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Abstract—In this paper, we propose a solution to an AC state
estimation problem in electric power systems using a fully
distributed Gauss-Newton method. The proposed method is
placed within the context of factor graphs and belief
propagation algorithms and closed-form expressions for belief
propagation messages exchanged along the factor graph are
derived. The obtained algorithm provides the same solution as
the conventional weighted least-squares state estimation. Using
a simple example, we provide a step-by-step presentation of the
proposed algorithm. Finally, we discuss the convergence
behaviour using the IEEE 14 bus test case.

Index Terms—AC State Estimation, Electric Power System,
Factor Graphs, Gaussian Belief Propagation, Distributed Gauss-
Newton Method

I. INTRODUCTION

The state estimation (SE) is an essential part of the
real-time energy management system (EMS), and it provides
inputs for other EMS functions. A SE algorithm, jointly with
network topology processors, observability analysis and bad
data analysis, provides an estimate of the system state
according to the network topology and available
measurements. SE is performed on a bus/branch model and
used to reconstruct the state of the observable part of the
system. Conventional SE algorithms are centralized and
typically use the Gauss-Newton method to solve the
non-linear weighted least-squares (WLS) problem [1], [2].

Deregulation of electric power systems implies their
decentralized structure, however, integrated control and
monitoring across the entire network is still needed. In view
of recent trends, control centers are mostly migrating toward
distributed control centers [3]. Consequently, many
centralized algorithms of EMS have to be redefined,
requirements being distributed and computationally more
efficient algorithms.

Probabilistic graphical models, such as factor graphs
(FGs), represent a powerful tool for modeling probabilistic
systems. The algorithm for exact inference on probabilistic
graphical models without loops is known as the belief
propagation (BP) algorithm [4], [5]. Using BP, it is possible
to efficiently calculate marginal distributions or a mode of
the joint distribution of the system of random variables. The
BP algorithm can be also applied to graphical models with
loops (loopy BP) [6], although in that case, the solution is
not guaranteed to converge to the correct marginals/modes of

the joint distribution. BP is a fully distributed algorithm that
takes probability distributions as an input, processes them,
and outputs marginal probability distributions used to
estimate values of state variables. This makes it a flexible
solution for accommodation of distributed power sources and
time-varying loads in various applications of electric power
systems.

The work in [7] provides the first demonstration of BP
applied to the SE problem. Although this work is elaborate
in terms of using, e.g., environmental correlation via
historical data, it applies BP to a simple linearized DC
model. The AC model is recently addressed in [8], where
tree-reweighted BP is applied using preprocessed weights
obtained by randomly sampling the space of spanning trees.

In this paper, we also solve the AC model via BP but in a
completely different framework that we find simpler and
more intuitive. We consider the AC SE model that we cast
into a FG representation and solve using the BP algorithm.
The proposed BP algorithm is obtained after a transformation
of the initial WLS problem into the maximum a posteriori
probability (MAP) problem that estimates the vector of
increments of the state variables. The resulting BP algorithm
has the interpretation of a fully distributed Gauss-Newton
method with the same accuracy as the conventional or
centralized SE. Consequently, the presented algorithm
applies similar mathematical framework as the conventional
SE, which simplifies its integration into existing EMS. In
addition, it can be implemented in a fully distributed manner
suitable for the distributed multi-area SE environment.

The structure of this paper is as follows: Section II
describes the conventional (centralized) SE and defines an
optimization problem which allows a solution via the BP
approach. Section III formulates closed form expressions for
BP messages. In Section IV, we give a step-by-step
description of the proposed algorithm, while Section V
considers the convergence performance and numerical results
for the IEEE 14 bus test case. Concluding remarks are
included in Section VI.

II. ELECTRIC POWER SYSTEM STATE ESTIMATION

The AC SE problem reduces to solving the system of
equations [9]:

z = h(x) + u, (1)
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where h(x) = (h1(x), . . . , hk(x)) includes both non-linear
and linear measurement functions (see Appendix for details),
x = (x1, . . . , xn) is the vector of the state variables, z =
(z1, . . . , zk) is the vector of independent measurements (where
n < k), and u = (u1, . . . , uk) is the vector of measurement
errors.

