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Abstract—We propose a fast real-time state estimator based
on the belief propagation algorithm for the power system state
estimation. The proposed estimator is easy to distribute and
parallelize, thus alleviating computational limitations and
allowing for processing measurements in real time. The
presented algorithm may run as a continuous process, with
each new measurement being seamlessly processed by the
distributed state estimator. In contrast to the matrix-based state
estimation methods, the belief propagation approach is robust
to ill-conditioned scenarios caused by significant differences
between measurement variances, thus resulting in a solution
that eliminates observability analysis. Using the DC model, we

numerically demonstrate the performance of the state estimator
in a realistic real-time system model with asynchronous
measurements. We note that the extension to the AC state
estimation is possible within the same framework.

Index Terms—Real-Time State Estimation, Electric Power
System, Factor Graphs, Gaussian Belief Propagation

I. INTRODUCTION

The state estimation (SE) function is a part of the energy

management system that allows for monitoring of electric

power systems. Input data for the SE arrive from supervisory

control and data acquisition (SCADA) technology. SCADA

provides communication infrastructure to collect legacy

measurements (voltage and line current magnitude, power

flow and injection measurements) from measurement devices

and transfer them to a central computational unit for

processing and storage. In the last decades, phasor

measurement units (PMUs) were developed that measure

voltage and line current phasors and provide highly accurate

measurements with high sampling rates. PMUs were

instrumental to the development of the wide area

measurement systems (WAMSs) that should provide

real-time monitoring and control of electric power systems

[1], [2]. The WAMS requires significant investments in

deployment of a large number of PMUs across the system,

which is why SCADA systems will remain important

technology, particularly at medium and low voltage levels.

Monitoring and control capability of the system strongly

depends on the SE accuracy as well as the periodicity of

evaluation of state estimates. Ideally, in the presence of both

legacy and PMU measurements, SE should run at the
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scanning rate (seconds), but due to the computational

limitations, practical SE algorithms run every few minutes or

when a significant change occurs [3]. In this work, we

propose a fast real-time state estimator based on the belief

propagation (BP) algorithm. Using the BP, it is possible to

estimate state variables in a distributed fashion. In other

words, unlike the usual scenario where measurements are

transmitted directly to the control center, in the BP

framework, measurements are locally collected and

processed by local modules (at substations, generators or

load units) that exchange BP messages with neighboring

local modules. Furthermore, even in the scenario where

measurements are transmitted to the centralized control

entity, the BP solution is advantageous over the classical

centralized solutions in that it can be easily distributed and

parallelized for high performance.

Compared to our recent work on BP-based SE [4], [5] that

addresses classical (static) SE problem, this paper is an

extension to the real-time model that operates continuously

and accepts asynchronous measurements from different

measurement subsystems. More precisely, we assume

presence of both SCADA and WAMS infrastructure, and

without loss of generality, we observe active power flow and

injection measurements (from SCADA), and voltage phase

angle measurements (from WAMS). We present appropriate

models for measurement arrival processes and for the process

of measurement deterioration (or “aging”) over time. Such

measurements are continuously integrated into the running

instances of distributed BP-based modules. For simplicity,

we present the real-time BP-based SE applied on the DC SE

model, while extension to the AC SE model follows similar

lines as in the static SE scenario [4]. Our extensive

numerical experiments on the example IEEE 14 system show

that the BP algorithm is able to provide real-time SE

performance. Furthermore, the BP-based SE is robust to

ill-conditioned systems in which significant difference arise

between measurement variances, thus allowing state

estimator that runs without observability analysis. Note that

in this paper, we do not address the convergence guarantees

for the BP-based solution [6], and we leave the detailed

treatment of convergence for our future work.

The structure of this paper is as follows: In Section II, we

provide background on conventional and BP-based SE. Section

III described the proposed fast real-time BP-based SE, while

Section IV considers the performance and numerical results for

the IEEE 14 bus test case. Concluding remarks are provided

in Section V.

http://arxiv.org/abs/1705.01376v2


II. BACKGROUND

A. State Estimation in Electric Power Systems

The main SE routines comprise the SE algorithm, network

topology processor, observability analysis and bad data

analysis. The core of the SE is the SE algorithm which

provides a state estimate of the system, i.e., the set of all

complex bus voltages, based on the network topology and

set of measurements M. Using information about switch and

circuit breaker positions the network topology processor

generates a bus/branch model of the power network and

assigns real-time measurement devices (legacy and/or PMU

devices) across the bus/branch model [7, Sec. 1.3]. As a

result, the graph G = (V , E) representing the power network

is defined, where the set of nodes V = {1, . . . , n} represents

the set of buses, while the set of edges E ⊆ V × V represents

the set of branches. In addition, the set of real-time

measurements Mrt ⊆ M is connected to the graph G.

