station 1, those in the line segment A-B select station
2, and those in the line segment B-E select station 3.

Another interesting case is shown in Fig. 18, where only one
indifference point A exists. At point A, a PEV is indifferent
from selecting among all three stations. Accordingly, the
PEVs in the line segment S-A prefer station 1 under the
corresponding NE. On the other hand, the PEVs in the line
segment A-B take a mixed-strategy, which selects station 2
with a probability ω and station 3 with a probability 1 − ω.
The PEVs in the line segment B-E prefer station 3 at the NE.

APPENDIX E
EXTENSION FOR A TWO-DIMENSIONAL SYSTEM

λ λ λ λ

Uniform Distribution

STA1 STA2 STA3

A BS E

STA1 STA2 STA3

A BS E

STA2STA1

Indifference Curve

Fig. 19: A indifference line.

Now we extend our model to a two-dimensional system. For
simplicity, we first consider two homogeneous stations (i.e.,
µ1 = µ2, σ1 = σ2, k1 = k2 and p1 = p2) symmetrically



Fig. 20: A indifference curve.

located in a two-dimensional system. In this case, there exists
one indifference line (instead of indifference point) which goes
through the midpoint between two stations, as show in Fig. 19.
At the corresponding NE, all the PEVs on the left side of the
indifference line will select station 1, and the others select
station 2.

When the stations are asymmetrical, we will end up with
a nonlinear indifference curve. We denote by (x1, y1) and
(x2, y2) the positions of charging stations 1 and 2, respectively.
Let (xn, yn) be the position of a PEV on the indifference
curve, which satisfies the following condition:

klln,1 + kqq1 + kpdp1 = klln,2 + kqq2 + kpdp2. (31)

Here, ln,i =
√

(xn − x1)2 + (yn − y1)2 denotes the distance
between the PEV and station i, and qi represents the queueing
delay suffered at station i ∈ {1, 2}. According to the M/G/k
queueing theory, we have

qi(|Bi|) ≈
|Bi|λ(σ2

i + 1
µ2
i
)ρki−1i

2(ki − 1)!(ki − ρi)2[
∑ki−1
m=0

ρmi
m! +

ρ
ki
i

(ki−1)!(ki−ρi) ]
,

(32)
where ρi = |Bi|λ

µi
and |Bi| represents the area of the region

served by station i. For illustration, we consider a two-
dimensional system shown in Fig. 20. The coverage area of
this system is 1.0×1.0, and the positions of the two stations are
(0.2, 0.5) and (0.7, 0.5), respectively. Suppose that the price of
station 1 is lower than that of station 2. The red curve between
two stations is the indifference curve. The indifference curve
splits the system into two regions (i.e., B1 and B2), and |B1|
(or |B2|) is the area of the region containing STA1 (or STA2).
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Consider two prices p1i and p2i (p1i < p2i ). Since Bj(·)
is increasing, we have Bj(p1i ) ≤ Bj(p2i ) and Bi(Bj(p1i )) ≤
Bi(Bj(p2i )). For convenience, we use F(·) to refer to Bi(Bj(·).
Clearly, F(·) is non-decreasing. Due to F(a) ≥ a and
F(b) ≤ b, we know that a ≤ F(x) ≤ b if a < x < b.
According to Theorem 12.5 of [34], there exists one fixed point
satisfying Bj(Bi(pj)) = pj , which indicates the existence of

pure-strategy NE.
Now we prove the uniqueness of pure-strategy NE by con-

tradiction. Assume that there exist two NEs, i.e., (pa1 ,B2(pa1))
and (pb1,B2(pb1)). Without loss of generality, we suppose
pa1 > pb1. According to condition 3), we have B2(pa1) −
pa1 < B2(pb1) − pb1. Furthermore, we know B2(pa1) ≥
B2(pb1) since pa1 > pb1. Therefore, we have B1(B2(pa1)) −
B2(pa1) ≤ B1(B2(pb1))−B1(pb1). Since (pa1 ,B2(pa1)) is an NE,
B1(B2(pa1))− pa1 = 0 holds. Then we have

B1(B2(pb1))− pb1 = B1(B2(pb1))− B2(pb1) + B2(pb1)− pb1
> B1(B2(pa1))− B2(pa1) + B2(pa1)− pa1 = 0,

(33)
which contradicts the assumption that (pb1, p

b
2) is an NE.

APPENDIX G
PROOF OF PROPOSITION 1

For simplicity, we only show the proof for pi > p∗i . The
proof for pi < p∗i is similar and omitted here. Since Bi(pj)
(i = 1, 2) is increasing and Bi(pj) − pj (∀i 6= j) is strictly
decreasing, we have

Θi(pi) = Bi(Bj(pi))− pi
= Bi(Bj(pi))− Bj(pi) + Bj(pi)− pi
< Bi(Bj(pi))− Bj(pi) + Bj(p∗i )− p∗i
≤ Bi(Bj(p∗i ))− Bj(p∗i ) + Bj(p∗i )− p∗i
= 0.

(34)

It completes the proof.
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(1)

(2)

(3)
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(a)

p1*p1

T(p1)

T(p1)
(b)

Fig. 21: Mapping of DSSA.

For simplicity, we only consider the case where i = 1 and
α is sufficient large 14. For any non-equilibrium point p1(t),
there exist two cases: 1) p1(t) < p∗1, and 2) p1(t) > p∗1. In
the following, we only consider case 1, and case 2 can be
analyzed in a similar fashion. Let P1(τ) = p1(t). As shown
in Fig. 21, we can define a mapping as

T (P1(τ) =

{
p1(t+ 1), if Θ1(p1(τ + 1)) > 0,

p1(t+ 2), if Θ1(p1(τ + 1)) < 0,
(35)

Clearly, our iterative algorithm DSSA can be characterized by
P1(τ + 1) = T (P1(τ)). Now we consider two cases.

14Our proof can be easily extended to the case where α is small. In this
case, we only need to consider a different starting point which is enough close
to the equilibrium point.



(1) If T (P1(τ) = p1(t+ 1), we have

|T (P1(τ))−p∗1| = p∗1−p1(t)−δ(t) < |p∗1−p1(t)| = |p∗1−P1(τ)|
(36)

(2) If T (P1(τ) = p1(t+ 2), we have

|T (P1(τ))− p∗1| = p∗1 − (p1 + δ(t)− αδ(t))
< |p∗1 − p1(t)| = |p∗1 − P1(τ)|

(37)
In both cases, the distance between the candidate solution

and the equilibrium is shortened by the mapping. There exist a
positive constant γ (0 ≤ γ < 1) satisfying |T (P1(τ))− p∗1| ≤
γ|p∗1−P1(τ)| (∀τ > 0). It indicates T is a pseudocontraction
mapping [35]. According to Proposition 1.2 of [35], DSSA
converges to p∗1. Further, we know the convergence is Q-linear
[36].
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