The state variables are bus voltage magnitudes and bus
voltage angles, transformer magnitudes of turns ratio and
transformer angles of turns ratio. Without loss of generality,
in the rest of the paper, we observe bus voltage angles θ =
(θ1, . . . , θN ) and bus voltage magnitudes V = (V1, . . . , VN )
as state variables x ≡ (θ,V), where N is the number of
buses (n = 2N ).

Under the assumption that measurement errors u follow a
zero-mean Gaussian distribution, the probability density
function associated with the m-th measurement equals:

N (zm|x, σ2
m) =

1

σm
√

2π
exp

{
[zm − hm(x)]2

2σ2
m

}
, (2)

where zm is the value of the measurement, σ2
m is the

measurement variance, and the function hm(x) connects the
vector of state variables to the value of m-th measurement.

One can find the MAP solution to the SE problem via
maximization of the likelihood function, which is defined via
likelihoods of k independent measurements:

x̂ = arg max
x
L(z|x) = arg max

x

k∏
h=1

N (zh|x, σ2
h). (3)

The maximum likelihood estimator (3) is equivalent to the
weighted least-squares estimator whose solution can be found
using the Gauss-Newton method:

J(xν)TWJ(xν)∆xν = J(xν)TWr(xν) (4.1)

xν+1 = xν + ∆xν , (4.2)

where ν is the iteration step, ∆xν ∈ Rn is the vector of
increments of the state variables, J(xν) ∈ Rkxn is the Jacobian
matrix of measurement functions h(xν) (see Appendix for
details), W ∈ Rkxk is a diagonal matrix containing inverses
of measurement variances, and r(xν) = z−h(xν) is the vector
of residuals [1].

At each iteration ν, the Gauss-Newton method returns a new
estimate of x, which in a given iteration may be observed as a
constant vector. If the Jacobian matrix J(xν) has a full column
rank, the equation (4.1) represents the linear WLS solution of
the minimization problem [10]:

min
∆xν
||W1/2[r(xν)− J(xν)∆xν ]||22. (5)

Hence, at each iteration ν, we can consider system of linear
equations:

r(xν) = g(∆xν) + u, (6)

where g(∆xν) = J(xν)∆xν comprises linear functions. The
equation (4.1) is the weighted normal equation for the
minimization problem defined as (5), or alternatively,
equation (4.1) is WLS solution of (6).

Consequently, the probability density function associated
with the m-th measurement (i.e., the m-th residual
component rm) at any iteration ν:

N (rm(xν)|∆xν , σ2
m) =

1

σm
√

2π
exp

{
[rm(xν)− gm(∆xν)]2

2σ2
m

}
.

(7)
The MAP solution of (3) can be redefined as an iterative

optimization problem where, instead of solving (4.1) and (4.2),
we solve MAP (sub)problem:

∆x̂ν = arg max
∆xν
L
(
r(xν)|∆xν

)
= arg max

∆xν

k∏
h=1

N
(
rh(xν)|∆xν , σ2

h

)
xν+1 = xν + ∆x̂ν .

(8)

As we show next, the solution to the above MAP subproblem
over increment variables ∆xν can be efficiently obtained using
BP algorithm applied over the underlying factor graph.

Note that, if the factor graph corresponding to the problem
(8) (see Section III) is a tree, the resulting BP algorithm
provides a solution equal to the linear WLS solution ∆xν of
(4.1). In general, if the factor graph contains loops, the BP
solution of ∆x̂ν in each iteration ν (outer iteration loop) will
be obtained via iterative BP algorithm (inner iteration loops).
Every inner BP iteration loop ρ = 1, 2, . . . , τ(ν) outputs
∆x̂ν,ρ, where τ(ν) is the number of inner BP iterations
within outer iteration ν.

III. FACTOR GRAPHS AND BP ALGORITHM

Factor graphs and BP algorithm are widely used tools for
probabilistic inference [4], [5]. In our scenario, FGs consist
of variable nodes for every variable in the likelihood
function and of factor nodes for each likelihood factor.
Therefore, for the MAP subproblem defined in (8), the
increments ∆x of state variables x will appear as variable
nodes, while residuals r of measurements z will define factor
nodes. A factor node connects to a variable node if the
increment variable is an argument of the corresponding
function gm(∆x), which is equivalent to say that the
corresponding state variable is an argument of the
measurement function hm(x).