According to the location and the type of real-time

measurements the observability analysis determines

observable and unobservable islands. Within the observable

islands, it is possible to obtain unique state estimates from

the available set of real-time measurements Mrt, which is

not the case within unobservable parts of the system. Once

observability analysis is done, pseudo-measurements can be

added, in order for the entire system to be observable [7,

Sec. 4.6], [3]. The set of pseudo-measurements Mps ⊂ M
represents certain prior knowledge (e.g., historical data) of

different electrical quantities and they are usually assigned

high values of variances [7, Sec. 1.3]. As detailed later, we

assume that, at a given time, the system measurements are

either real-time or pseudo-measurements, i.e., the sets Mrt

and Mps are disjoint Mrt ∩Mps = ∅ and their union is the

set M = Mrt ∪Mps.

The observability analysis provides the measurement model

which can be described as the system of equations:

z = h(x) + u, (1)

where x = (x1, . . . , xn) is the vector of state variables,

h(x) = (h1(x), . . . , hk(x)) is the vector of measurement

functions, z = (z1, . . . , zk) is the vector of independent

measurement values, and u = (u1, . . . , uk) is the vector of

uncorrelated measurement errors. The SE problem is

commonly an overdetermined system of equations (k > n)
usually defined by both real-time measurements and

pseudo-measurements [8, Sec. 2.1].

Each measurement Mi ∈ M is associated with measured

value zi, measurement error ui and measurement function

hi(x). Under the assumption that measurement errors ui

follow a zero-mean Gaussian distribution, the probability

density function associated with the measurement Mi equals:

N (zi|x, σ
2
i ) =

1
√

2πσ2
i

exp

{

[zi − hi(x)]
2

2σ2
i

}

, (2)

where σ2
i is the variance of the measurement error ui, and

the measurement function hi(x) connects the vector of state

variables x to the value of the measurement Mi.

One can find the state estimate x̂ via maximization of the

likelihood function L(z|x), which is defined via likelihoods

of k independent measurements:

x̂ = argmax
x

L(z|x) = argmax
x

k
∏

i=1

N (zi|x, σ
2
i ). (3)

It can be shown that the solution of (3) can be obtained

by solving the following optimization problem, known as the

weighted least squares (WLS) problem [9, Sec. 9.3]:

x̂ = argmin
x

k
∑

i=1

[zi − hi(x)]
2

σ2
i

. (4)

The state estimate x̂ that represents the solution of the

optimization problem (4) is known as the WLS estimator

and it is identical to the maximum likelihood solution.

B. DC State Estimation

The DC model is dealing with linear measurement functions

h(x) and it is obtained by linearisation of the AC model [4].

Therefore, the DC SE takes only bus voltage angles x ≡ θ as

state variables and the set of measurements M involves the

active power flow at the branch (i, j) ∈ E , the active power

injection into the bus i ∈ V and the bus voltage angle at the

bus i ∈ V , with measurement functions defined as follows:

hPij
(·) = −bij(θi − θj) (5a)

hPi
(·) =

∑

j∈Hi\i

hPij
(·) (5b)

hθi(·) = θi, (5c)

where θi and θj are bus voltage angles at buses i and j, bij
is susceptance of the branch and Hi \ i is the set of buses

incident to the bus i.
The DC state estimate x̂ ≡ θ̂, which is a solution to the

WLS problem (4), is obtained through non-iterative procedure

by solving the system of linear equations:

(

H
T
WH

)

x̂ = H
T
Wz, (6)

where H ∈ R
k×n is the Jacobian matrix of measurement

functions (5), and W ∈ R
k×k is a diagonal matrix

containing inverses of measurement variances.

