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Abstract—Gaussian random attacks that jointly minimize the
amount of information obtained by the operator from the grid
and the probability of attack detection are presented. The con-
struction of the attack is posed as an optimization problem with
a utility function that captures two effects: firstly, minimizing
the mutual information between the measurements and the state
variables; secondly, minimizing the probability of attack detection
via the Kullback-Leibler divergence between the distribution of
the measurements with an attack and the distribution of the
measurements without an attack. Additionally, a lower bound
on the utility function achieved by the attacks constructed with
imperfect knowledge of the second order statistics of the state
variables is obtained. The performance of the attack construction
using the sample covariance matrix of the state variables is
numerically evaluated. The above results are tested in the IEEE
30-Bus test system.

I. INTRODUCTION

The smart grid is expected to address the challenges posed

by the move towards decentralized renewable energy gen-

eration. At the core of the smart grid lies an advanced

sensing and communication network embedded in the electric

power grid that provides the cyber backbone for the emerging

cyberphysical energy system. The resulting system is expected

to operate more efficiently while addressing some of the

stability and resilience issues such as the ones causing the

2003 North American outage [1]. While the increased sensing

and communication enables the implementation of advanced

control and management procedures, the cyber layer also

opens the door to malicious attacks. The cybersecurity threats

to which the smart grid is exposed are not well understood

yet, and therefore, practical security solutions need to come

forth as a multidisciplinary effort combining technologies such

as cryptography, advanced machine learning, and information-

theoretic security [2].

Data injection attacks (DIAs) [3], which exploit the sensing

infrastructure used in state estimation by the network operator,

are an immediate concern. DIA strategies involve corrupting

the estimate that the operator obtains of the state of the grid

by tampering with the measurements produced by the sensing

infrastructure. In [3] unobservable attacks are proposed for

the case in which the operator performs least squares (LS)
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estimation. The case in which the attacker has access to a

limited number of sensors is analyzed in [4], [5] and [6].

Therein it is shown that the attacker can circumvent the access

constraints using an ℓ1-minimization approach to construct a

sparse attack vector. This approach is extended to the case

in which multiple attackers control a subset of the nodes of

the grid and coordinate to distributely construct unobservable

attacks [7] and [8].

Bayesian frameworks are considered for transmission grids

in [9] and [10] and for distribution grids in [11] by assuming

a multivariate Gaussian distribution for the state variables. In

this case the operator performs minimum mean square error

(MMSE) estimation. Two attack constructions that tradeoff

the distortion introduced in the estimates with the probability

of attack detection are presented in [9]. Maximum MMSE

distortion attacks and their construction in a decentralized

game-theoretic setting are studied in [10]. Within an AC state

estimation setting partial knowledge of the state variables is

used to create unobservable attacks in [12].

The introduction of a probabilistic description of the state

variables enables using information measures in the analysis

of state estimation problems. For instance, a sensor place-

ment strategy that accounts for the amount of information

acquired by the sensing infrastructure is studied in [13].

Information-theoretic security tools are employed to provide

privacy guarantees in systems with smart meters [14], [15]

and [16]. However, information-theoretic security in a smart

grid state estimation context is still not well understood. In

this paper, the attack construction is studied in terms of

information measures to quantify the information loss that

the attack causes to the operator and the probability of attack

detection. The utility function that arises is analyzed in [17]

in the context of stealth communications. Using this utility

function an optimal Gaussian attack construction is obtained.

The impact of imperfect second order statistics is analyzed by

considering a sample covariance estimate of the state variables

as the available prior knowledge for the attacker.

The organization of the rest of this paper is as follows.

Section II presents a Bayesian system model for state esti-

mation with linearized system dynamics. A stealthy attack

construction based on an information-theoretic performance

measure is proposed in Section III. The impact of imperfect

second order statistics obtained via a limited training data set

is discussed in Section IV. Section V numerically evaluates the

performance of the proposed attack strategy on the IEEE 30-
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Bus test system. The paper ends with conclusions in Section

VI.

II. SYSTEM MODEL

A. Bayesian Framework for State Estimation

Linearized system dynamics are considered for the state

estimation problem. The resulting observation model is given

by

Y M = HXN + ZM , (1)

where XN ∈ R
N

is a vector of random variables describing

the true state of the system; H ∈ R
M×N

is the Jacobian of

the linearized system dynamics which is determined by the

power network topology and the admittances of the branches;

Y M ∈ R
M

is a vector of random variables containing the

measurements available to the attacker; and ZM ∈ R
M

is

the additive white Gaussian noise (AWGN) introduced by the

measurements [18], [19], i.e. the vector of random variables

ZM follows a multivariate Gaussian distribution N (0, σ2IM ).
The state variables are also assumed to follow a multivariate

Gaussian distribution denoted by

XN ∼ N (0,ΣXX), (2)

where ΣXX is the covariance matrix of the state variables.

