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Abstract—A significant portion of the literature on fault local-
ization assumes (more or less explicitly) that there are sufficient
reliable measurements to guarantee that the system is observable.
While several heuristics exist to break the observability barrier,
they mostly rely on recognizing spatio-temporal patterns, without
giving insights on how the performance are tied with the system
features and the sensor deployment. In this paper, we try to fill
this gap and investigate the limitations and performance limits of
fault localization using Phasor Measurement Units (PMUs), in the
low measurements regime, i.e., when the system is unobservable
with the measurements available. Our main contribution is to
show how one can leverage the scarce measurements to localize
different type of distribution line faults (three-phase, single-phase
to ground, ...) at the level of sub-graph, rather than with the
resolution of a line. We show that the resolution we obtain is
strongly tied with the graph clustering notion in network science.

Index Terms—Fault Location, Distribution Grid, Identification,
Community Detection.

I. INTRODUCTION

Phasor Measurement Units’ (PMU) data have the ability to
provide much more accurate event detection capabilities, even
with relatively few measurements. Ardekanian et al., [1], for
example, use PMU data to detect and localize a change in the
admittance matrix of a distribution network. Zhou et al., [2]
empoly PMUs to detect events in the distribution grid when
only partial information is available. Our previous work [3]
proposes a hierarchical architecture for event detection in
distribution system using PMU data when only very few
sensors are available. Except for Ardekanian et al’s work [1],
the literature on event detection is often in a low measurements
regime, that arises when the number of measurements is very
small compared to system size, so the system is unobservable.

Event detection is, however, insufficient in most cases. The
localization of a line fault is a classic problem in power
systems management. In fact, it is an essential part of any
event detection scheme, since the operators need to locate the
faulty section for isolation and service restoration. What we
refer to as line fault is the short-circuit of a single-phase, two
phase, or three-phase of a line with each other and/or with
ground with or without a fault resistance. As a result, a large
magnitude of fault current is withdrawn from the sources to
provide current for the short-circuited location.

This research was supported in part by the Director, Cybersecurity, En-
ergy Security, and Emergency Response, Cybersecurity for Energy Delivery
Systems program, of the U.S. Department of Energy, under contract DE-
AC02-05CH11231 and de-oe0000780. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the authors and
do not necessarily reflect those of the sponsors of this work.

Both for transmission and distribution grids, fault detection
and localization, particularly using PMU data, is still a very
active area of research, which focuses more broadly on under-
standing the root cause of abnormal changes recorded in the
PMU measurements. Most of the work in the low measurement
regime is in the distribution section of the grid. For example,
Zhu et al., [4] propose an automated fault localization and
diagnosis for radial networks: specifically, using measurements
from the substation, the algorithm first finds a set of plausible
fault locations and then run a diagnosis to rank the different
possibilities. Min and Santoso [5] propose a technique to
remove the DC offset in the phasor data and improve the
algorithm intended to locate a momentary fault. Lee [6]
uses synchronized voltage phasor measurements to search for
a fault in a radial network in a timely manner. Dzafic et
al., [7] propose a graph marking approach to spot the location
of a fault. There are a number of non-parametric methods
that exploit spatio-temporal patterns, as well. Specifically, Jian
et al., [8] extract the time-frequency signatures of voltage
and frequency from a dictionary using matching pursuit [9],
followed with a clustering algorithm for fault detection. Using
wavelet analysis on the voltage waveform generated during
a fault-induced transients, Borghetti et al., [10] obtain the
location of a fault in the distribution network. While the
exploitation of temporal patterns helps in the localization, they
do not provide an understanding on how the performance is
affected by the grid parameters and the sensor deployment.

Contribution: To dig deeper in the low measurement regime,
in this work we do not look at temporal features (which can
always be incorporated in the algorithm) and take inspiration
from Brahma’s work [11] to construct our models. Brahma
proposes a method using the bus impedance matrix of the
systems and pre/post fault voltage and current measurements
to pinpoint the location of a fault. The contribution of this
paper comes from unveiling the specific structure of the errors
that localization algorithm based on PMU data tend to make,
showing the fact that the errors swap nodes within very specific
sub-graphs of the original grid topology. We can consider
these sub-graphs as communities, in which nodes are clustered
and show that community level fault localization is possible,
even when the measurements are too few to have an accurate
answer. To the best of our knowledge, the connection between
the resolution of fault localization in power systems and
graph clustering is new. However, we acknowledge the graph
clustering work in the transmission grid (see e.g., [12], [13]),
in a different context (not for fault localization).
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II. SINGLE FAULT LOCALIZATION