C. Factor Graphs and Belief Propagation Algorithm

Factor graph construction: The factor graph describes a

factorization of the likelihood function L(z|x). It comprises

the set of factor nodes F and the set of variable nodes X . In

the DC scenario, the vector of state variables θ determines

the set of variable nodes X = {θ1, . . . , θn}, while the set of

measurements M defines the set of factor nodes F =
{f1, . . . , fk}. Each measurements defines a corresponding

factor N (zi|x, σ2
i ) of the likelihood function which is

represented by a factor node. A factor node fi connects to a

variable node xs ∈ X if and only if the state variable xs is

an argument of the corresponding measurement function

hi(x) [4].



Belief propagation algorithm: The BP algorithm

efficiently calculates marginal distributions of state variables

by passing two types of messages along the edges of the

factor graph: i) a variable node to a factor node, and ii) a

factor node to a variable node messages. Both variable and

factor nodes in a factor graph process the incoming

messages and calculate outgoing messages. The marginal

inference provides marginal probability distributions that is

used to estimate values x̂ of state variables x. Next, we

describe a version of BP algorithm called Gaussian BP,

where all the messages represent Gaussian distributions.

Message from a variable node to a factor node: Consider

a part of a factor graph shown in Fig. 1a with a group of

factor nodes Fs = {fi, fw, ..., fW } ⊆ F that are neighbours

of the variable node xs ∈ X . Let us assume, for the time

being, that the incoming messages µfw→xs
(xs), . . . ,

µfW→xs
(xs) into the variable node xs are Gaussian and

represented by their mean-variance pairs (zfw→xs
, σ2

fw→xs
),

. . . , (zfW→xs
, σ2

fW→xs
).

Wf
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Fig. 1. Message µxs→fi
(xs) from variable node xs to factor node fi

(subfigure a), message µfi→xs
(xs) from factor node fi to variable node

xs and marginal inference of the variable node xs (subfigure c).

It can be shown that the message µxs→fi(xs) from the

variable node xs to the factor node fi is proportional (i.e. ∝)

to the Gaussian function:

µxs→fi(xs) ∝ N (zxs→fi |xs, σ
2
xs→fi

), (7)

with mean zxs→fi and variance σ2
xs→fi

obtained as:

zxs→fi =

(

∑

fa∈Fs\fi

zfa→xs

σ2
fa→xs

)

σ2
xs→fi

(8a)

1

σ2
xs→fi

=
∑

fa∈Fs\fi

1

σ2
fa→xs

. (8b)

After the variable node xs receives the messages from all of

the neighbouring factor nodes from the set Fs \fi, it evaluates

the message µxs→fi(xs) according to (8) and sends it to the

factor node fi.
Message from a factor node to a variable node: Consider

a part of a factor graph shown in Fig. 1b that consists of a

group of variable nodes Xi = {xs, xl, ..., xL} ⊆ X that are

neighbours of the factor node fi ∈ F . The message

µfi→xs
(xs) can be computed only when all other incoming

messages (variable to factor node messages) are known. Let

us assume that the messages into factor nodes are Gaussian,

denoted by:

µxl→fi(xl) ∝ N (zxl→fi |xl, σ
2
xl→fi

)

...

µxL→fi(xL) ∝ N (zxL→fi |xL, σ
2
xL→fi

).

(9)

The Gaussian function associated with the factor node fi is

given by:

N (zi|xs, xl, . . . , xL, σ
2
i )

∝ exp

{

[zi − hi(xs, xl, . . . , xL)]
2

2σ2
i

}

. (10)

The linear function hi(xs, xl, . . . , xL) can be represented in a

general form as:

hi(xs, xl, . . . , xL) = Cxs
xs +

∑

xb∈Xi\xs

Cxb
xb, (11)

where Xi \xs is the set of variable nodes incident to the factor

node fi, excluding the variable node xs.

It can be shown that the message µfi→xs
(xs) from the factor

node fi to the variable node xs is represented by the Gaussian

function:

µfi→xs
(xs) ∝ N (zfi→xs

|xs, σ
2
fi→xs

), (12)

with mean zfi→xs
and variance σ2

fi→xs
obtained as:

zfi→xs
=

1

Cxs

(

zi −
∑

xb∈Xi\xs

Cxb
zxb→fi

)

(13a)

σ2
fi→xs

=
1

C2
xs

(

σ2
i +

∑

xb∈Xi\xs

C2
xb
σ2
xb→fi

)

. (13b)

After the factor node fi receives the messages from all of the

neighbouring variable nodes from the set Xi \ xs, it evaluates

the message µfi→xs
(xs) according to (13a) and (13b), and

sends it to the variable node xs.