Consequently, from (1), the measurement vector also follows

a multivariate Gaussian distribution given by

Y M ∼ N (0,ΣYY ), (3)

where ΣYY = HΣXXHT +σ2IM is the covariance matrix of

the measurements.

Given the stochastic nature of the state variables, it is

reasonable for the attacker to pursue a stochastic attack con-

struction strategy. The performance of the attack is therefore

assessed in terms of the average performance that is achieved

with multiple attack realizations. In the following, an attack

vector independent of the state variables is constructed follow-

ing a multivariate Gaussian distribution denoted by

AM ∼ N (0,ΣAA), (4)

where ΣAA is the covariance matrix of the attack vector. It is

worth noting that the independence of the attack vector with

respect to the state variables implies that the attacker does not

need to know the joint distribution of the state variables and

the measurements to construct the attack vector. Knowledge

of the second order moments of the state variables and the

variance of the AWGN introduced by the observation process

suffices to construct the attack. This assumption significantly

reduces the difficulty of the attack construction.

The resulting observation model for the case in which the

measurements are compromised is given by

Y M
A = HXN + ZM +AM , (5)

where AM ∈ R
M

is the attack vector [3]. The compromised

measurements, Y M
A , follow a multivariate Gaussian distribu-

tion described as

Y M
A ∼ N (0,ΣYAYA

), (6)

where ΣYAYA
= HΣXXHT + σ2IM +ΣAA.

The operator utilizes the measurements obtained from the

grid to detect the presence of an attack. The attack detection

problem is cast into a hypothesis testing problem with hy-

potheses

H0 : Y M ∼ N (0,ΣYAYA
), versus (7)

H1 : Y M ∼ N (0,ΣYY ). (8)

The Neyman-Pearson Lemma [20] states that for a fixed

Type I probability of error, the likelihood ratio test achieves

the minimum Type II probability of error β, when compared

with any other tests with an equal or smaller Type I probability

of error α. In view of this, a likelihood ratio test is chosen as

the attack detection strategy. The likelihood ratio test between

H0 and H1 takes the following form

L(y) =
fY M

A

(y)

fY M (y)

H0

≷
H1

τ, (9)

where y ∈ R
M

is a realization of the vector of random

variables modelling the measurements, fY M

A

and fY M denote

the probability density functions of Y M
A and Y M , respectively,

and τ is the decision threshold set by the operator to meet the

false alarm constraint.

B. Information-Theoretic Setting

The aim of the attacker when tampering with the mea-

surements is twofold: first, to minimize the information that

the operator acquires about the state variables from the grid

measurements; second, to minimize the probability of the

attack being detected by the operator. Capitalizing on the

Bayesian framework, an information-theoretic criterion for the

attack construction is adopted. To satisfy the first objective,

the attacker minimizes the mutual information between the

state variables and the compromised measurements. Specif-

ically, the attacker constructs the attack vector, i.e. chooses

the distribution of the attack vector, in such a way that it

minimizes I(XN ;Y M
A ). This is equivalent to guaranteeing that

the amount of information that the operator acquires about the

state variables X by observing Y is minimized.

On the other hand, the probability of attack detection is

determined by the detection threshold τ and the distribution

induced by the attack on the measurements. Larger values

of τ yield lower probability of detection. The Chernoff-Stein

Lemma [21] states that the logarithm of the averaged minimum

value of Type II probability of error β for any Type I probabil-

ity of error α smaller than one half asymptotically converges to

the inverse of the Kullback-Leibler (KL) divergence between

the distributions of the two hypotheses. Specifically, in this

Bayesian framework, for any ǫ ∈ (0, 1/2),

lim
n→∞

1

n
log βǫ

n = −D(PY M

A

||PY M ), (10)



where βǫ
n is the minimum β for α < ǫ when n M -dimensional

samples are available and D(·||·) is the KL divergence. There-

fore, for the attacker, minimizing the asymptotic detection

probability is equivalent to minimizing D(PY M

A

||PY M ), where

PY M

A

and PY M denote the probability distributions of Y M
A

and Y M , respectively. The minimization of the KL divergence

ensures that the effect of the attack on the induced distribution

over the measurements is minimized, i.e. the attack is stealthy

[17].