Consider the part of a factor graph shown in Fig. 1 with
group of factor nodes F = {fs, fw, ..., fW } that are
neighbours of the variable node ∆xm.

Wf

wf

.

.

.
sf

mx∆
sf→mx∆µ

mx∆→Wfµ

mx∆→wfµ

Fig. 1. Message from variable node ∆xm to factor node fs



The message from the variable node ∆xm to the factor node fs
is equal to the product of all incoming factor node to variable
node messages arriving at all the other incident edges:

µ∆xm→fs(∆xm) =
∏

fa∈F\fs

µfa→∆xm(∆xm), (9)

where F \ fs defines the set of factor nodes incident to the
variable node ∆xm, excluding the factor node fs.

It can be shown that the message µ∆xm→fs(∆xm) is
represented by the Gaussian function:

µ∆xm→fs(∆xm) ∝ N (r∆xm→fs |∆xm, σ2
∆xm→fs), (10)

with mean r∆xm→fs and variance σ2
∆xm→fs :

r∆xm→fs =

( ∑
fa∈F\fs

rfa→∆xm

σ2
fa→∆xm

)
σ2

∆xm→fs

1

σ2
∆xm→fs

=
∑

fa∈F\fs

1

σ2
fa→∆xm

.

(11)

Consider the part of the factor graph shown in Fig. 2 that
consists of the group of variable nodes
X ∈ {∆xm,∆xl, ...,∆xL} that are neighbours of the factor
node fs. The message from the factor node fs to the
variable node ∆xm is defined as a product of all incoming
variable node to factor node messages arriving at all the
other incident edges multiplied by the Gaussian function
associated to the factor node fs and marginalized over all of
the variables associated with the incoming messages:

µfs→∆xm(∆xm) =

∫
∆xl

. . .

∫
∆xL

N (rfs |∆xm,∆xl . . .∆xL, σ
2
fs)

∏
∆xb∈X\∆xm

µ∆xb→fs(∆xb) · d∆xb,

(12)
where X \ ∆xm is the set of variable nodes incident to the
factor node fs, excluding the variable node ∆xm.

sf
.

.

.

mx∆

lx∆

Lx∆

mx∆→sfµ

sf→Lx∆µ

sf→lx∆µ

Fig. 2. Message from factor node fs to variable node ∆xm

It can be shown that the message µfs→∆xm(∆xm) is
represented by the Gaussian function:

µfs→∆xm(∆xm) ∝ N (rfs→∆xm |∆xm, σ2
fs→∆xm), (13)

with mean rfs→∆xm and variance σ2
fs→∆xm

:

rfs→∆xm =
1

C∆xm

(
rfs −

∑
∆xb∈X\∆xm

C∆xb · r∆xb→fs

)

σ2
fs→∆xm =

1

C2
∆xm

(
σ2
fs +

∑
∆xb∈X\∆xm

C2
∆xb
· σ2

∆xb→fs

)
.

(14)
The coefficients C∆xi , i = m, l . . . , L, are Jacobian elements
of the measurement function (see Appendix for details)
associated with the factor node fs:

C∆xi =
∂h(xm, xl, . . . , xL)

∂xi
, i = m, l . . . , L. (15)

Note that, due to the fact that all the measurements follow
Gaussian distribution and that BP processing in both variable
and function nodes preserve ”Gaussianity”, all the messages
exchanged in the presented BP are Gaussian distributions. The
resulting BP algorithm is known as Gaussian BP algorithm in
which all the BP messages are completely represented using
only means and variances [11].

The marginal of state variable increment ∆xm, illustrated
in Fig. 3, is obtained as the product of all incoming messages
into the variable node ∆xm:

p(∆xm) =
∏
fc∈F

µfc→∆xm(∆xm), (16)

where F is the set of factor nodes incident to the variable
node ∆xm.

Wf

wf

sf

mx∆

mx∆→Wfµ

mx∆→wfµ

mx∆→sfµ.

.

.

Fig. 3. Marginal inference for ∆xm

Thus the marginal has Gaussian form:

p(∆xm) ∝ N (∆x̂m|∆xm, σ2
∆xm), (17)

with mean ∆x̂m which represents the estimated value of the
state variable increment ∆xm and variance σ2

∆xm
:

∆x̂m =

( ∑
fc∈F

rfc→∆xm

σ2
fc→∆xm

)
σ2

∆xm

1

σ2
∆xm

=
∑
fc∈F

1

σ2
fc→∆xm

.