Marginal inference: It can be show that the marginal of the

variable node xs, illustrated in Fig. 1c, is represented by the

Gaussian function:

p(xs) ∝ N (x̂s|xs, σ
2
xs
), (14)

with the mean value x̂s and variance σ2
xs

:

x̂s =

(

∑

fc∈Fs

zfc→xs

σ2
fc→xs

)

σ2
xs

(15a)

1

σ2
xs

=
∑

fc∈Fs

1

σ2
fc→xs

. (15b)

Finally, the mean-value x̂s is adopted as the estimated value

of the state variable xs.



Message scheduling: The SE scenario is in general an

instance of Loopy BP since the corresponding factor graph

usually contains cycles. Loopy BP is an iterative algorithm

and requires a message-passing schedule which, in this work,

is selected as the usual synchronous schedule [4].

III. REAL-TIME STATE ESTIMATION USING BELIEF

PROPAGATION

In this section, we propose a fast and robust BP-based SE

algorithm that can update the state estimate vector x̂ in a

time-continuous process. Hence, the algorithm can handle

each new measurement Mi ∈ Mrt as soon as it is delivered

from telemetry to the computational unit. Further, using the

BP SE algorithm, it is possible to compute the state estimate

vector x̂ without resorting to observability analysis.

The proposed SE solution is based on the fact that the

BP-based algorithm is robust in terms of handling the

ill-conditioned scenarios caused by significant differences

between values of variances (e.g., PMU measurements and

pseudo-measurements). Ideally, pseudo-measurements should

not affect the solution within observable islands (i.e.,

determined with real-time measurements), therefore the

variance of pseudo-measurements Mi ∈ Mps should be set

to σ2
i → ∞. In the conventional SE this concept is a source

of ill-conditioned system. Hence, the values of

pseudo-measurement variances should be defined to prevent

ill-conditioned situations and ensure numerical stability of

the SE algorithm (e.g., 1010 − 1015). On the other hand,

inability to define σ2
i → ∞ causes that pseudo-measurements

have more or less impact on the state estimate x̂, and thus

the number of pseudo-measurements should be minimized to

produce an observable system.

The BP SE algorithm allows the inclusion of an arbitrary

number of pseudo-measurements with an extremely large

values of variances (e.g., 1060), hence the impact on the

observable island is negligible. Consequently, observable

islands will have unique solution according to the real-time

measurements, while unobservable islands will be

determined according to both real-time and

pseudo-measurements. Therefore, we propose a model where

the network topology processor generates bus/branch model

and assigns all possible measurements that exist in the power

system, setting their variances to suitable values.

Without loss of generality, we demonstrate this procedure

by a toy-example, using a simple bus/branch model shown in

Fig. 2a where all the possible measurements are assigned.

The first step is converting the bus/branch model and its

measurements configuration into the corresponding factor

graph illustrated in Fig. 2b. We assume, for the time being,

that all the measurements are pseudo-measurements M ≡
Mps = {Mθ1, Mθ2 , MP1

, MP2
, MP12

} and Mrt = {∅},

noting that the system is unobservable. Using equations (8),

(13) and (15) the BP algorithm will compute the state

estimate vector x̂ according to the set of factor nodes F
defined by the set of pseudo-measurements M ≡ Mps.

Hence, the system is defined according to the prior

knowledge in lack of real-time measurements.

12PM

2θM

2PM

1θM

1PM

1 2

(a)

1θ

1Pf

2θ

2Pf

12Pf1θf 2θf

(b)

Fig. 2. Transformation of the bus/branch model and measurement
configuration (subfigure a) into the corresponding factor graph for the DC
model (subfigure b).