In this information-theoretic setting, the attacker minimizes

I(XN ;Y M
A ) and D(PY M

A

||PY M ) simultaneously. The stealthy

attack construction strategy is introduced in the next section.

III. STEALTHY INFORMATION-THEORETIC ATTACKS

A. Stealthy Attacks

Following the approach in [17], the attacker constructs the

utility function I(XN ;Y M
A ) +D(PY M

A

||PY M ) for the attack.

The attacker minimizes this utility function to disrupt the

estimation and bypass the detection of the operator. Note that,

I(XN ;Y M
A ) +D(PY M

A

||PY M ) = D(PXNY M

A

||PXNPY M ) ,(11)

where PXNY M

A

is the joint distribution of (XN , Y M
A ). Note

also that the state variables and the compromised measure-

ments follow a multivariate Gaussian distribution given by

(XN , Y M
A ) ∼ N (0,Σ), (12)

where the block covariance matrix has following structure:

Σ =

[

ΣXX ΣXXHT

HΣXX HΣXXHT + σ2IM +ΣAA

]

. (13)

In view of this, the minimization of I(XN ;Y M
A ) +

D(PY M

A

||PY M ) is posed as the following optimization prob-

lem:

min
AM

D(PXNY M

A

||PXNPY M ). (14)

B. Optimal Attack Construction

Proposition 1. [21] The KL divergence between two

M -dimensional multivariate Gaussian distributions P0 =
N (0,Σ0) and P1 = N (0,Σ1) is given by

D(P0||P1) =
1

2

(

log
|Σ1|

|Σ0|
−M + tr(Σ−1

1 Σ0)

)

. (15)

Combining (15) and (14) it follows that the optimization

problem in (14) is equivalent to

min
ΣAA∈SM

+

[

tr(Σ−1
YY ΣAA)− log |ΣAA + σ2IM |

]

, (16)

where SM
+ is the set of all M × M positive semi-definite

matrices.

Proposition 2. The optimization problem given by (16) is

equivalent to minimizing a convex function within a convex

set.

Proof. The trace operator is a linear operator, and

− log |ΣAA+σ2IM | is a convex function of the positive semi-

definite matrix ΣAA [22]. Therefore, the objective function in

(16) is a convex function of ΣAA. Since SM
+ forms a convex

set, the result follows immediately.

Theorem 1. The solution to the attack construction optimiza-

tion problem (16) is the covariance matrix Σ⋆
AA = HΣXXHT.

Proof. Taking the derivative of the objective function (16) with

respect to ΣAA yields [23]

∂
(

tr(Σ−1
YY ΣAA)− log |ΣAA + σ2IM |

)

∂ΣAA

= 2Σ−1
YY − diag(Σ−1

YY )

−2(ΣAA + σ2IM )−1 + diag(ΣAA + σ2IM )−1. (17)

Notice that the only critical point is Σ⋆
AA = HΣXXHT. The

result follows immediately from combining this result with

Proposition 2.

Interestingly, the optimal attack construction depends only

on the second order moments of the state variables. Therefore,

the historical data of the state variables is central to the attack

construction. From a practical point of view, making historical

data and the topology of the grid available to the attacker

poses a security thread to the operator. However, the extent

to which historical data aids the attack construction remains

to be determined. In fact, due to practical and operational

constraints, it is safe to assume that the attacker gets access to

only partial information about the second order statistics of the

state variables. In the next section, the attack performance is

assessed when finite training data is available to the attacker.

IV. ATTACK CONSTRUCTION WITH IMPERFECT SECOND

ORDER STATISTICS

In the following, the case in which only a limited number of

realizations of the state variables are available to the attacker

for covariance estimation is considered. Given that the attack

construction depends only on the second order moments of

the state variables, it suffices for the attacker to estimate the

covariance matrix of the state variables using training samples.

Since there is no other information available, it is assumed

that the attacker estimates the covariance matrix via a sample

covariance matrix construction.

A. Sample Covariance Matrix

Given a set of training data {XN
i }Ki=1 of K realizations of

the state variables, the sample covariance matrix is given by

SXX =
1

K − 1

K
∑

i=1

XN
i (XN

i )T, (18)

where K is the number of samples and XN
i ∈ R

N is the i-th
training sample of the state variables. The sample covariance

matrix SXX coverges asymptotically to the covariance matrix

ΣXX and is a positive semi-definite matrix with probability

1 when K ≥ N [24]. Due to the randomness of the training

samples {XN
i }Ki=1, the resulting sample covariance estimate,

SXX , is a random matrix with distribution PSXX
.