(18)

The MAP subproblem defined in (8) can be efficiently
solved using (11), (14) and (18).



IV. TOY EXAMPLE

An illustrative example presented in Fig. 4 will be used to
provide a step-by-step presentation of the proposed
algorithm. The simple three bus radial network contains
three direct measurement devices that directly measure state
variables Mdir ∈ {MV1

,Mθ2 ,Mθ3}, and two indirect
measurement devices Mind ∈ {MP12

,MP23
} that measure

state variables indirectly.

1

3θM2θM1VM

23PM12PM
32

Fig. 4. Bus/branch model

Input data for SE from measurement devices are
Gaussian-type functions represented by means and variances:
zdir ∈ {zV1

, zθ2 , zθ3}, σ2
dir ∈ {σ2

V1
, σ2
θ2
, σ2
θ3
} and

zind ∈ {zP12 , zP23} , σ2
ind ∈ {σ2

P12
, σ2
P23
}.

The corresponding FG is given in Fig. 5, where we define
indirect factor nodes frP12

, frP23
(orange squares)

corresponding to indirect measurements and four types of
singly-connected factor nodes (local factor nodes) described
next. The slack factor node frθ1 (yellow square) corresponds
to the slack or reference bus where the voltage angle has a
given value, therefore, the residual of that state variable is
equal to zero. The direct factor nodes frV1 , frθ2 , frθ3 (red
squares) correspond to the direct measurements. The
initialization factor node frV2 (green square) is needed to
start the algorithm, while the virtual factor node frV3 (blue
square) is used to form a message from a variable node to a
factor node. In general, if the variable node is not directly
measured and is singly-connected to the rest of the FG, we
attach a virtual factor node to this variable node.

1θ∆

1V∆

2θ∆

2V∆
3V∆

3θ∆

3θ
rf

1V
rf

12Prf 23Prf

2θ
rf

1θ
rf

2V
rf

3V
rf

Fig. 5. Factor graph of the illustrative example

In the following, for notational convenience, we denote the
variance as follows: σ2 ≡ ξ.
Algorithm Initialization

1) The AC SE in electric power systems assumes ”flat start”
or a priori given values of state variables:

x{ν=0} = [θ1 θ2 θ3 V1 V2 V3]{ν=0}.

2) The value of the slack factor node is set to rθ1 = 0 with
variance ξθ1 → 0.

3) The value of initialization factor nodes and virtual factor
nodes are set to rV2

→ 0 and rV3
→ 0, with variances

ξV2 →∞ and ξV3 →∞.

Iterate - Outer Loop: ν= 0,1,2, . . .;ρ= 0

4) Each direct factor node computes residual, e.g.:

r
{ν}
θ2

= zθ2 − θ
{ν}
2 .

5) Local factor nodes send messages represented by a
triplet (residual, variance, state variable), to incident
variable nodes, e.g.:

µ
{ν}
frθ1
→∆θ1

:=
(
rθ1 , ξθ1 , θ

{ν}
1

)
µ
{ν}
frθ2
→∆θ2

:=
(
r
{ν}
θ2

, ξθ2 , θ
{ν}
2

)
.

6) Variable nodes forward the incoming messages received
from local factor nodes along remaining edges, e.g.:

µ
{ν}{ρ}
∆θ2→frP12

= µ
{ν}
frθ2
→∆θ2

:=
(
r
{ν}
θ2

, ξθ2 , θ
{ν}
2

)
:=
(
r
{ν}{ρ}
∆θ2→frP12

, ξ
{ν}{ρ}
∆θ2→frP12

, θ
{ν}{ρ}
2

)
µ
{ν}{ρ}
∆θ2→frP23

= µ
{ν}
frθ2
→∆θ2

:=
(
r
{ν}
θ2

, ξθ2 , θ
{ν}
2

)
:=
(
r
{ν}{ρ}
∆θ2→frP23

, ξ
{ν}{ρ}
∆θ2→frP23

, θ
{ν}{ρ}
2

)
.

7) Indirect factor nodes compute residuals, e.g.:

r
{ν}
P12

= zP12
− hP12

(θ
{ν}
1 , θ

{ν}
2 , V

{ν}
1 , V

{ν}
2 ).