Subsequently, in an arbitrary moment, we assume that the

computational unit received a real-time measurement Mrt =
{Mθ1}, which determines an observable island that contains

bus 1, while bus 2 remains within unobservable island. The BP

algorithm in continuous process will compute the new value of

state estimate θ̂1 according to Mθ1 , with insignificant impact

of (high-variance) pseudo-measurements Mps \ {Mθ1}, while

the value of the state estimate θ̂2 will be defined according to

both Mθ1 and Mps \ {Mθ1}.

Assuming that subsequently, the computational unit

receives an additional real-time measurement MP12
, the

system will be observable. The state estimate x̂ at that

moment will be computed according to the real-time

measurements Mrt = {Mθ1, MP12
}, with negligible

influence of pseudo-measurements Mps \ {Mθ1,MP12
}.

Based on our extensive numerical analysis on large IEEE

test cases, the proposed algorithm is able to track the state of

the system in the continuous process without need for

observability analysis. Note that, due the fact that the values

of state variables usually fluctuate in narrow boundaries, in

normal conditions, the continuous algorithm allows for fast

response to new each measurement.

IV. NUMERICAL RESULTS

We evaluate the performance of the proposed algorithm

using the IEEE 14 bus test case with the measurement

configuration shown in Fig. 3.
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Active Power Flow Measurement

Active Power Injection Measurement

Voltage Angle Measurement

Fig. 3. The IEEE 14 bus test case with measurement configuration.



A. Simulation Setup

We start by a given IEEE 14 bus test case and apply the

DC power flow analysis to generate the exact solution for

voltage angles and active powers across the network. Further,

we corrupt the exact solution by the additive white Gaussian

noise of variance σ2 to generate set of measurements M.

The slack bus is bus 1 where the voltage angle has a given

value θ1 = 0, therefore, the variance is σ2
1 → 0 (e.g. we

use σ2
1 = 10−60 deg). Throughout this section, the variance

of active power flow and injection pseudo-measurements are

σ2
ps = 1060MW, while voltage angle pseudo-measurements

have σ2
ps = 1060 deg. Note that the base power for the IEEE

14 bus test case is 100MVA.

In each test case (described below), the algorithm starts at

the time instant t = 0 initialized using the full set of

pseudo-measurements M ≡ Mps generated according to

historical data. Consider an arbitrary measurement Mi ∈ M.

This measurement is initialized as pseudo-measurement, i.e.,

at t = 0, Mi ∈ Mps. Let trt denotes the time instant when

the computational unit has received the real-time measured

value of Mi with the predefined value of variance σ2
rt. We

model the “aging” of the information provided by this

measurement by the linear variance increase over time up to

the time instant tps where it becomes equal to σ2
ps (Fig 4). In

other words, we assume Mi ∈ Mps during 0 ≤ t < trt and

t ≥ tps, while Mi ∈ Mrt during trt ≤ t < tps. After the

transition period t ≥ tps, Mi is observed as

pseudo-measurement until the next real-time measurement is

received.

trt tps

σ2
rt

σ2
ps

t

σ2

Fig. 4. The time-dependent function of variances for real-time measurements.

B. Test Case 1

In the following, we analyze performance of the proposed

algorithm in the scenario characterized by significant

differences between variances and observe influence of the

pseudo-measurements on the state estimate x̂ ≡ θ̂.

In Table I, we define the (fixed) schedule and type of

real-time measurements, where each real-time measurement

is set to σ2
rt = 10−12MW at trt and we assume tps → ∞

(i.e., σ2
rt remains at 10−12MW for t > trt ). The example is

designed in such a way that, upon reception of each

real-time measurement, due to its very low variance one of

the states from the estimated state vector θ̂ becomes

approximately equal to the power flow solution.

Fig. 5 shows estimated values of voltage angles θ3, θ8 and

θ14 for the scenario defined in Table I. One can note the

robustness of the proposed BP SE solution in a sense that, at

TABLE I
SCHEDULE AND TYPE OF REAL-TIME MEASUREMENTS

Time Active power flow MPij
Time Active power flow MPij

trt(s) from bus i to bus j trt(s) from bus i to bus j

1 1 2 8 7 9

2 2 3 9 9 10

3 3 4 10 10 11

4 4 5 11 6 12

5 5 6 12 12 13

6 4 7 13 13 14

7 7 8
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Fig. 5. Real-Time estimates of voltage angles θ3, θ8 and θ14 where the
computational unit received active power flow real-time measurements every
t = 1 s with variance σ2

rt = 10−12 MW.