Since distribution lines are untransposed, and because of the
existence of single phase and two phase laterals, we prefer to
use a formulation that explicitly includes the phase-domain
(and not the sequence-domain) voltage and current. For a
network of size N the nodal voltages and injection currents
vectors are denoted by:

V =
[
V1, V2, . . . , VN

]T
, I =

[
I1, I2, . . . , IN

]T
where depending on the number of phases connected to node
i, Vi and Ii can be row vectors of size 1, 2 or 3; the resulting
V and I are M × 1. It is well-known that the nodal voltages
and injection currents satisfy Ohm’s law:

V = ZI, (1)

In (1), all the sources are modeled with their Norton equivalent
and therefore their internal impedance is also included in the
bus impedance matrix Z. Suppose a fault occurs at bus j and
let V0 and I0 denote the pre-fault and VF and IF denote the
post-fault nodal voltages and currents. Using (1) the following
two relationships hold:

V0 = ZI0, VF = Z(IF + IE) (2)

where IE is a sparse vector with non-zero elements at locations
corresponding to faulty phases of bus j, modeling the current
injected by the fault at bus j (negative of the withdrawn
current). Subtracting the pre-fault from the post-fault voltages:

VF −V0︸ ︷︷ ︸
δV

= Z(IF − I0︸ ︷︷ ︸
δI

+IE) (3)

Let K denote the total number of phases that are monitored
by the PMUs in the grid. For example, if we have two PMUs,
where one is connected to a three phase node and the other is
connected to a single phase node, K = 3 + 1 = 4. Let:

Π =
(
ΠT

a | Π
T
u

)T ∈ {0, 1}M×M (4)

that parses the voltage and current measurements into available
and unavailable measurements, where Πa ∈ {0, 1}K×M picks
the available measurements and Πu ∈ {0, 1}(M−K)×M selects
the unavailable ones. Pre-multiplying both sides of (3) by
Πa and also replacing Z in the first term with ZΠ−1Π and
rearranging some terms, one can write:

δVa︷ ︸︸ ︷
ΠaδV =

Za︷ ︸︸ ︷(
ΠaZΠ−1

)
(Π δI + Π IE)

δVa =
(
Zaa | Zau

)(ΠaδI
ΠuδI

)
+ ZaĨE

=
(
Zaa | Zau

)(δIa
δIu

)
+ ZaĨE

= ZaaδIa + ZauδIu + ZaĨE

(5)

where Zaa and Zau are the blocks of impedance matrix
connecting nodes with available data to the available and
unavailable ones, respectively. Also, ĨE is the reordered vector
IE with indices corresponding to the nodes with available data
in the top part and the rest at the bottom part.

Brahma [11] proposes the formulation above, assuming that
the available measurements come from the sensors placed
at the head of the substation and next to each distributed
generator. Then, assuming that the term ZauδIu in (5) is small,
the location of the faulty bus in his work can be found by
solving the following least-square problem [11]:

`∗ = argmin
`∈F(t)

||δVa − ZaaδIa − ZaĨE,`||22 (6)

where F(t) is the union of candidate fault locations subsets for
fault type t. ĨE,` is a vector whose non zero entries correspond
to a certain fault location ` and IG is a vector containing non-
zero entries of ĨE,`. Note that in (6), the entries of IG are
not directly measured. To address this problem, Brahma [11]
proposes to approximate the vector IG by adding up the
current injected by each source to the grid corresponding to
the faulty phases1 and subtracting the current that sources have
been providing for the loads in the pre-fault condition. This
puts a requirement on the µPMU placement strategy since each
source requires a µPMU, to which it is connected.

Before going through further discussions about the per-
formance analysis of single fault localization, we propose
the following modification to the method in (6). In order
to make the term ZauδIu as small as possible, the constant
impedance loads, constant power loads, and capacitors/reactors
are also included in the Z matrix. This modeling is accurate for
constant impedance loads. However, for constant power loads
their equivalent impedance at the nominal voltage is included
in the bus impedance matrix, and the deviation of the actual
consumed power from the nominal is included in the nodal
injection vector. This modeling implies that the vectors IF
and I0 are small and, accordingly, δIu is small as well. From
now on, we assume that this modification is included in the
method when we refer to (6).