When the attacker needs to estimate the statistical structure

of the state variables, instead of the optimal attack with



covariance matrix Σ⋆
AA = HΣXXHT, the attacker constructs

an attack with the sample covariance matrix. Conditioned on

the training data, the resulting attack vector is

ÃM ∼ N (0,ΣÃÃ), (19)

where ΣÃÃ = HSXXHT. With these estimated statistics, the

KL divergence in (14) conditioned on the covariance matrix

obtained from the training data becomes

D(PXNY M

Ã
|SXX

||QXNY M |PSXX
), (20)

where PXNY M

Ã
|SXX

is the conditional joint distribution of

(XN , Y M

Ã
) with ΣÃÃ=HSXXHT and QXNY M = PXNPY M .

B. Lower Bound on Conditional KL Divergence

The following lemma shows that the objective function in

(14) for exact statistics is a lower bound on the KL divergence

conditioned on the training data given by (20).

Lemma 1. The conditional divergence in (20) for the at-

tack vector construction with covariance ΣÃÃ = HSXXHT

is lower bounded by the divergence in (14) with Σ⋆
AA =

HΣXXHT, that is

D(PXNY M

Ã
|SXX

||QXNY M |PSXX
) ≥ D(PXNY M

A∗

||PXNPY M ),

(21)

where PXNY M

A∗

is the joint distribution of (XN , Y M
A∗ ) when

the optimal attack is constructed.

Proof. We have that

D(PXNY M

Ã
|SXX

||QXNY M |PSXX
)

= D(PXNY M

Ã
|SXX

||QXNY M |SXX
|PSXX

) (22)

= ESXX
[D(PXNY M

Ã
|SXX=S ||QXNY M |SXX=S)] (23)

=
1

2
ESXX

[tr(Σ−1
YY ΣÃÃ)]−

1

2
ESXX

[log |ΣÃÃ + σ2IM |]

−
1

2
log |Σ−1

YY | (24)

≥
1

2
tr(Σ−1

YY Σ
⋆
AA)−

1

2
log |Σ⋆

AA + σ2IM | −
1

2
log |Σ−1

YY | (25)

= D(PXNY M

A⋆
||PXNPY M ), (26)

where (22) follows from the independence of X and Y with

respect to SXX and (25) follows from Jensen’s inequality and

the fact that − log |V| is a convex function of V ∈ SM
+ .

Lemma 1 shows that the KL divergence achieved by the

attack conditioned on the training data is higher than the

performance of the attack construction with exact statistics.

However, the performance of the attack constructed by the

sample covariance matrix converges asymptotically in K to

that of the attack constructed by the exact covariance matrix.

The speed of convergence is numerically evaluated in the

following section.

V. NUMERICAL RESULTS

The IEEE 30-Bus test system is used to simulate the DC

state estimation setting in which the bus voltage magnitudes

are set to 1.0 per unit. As a result, the state estimate is obtained

using the bus injections and load consumption measurements.

The Jacobian matrix H is determined by the branch reactances

of the grid and it is computed using MATPOWER [25].

The optimal attack construction in Theorem 1 shows that the

covariance matrix of the attack is a function of the covariance

matrix of the state variables. To simplify the simulation, a

specific Toeplitz matrix with exponential decay parameter ρ is

adopted [10]. The Toeplitz matrix of dimension N ×N with

exponential decay parameter ρ is given by ΣXX = [sij =
ρ|i−j|; i, j = 1, 2, . . . , N ]. In this setting, the utility function

of the optimal attack is a function of the correlation strength

ρ and the noise variance σ2. We define the Signal-to-Noise

Ratio (SNR) to be

SNR = 10 log10

(

tr(HΣXXHT)

Mσ2

)

. (27)

As a result, the utility function is a function of the correlation

strength ρ and the SNR at which the grid operates.

The performance of the optimal attack as measured by

of the utility function given by (14) is shown in Fig. 1.

Surprisingly, the performance of the attack is non-monotonic

with the correlation strength ρ. Note that the maximum value

of the utility function, i.e. the worst performance of the attack

vector, is represented by a star. The simulations show that

higher values of SNR yield worse performance for the attacker.

Moreover, the performance of the attack is insensitive to the

correlation strength, ρ, for a wide range of correlation values

and only becomes significant when the correlation strength

is large. For low and medium range values of the SNR, the

performance of the attack is governed by the SNR and the

correlation strength does not play a significant role. In the

high SNR regime, the performance of the attack does not

change significantly with the value of the correlation strength.