any time instant, the extreme difference in variances between

already received real-time measurements and remaining set

of pseudo-measurements (that typically lead to

ill-conditioned scenarios), are accurately solved by the BP

estimator. As expected, in our pre-designed example, we

clearly note a sequential refinement of the state estimate,

where each new received real-time measurement MPij

accurately defines the corresponding state variable θj . More

precisely, starting from the slack bus that has a known state

value, the real-time measurement MP12
specifies the state

value of θ2 at time t = 1 s. The chain of refinements repeats

successively until t = 13 s when the final state variable θ14 is

accurately estimated.

Although somewhat trivial, the above example

demonstrates that the BP-based SE algorithm provides a

solution according to the real-time measurements,

irrespective of the presence of (all) pseudo-measurements. In

addition, Fig. 5 shows how BP influence propagates through

the network (e.g., upon reception, measurement MP12
affects

the distant state variable θ14).

C. Test Case 2

In order to investigate how fast BP influence propagates

through the network, we use the same setup given in Section

IV-B, and analyse the response of the system to the received

real-time measurement of different variance σ2
rt = {202, 102,

10−2}MW. In particular, we track the convergence of the



(iterative message passing) BP algorithm over time, from the

moment the real-time measurement is received, to the moment

when the state estimate reaches a steady state.

Fig. 6 illustrates the influence of the real-time

measurement MP12
received at trs = 1 s, on the state

variables θ2, θ3 and θ14. As expected, the received real-time

measurement has almost immediate impact on the state

variable θ2, where steady state occurs within t < 1ms, even

for the high value of measurement variance σ2
rt = 202MW.

Further, this real-time measurement will influence the entire

system through iterative BP message exchanges. As

expected, increasing the distance between the measurement

location and the bus location, more time is need for the

corresponding state variable to reach the steady state. For

example, steady state of the state variable θ14 occurs within

t < 25ms.
To summarize, the algorithm is able to provide fast response

on the received real-time measurements and, for the DC SE

framework, it is able to support both WAMS and SCADA

technology in terms of the required computational delays1.
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Fig. 6. Real-Time estimates of voltage angles θ2, θ3 and θ14 where the
computational unit received active power flow real-time measurement MP12

at the time t = 1 s with variances σ2
rt = {202, 102, 10−2}MW.

D. Test Case 3

In the final scenario, we consider the dynamic scenario in

which the power system changes values of both generations

and loads every 100 s. In the interval between t = 0 and

t = 250 s, only active power flow and injection real-time

measurements are available with variances σ2
rt = 102 MW

and tps − trt = 103 s.2 After 250 s, the voltage angle

real-time measurements become available with parameters

σ2
rt = 10−6 deg and tps → ∞. For every measurement,

arrival process in each interval is modeled using Poisson

process with average inter-arrival time 1/λ, where for active

power flow and injection real-time measurements we set

λ = 0.05 and for angle real-time measurements λ = 0.5.

Fig. 7 shows state estimates of state variables θ3, θ8 and

θ14 over the time interval of 300 s for the described scenario.

1Our ongoing work aims to extend these results to the more complex BP-
based AC SE model [4].

2Although the period of 103 s may appear large, note that this is
compensated by very high variance σ2

ps = 1060 MW at tps.
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Fig. 7. Real-time estimates of voltage angles θ3, θ8 and θ14 where real-time
measurements arrived at the computational unit according to Poisson process.

During the first 250 s, the BP SE provides state estimates

according to incoming noisy real-time measurements and, as

apparent from the figure, each new real-time measurement

will affect the current state of the system. After t = 250 s,
the voltage angle real-time measurements arrived with

constant and very low variance, thus providing state

estimates which are considerably more accurate.

V. CONCLUSIONS

We presented the fast real-time DC SE model based on

the powerful BP algorithm, which is able to provide state

estimates without resorting to observability analysis. The

proposed BP estimator can be distributed and parallelized

which allows for flexible and low-delay centralized or

distributed implementation suitable for integration in

emerging WAMS. For the future work, we plan to provide

extensive numerical analysis of the proposed algorithm,

including the AC SE model implemented within the same

framework, and extended to the generalized SE model.
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