8) Indirect factor nodes compute appropriate Jacobian
elements associated with state variables, e.g.:

C
{ν}
P12,∆θ1

=
∂hP12(·)
∂θ1

= V
{ν}
1 V

{ν}
2 (g12sinθ{ν}12 − b12cosθ{ν}12 )

C
{ν}
P12,∆V2

=
∂hP12(·)
∂V2

= −V {ν}
1 (g12cosθ{ν}12 + b12sinθ{ν}12 ).

Iterate - Inner Loop: ρ= 1,2, . . . , τ (ν)

9) Indirect factor nodes send messages as pairs along
incident edges according to (14), e.g.:

µ
{ρ}
frP12

→∆θ2
:=
(
r
{ρ}
frP12

→∆θ2
, ξ
{ρ}
frP12

→∆θ2

)
r
{ρ}
frP12

→∆θ2
=

1

C
{ν}
P12,∆θ2

[
r
{ν}
P12
− C{ν}P12,∆θ1

· r{ν}{ρ−1}
∆θ1→frP12

−C{ν}P12,∆V1
· r{ν}{ρ−1}

∆V1→frP12

C
{ν}
P12,∆V2

· r{ν}{ρ−1}
∆V2→frP12

]
ξ
{ρ}
frP12

→∆θ2
=

1

(C
{ν}
P12,∆θ2

)2

[
ξP12

+ (C
{ν}
P12,∆θ1

)2 · ξ{ν}{ρ−1}
∆θ1→frP12

+(C
{ν}
P12,∆V1

)2 · ξ{ν}{ρ−1}
∆V1→frP12

+ (C
{ν}
P12,∆V2

)2 · ξ{ν}{ρ−1}
∆V2→frP12

]
.



10) Variable nodes send messages as pairs along incident
edges to indirect factor nodes according to (11), e.g.:

µ
{ν}{ρ}
∆θ2→frP12

:=
(
r
{ν}{ρ}
∆θ2→frP12

, ξ
{ν}{ρ}
∆θ2→frP12

)
1

ξ
{ν}{ρ}
∆θ2→frP12

=
1

ξθ2
+

1

ξ
{ρ}
frP23

→∆θ2

r
{ν}{ρ}
∆θ2→frP12

=

(
r
{ν}
θ2

ξθ2
+
r
{ρ}
frP23

→∆θ2

ξ
{ρ}
frP23

→∆θ2

)
ξ
{ρ}
∆θ2→frP12

.

Iterate - Outer Loop: ν= 0,1,2, . . .;ρ = τ (ν)

11) Variable nodes compute marginals according to (18), e.g.:

p(∆θ2) ∝ N (∆θ̂2|∆θ2, ξ̂θ2)

1

ξ̂
{ν}
∆θ2

=
1

ξθ2
+

1

ξ
{ρ}
frP12

→∆θ2

+
1

ξ
{ρ}
frP23

→∆θ2

∆θ̂
{ν}
2 =

(
r
{ν}
θ2

ξθ2
+
r
{ρ}
frP12

→∆θ2

ξ
{ρ}
frP12

→∆θ2

+
r
{ρ}
frP23

→∆θ2

ξ
{ρ}
frP23

→∆θ2

)
ξ̂
{ν}
∆θ2

.

12) Variable nodes update the state variables, e.g.:

θ
{ν+1}
2 = θ

{ν}
2 + ∆θ̂

{ν}
2 .

13) Repeat steps 4-13 until convergence1.

V. NUMERICAL RESULTS

The IEEE 14 bus test case shown in Fig. 6 is used to
analyse performance of the proposed algorithm. The set of
measurements obtained from 61 measurement devices that
measure active and reactive power flow, active and reactive
injection power, bus voltage magnitude and bus voltage
angle are selected so that the system is observable.

Active and Reactive Power Flow

1

2

3

4 8

5

6

13

12

14

11

10

9

7

Injection Active and Reactive Power 

Voltage Magnitude and Angle

Fig. 6. The IEEE 14 bus test case

1Note that, after step 8,, initialization factor nodes are removed from the
FG. Also in each iteration, virtual factor nodes repeat the same message as
in the initial step and messages from a virtual factor node to a variable node
should not be included in calculation of the marginals.