This observation contrasts with linearly encoded Gaussian

communication systems in which the impact of correlation is

significant even for the cases in which the correlation strength

is low [26].

The tradeoff between the disruption and the probability

of attack detection is shown in Fig. 2. The performance of

the attack is analyzed in terms of the mutual information,

I(XN ;Y M
A ), and the KL divergence, D(PY M

A

||PY M ), that

the attack induces. Interestingly, the performance of both

objectives of the utility function is similar and there is no

significant difference in the effect of the SNR or the correlation

strength. This suggests that the tradeoff between disruption

and detection achieved by the optimal attack construction does

not change significantly with different system parameters. It

is only when the value of the correlation strength is high that

the performance gain obtained in terms of mutual information

grows faster than the performance gain obtained from the KL

divergence improvement. From a practical point of view, this

suggests that the attacker expects to inflict a similar disruption
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values of SNR in the IEEE 30-Bus test system.

on the grid for a given probability of detection regardless of

the system parameters ρ and SNR.

In the following, the performance of the optimal attack

construction is numerically evaluated when imperfect second

order statistics are available to the attacker. In particular, the

sample covariance matrix estimate discussed in Section IV is

used to assess the performance of the attack when limited

training data is available. The performance of the attack using

a sample covariance matrix when SNR=10 dB and SNR=20

dB is shown in Fig. 3 and Fig. 4, respectively.

Therein, the dashed lines depict the performance of the

optimal attack when the real covariance matrix is known,

while the solid lines depict the performance of the attack

constructed with the sample covariance matrix obtained with a

limited number of training samples. To guarantee the positive

definiteness of SXX , the number of samples is larger than

the size of SXX . For each point, 100 realizations of the

sample covariance are obtained and the utility function value

is averaged over these realizations.
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Fig. 3. Performance of the optimal attack for different sizes

of the training set and different values of correlation strength

when SNR = 10 dB in the IEEE 30-Bus test system.
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Fig. 4. Performance of the optimal attack for different sizes

of the training set and different values of correlation strength

when SNR = 20 dB in the IEEE 30-Bus test system

Interestingly, the convergence speed changes significantly

for different values of the correlation strength. The conver-

gence is faster for lower values of the correlation strength

while the impact of the SNR is not significant. This suggests

that although the performance of the optimal attack does not

change significantly with respect to the correlation strength

when perfect second order statistics are available, in a more

realistic setting a low correlation between the state variables

provides an advantageous situation for the attacker.

Fig. 5 shows the normalized Frobenius norm between the

attack when a sample covariance matrix is used and the

optimal attack with perfect second order statistics of the state

variable, i.e.
||Σ⋆

AA
−Σ

ÃÃ
||F

||Σ⋆

AA
||F

. The difference between the attack

using the sample covariance matrix and the optimal covariance

matrix decreases with the number of samples. This implies

that the attack using the sample covariance matrix converges

asymptotically to the optimal covariance matrix. However,

different values of the correlation strength ρ result in different
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attack on IEEE 30-Bus system

convergence speeds. Fig. 1 shows that when SNR = 10 dB,

the performance of the optimal attack when ρ = 0.1 and

ρ = 0.8 is almost the same. Similarly to what is observed

with the utility functions, Fig. 5 shows that larger values of

ρ converge more slowly, and as a result, the attacker needs a

larger set of training samples to obtain the same performance.

Ultimately there is a trade-off between the performance of

the attack and the correlation strength ρ governing the state

variables. On one hand, larger correlation strength yields better

attack performance. On the other hand, larger correlation

strength requires more training samples which implies the

attack statistics are more difficult to learn.

VI. CONCLUSION

We have proposed a stealthy attack construction strategy

within a Bayesiam framework for the smart grid. The proposed

attack construction maximizes the disruption on the state

estimation that the operator obtains while minimizing the

probability of attack detection. Information-theoretic measures

have been used to model the utility function for the attack

construction. Specfically, the disruption has been captured by

the mutual information between the state variables and the

compromised measurements, while the probability of detection

has been incorporated via the KL divergence between the

distributions of the measurements with and without an attack.

The resulting optimization problem has been shown to be

convex and closed form expressions have been obtained. The

performance of the optimal attack construction has been nu-

merically evaluated in an IEEE 30-Bus test system. The impact

of imperfect statistical knowledge about the state variables has

also been assessed via simulations for the case in which the

attacker uses a sample covariance matrix. It has been observed

that the correlation between state variables plays a critical role

in the performance of the attack when limited training samples

are available to the attacker.
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