A. Simulation setup

From a given IEEE 14 bus test case and the set of
measurements, we define the corresponding factor graph.
Measurement values are generated using the AC power flow
analysis, additionally corrupted by Gaussian white noise of
variance σ2. For each value of variance σ2, using Monte
Carlo approach, we generate 1000 random sets of
measurement values and feed them to the proposed BP-based
SE algorithm in order to obtain the average performance
results.

The convergence of the proposed algorithm is tracked by
observing the root mean square error (RMSE) after each outer
iteration:

RMSE(ν) =
1

n
||x̂− xν ||2, (19)

where x̂ is the non-linear WLS solution, while xν represents
the current iterate solution of the BP algorithm.

We investigate two simulation scenarios using ”flat start”
(Vi = 1, θi = 0, i = 1, . . . , N ). In the first scenario, we test
the algorithm convergence by measuring RMSE using the
described Monte Carlo approach for different values of
measurement variances from the set σ2 = {σ2

1 , σ2
2 , σ2

3 , σ2
4}

= {0.012, 0.0012, 0.00012, 0.000012} [p.u.]. For every outer
iteration ν, the number of inner iterations is defined as
τ(ν) = νq , where q is inner iteration exponent, which we set
to q = 4. In the second scenario, we change the inner
iteration number exponent q while keeping the variance fixed
at the values σ2

1 (high noise level) and σ2
4 (low noise level).

The convergence is discussed and presented in the following
subsection.

B. Simulation results

The set of measurements defines the topology of the FG
and for almost all placements of measurement devices of
interest, the corresponding FG will have loops2. It is well
known that, in general, loopy BP does not converge to
correct marginals, e.g., specific inputs may lead to an
oscillatory behaviour of messages [12]. Based on extensive
numerical studies, we presented in [13] a heuristic solution
to improve the convergence of the BP algorithm:

µρf→x = [1− δ(p)] · µρf→x + δ(p) · α · [µρ−1
f→x + µρf→x],

(20)
where δ(p) ∈ {0, 1} is a Bernoulli random variable with
parameter p, independently sampled for each message µρf→x,
and α is the weighting coefficient. Namely, we modify
updates of factor to variable node messages in the inner
iteration loop µρf→x. For the values of p ∈ [0.4, 0.6] and
α = 0.5, our numerical studies showed that the BP algorithm
always converged successfully to the WLS solution.

Fig. 7 shows the convergence behaviour for the first
simulation scenario described in the previous subsection. The

2Note that, even if the physical power network has the radial structure (tree
structure), the FG will be loopy. An exception occurs, for example, for the
scenario of a radial network in which only end buses (and no internal buses
on a radial line) are allowed to contain power injection measurements.



algorithm is terminated after ν = 7 outer iterations with the
total number of inner iterations ρt =

∑7
ν=1 ν

4 = 4676. The
figure demonstrates that the proposed algorithm converges to
WLS solution over a wide range of noise variances. As
expected, the convergence behaviour improves as the noise
levels decreases.

Fig. 7. Convergence performance for different variances σ2

The convergence behaviour for different values of q for the
set of measurements with variances σ2

1 (high noise level) and
σ2

4 (low noise level) is shown in Fig. 8 and Fig. 9.

Fig. 8. Convergence performance for different q and σ2
1

For different values of q, the number of outer iterations ν is
selected in such a way that the resulting number of inner
iterations ρ is approximately the same. For both high and
low noise levels, the value of inner iteration number
exponent q = 4 is identified to provide fastest convergence to
the WLS solution for a given number of inner iterations.
Note that for insufficient value of exponent q (e.g., q = 2),
the convergence speed of the proposed algorithm will be
dramatically reduced. The fastest convergence behaviour is
obtained for q = 4 (although q = 5 also shows good
performance). For too large q value (q ≥ 6), the convergence
speed will decrease as compared to q = 4.

Fig. 9. Convergence performance for different q and σ2
4

VI. CONCLUSION

In this paper, we presented the BP solution of the AC SE
problem that can be interpreted as a fully distributed Gauss-
Newton method. The proposed BP algorithm converges to the
same solution as the centralized WLS state estimator. For the
future work, we plan to compare the proposed algorithm in
the multi-area SE setup in terms of performance, convergence
and computational cost with the solutions recently proposed
in the literature.
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APPENDIX
MEASUREMENT FUNCTIONS AND JACOBIAN ELEMENTS

The measurement functions h(x) ≡ h(V,θ) that connect
measurements z to state variables x ≡ (θ,V) and
corresponding Jacobian elements are described below.

The measurement function for active power flow at the
branch that connects buses i and j:

hPij (·) = V 2
i (gij + gsi)− ViVj(gij cos θij + bij sin θij),

where Vi and Vj are bus voltage magnitudes, while θij = θi−
θj is the bus voltage angle difference between buses i and j.
The parameters in above equations include the conductance gij
and susceptance bij of the branch, as well as the conductance
gsi of the branch shunt element connected at the bus i. The
Jacobian expressions corresponding to hPij (·) are as follows:

∂hPij (·)
∂θi

= ViVj(gijsinθij − bijcosθij)

∂hPij (·)
∂θj

= −ViVj(gijsinθij − bijcosθij)

∂hPij (·)
∂Vi

= −Vj(gijcosθij + bijsinθij) + 2Vi(gij + gsi)



∂hPij (·)
∂Vj

= −Vi(gijcosθij + bijsinθij).

The measurement function for reactive power flow at the
branch that connects buses i and j:

hQij (·) = −V 2
i (bij + bsi)− ViVj(gij sin θij − bij cos θij),

where bsi is susceptance of the branch shunt element
connected at the bus i. The Jacobian expressions
corresponding to hQij (·) are as follows:

∂hQij (·)
∂θi

= −ViVj(gijcosθij + bijsinθij)

∂hQij (·)
∂θj

= ViVj(gijcosθij + bijsinθij)

∂hQij (·)
∂Vi

= −Vj(gijsinθij − bijcosθij)− 2Vi(bij + bsi)

∂hQij (·)
∂Vj

= −Vi(gijsinθij − bijcosθij).

The measurement function for active injection power into
the bus i:

hPi(·) = Vi
∑
j∈H

Vj(Gij cos θij +Bij sin θij),

where H is the set of buses incident to the bus i, including
the bus i. The parameters Gij and Bij are conductance and
susceptance of the complex bus matrix. The Jacobian
expressions corresponding to hPi(·) are:

∂hPi(·)
∂θi

= Vi
∑
j∈H\i

Vj(−Gijsinθij +Bijcosθij)

∂hPi(·)
∂θj

= ViVj(Gijsinθij −Bijcosθij)

∂hPi(·)
∂Vi

=
∑
j∈H\i

Vj(Gijcosθij +Bijsinθij) + 2ViGii

∂hPi(·)
∂Vj

= Vi(Gijcosθij +Bijsinθij),

where H \ i is the set of buses incident to the bus i.
The measurement function for reactive injection power

into the bus i:

hQi(·) = Vi
∑
j∈H

Vj(Gij sin θij −Bij cos θij),

with Jacobian expressions:

∂hQi(·)
∂θi

= Vi
∑
j∈H\i

Vj(Gijcosθij +Bijsinθij)

∂hQi(·)
∂θj

= ViVj(−Gijcosθij −Bijsinθij)

∂hQi(·)
∂Vi

=
∑
j∈H\i

Vj(Gijsniθij −Bijcosθij)− 2ViBii

∂hQi(·)
∂Vj

= Vi(Gijsinθij −Bijcosθij).

The measurement function for current magnitude at the
branch connecting buses i and j:

hIij (·) = [aV 2
i + bV 2

j − 2ViVj(c cos θij − d sin θij)]
1/2

a = (gij + gsi)
2 + (bij + bsi)

2; b = g2
ij + b2ij

c = gij(gij + gsi) + bij(bij + bsi); d = gijbsi − bijgsi.
The Jacobian expressions corresponding to current magnitude
measurement function hIij (·) are as follows:

∂hIij (·)
∂θi

=
ViVj(d cos θij + c sin θij)

Iij

∂hIij (·)
∂θj

= −
ViVj(d cos θij + c sin θij)

Iij

∂hIij (·)
∂Vi

=
Vj(d sin θij − c cos θij) + aVi

Iij

∂hIij (·)
∂Vj

=
Vi(d sin θij − c cos θij) + bVj

Iij
.

The Jacobian expressions corresponding to voltage
magnitude and voltage angle measurement functions are as
follows:

∂Vi

∂Vi
= 1;

∂θi

∂θi
= 1.
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