III. FAULT LOCALIZATION PERFOMEANCE ANALYSIS

As stated before, the method in 6 is plagued by ambiguities
in locating the fault precisely when K �M . The first source
of ambiguity comes from the fact that the vector IG is an
approximation of the fault current. Therefore, a fault might
be mis-located if the approximated fault current is close to
the actual fault current if there was a fault at the mis-located
bus. The other source of ambiguity appears if the columns in
the Za for two locations are very similar; in fact, Za is a fat
matrix, so it is inevitable that columns will be correlated.

To illustrate why the latter occurs, consider the one-line
diagram given in Fig. 1, where bus 1 is assumed to be the
source bus and is modeled with the Norton equivalent.2 The

1 2 3

4

12z 23z

0z 24z

Fig. 1. One-Line Diagram of an Example Radial Network

1The vector IG is of size 1, 2 or 3 depending on how many phases are
impacted by the fault.

2The network is modeled with its positive sequence impedance values in
this example for simplicity of illustration.
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bus impedance matrix of this network is given below, where
the columns are ordered based on the bus numbers.

Z =


z0 z0 z0 z0
z0 z0 + z12 z0 + z12 z0 + z12
z0 z0 + z12 z0 + z12 + z23 z0 + z12
z0 z0 + z12 z0 + z12 z0 + z12 + z24

 (7)

Now assume that we have sensors at bus 1 and 2, so that:

Za =

(
z0 z0 z0 z0
z0 z0 + z12 z0 + z12 z0 + z12

)
and assume that we have access to the exact value of the
fault current. Based on the given criterion for fault detection
in (6), the norm in the objective function would be the same
if the fault happened at bus 2, 3 or 4, since the columns are
exactly the same. This situation can actually happen in radial
grids, if one looks at the way the bus impedance matrix is
constructed. To provide some intuition, consider a radial grid
with a single source and negligible line shunt components.
Since there is no loop, the bus impedance matrix can be
constructed starting from the source bus and adding new
nodes. When a new node j is added to an existing node i, the
column and row corresponding to the existing node is copied
on the column and row corresponding to the new node and the
entry [Z]jj = [Z]ii + zadded line. Thus, the entries of column i
and j are very similar. This process is sketched below, when
a new node (Node 3) is added to the existing node (Node 2).

1 2 3
12z 23z

0z

1 2
12z

0z

Z =

(
z0 z0
z0 z0 + z12

)
→Z =

z0 z0 z0
z0 z0 + z12 z0 + z12
z0 z0 + z12 z0 + z12 + z23


In fact, even if the columns are not exactly the same, they are
very similar and therefore correlated. Hence, an estimation
error can easily occur, due to the noise in measurements
or poor approximation of the fault current, and lead to the
selection of an incorrect location. An example of this is when
there are sensors at buses 2 and 3, and the impedance of line
2-3 is small.

Za =

(
z0 z0 + z12 z0 + z12 z0 + z12
z0 z0 + z12 z0 + z12 + z23 z0 + z12

)
In this case, distinguishing a fault between buses 2, 3 and 4
would not be easy. This observation conforms to the topo-
logical proximity of the nodes in a radial network, where
neighboring nodes tend to contribute to similar columns in
the bus impedance matrix.

A. Communities of Neighboring Nodes

The discussion above indicates that the errors that algorithm
tends to make are swaps of nodes within very specific sub-
graphs of the original grid topology, which have associated
columns in the bus impedance matrix that are very similar. We
call these sub-graphs, communities. Clearly, these communities

are also dependent on the location of the sensors. Before
digging into this phenomenon further, we notice the term
ZauδIu in (6) can be viewed as a colored noise. Whitening
the noise is appropriate to ensure that it does not line up
in preferential directions. To appreciate the effect that the
whitening has, in the following we will express the whitened
data model directly through the bus admittance matrix. Since
the whitened model has the same sparsity as that of the graph
topology, this will aid our analysis on how the graph structures
contributes to the clusters of similar columns in the sensing
matrix (the matrix that is pre-multiplied by ĨE). We first
need to find the relationship between blocks of bus impedance
matrix and bus admittance matrix corresponding to observable
and unobservable nodes.(

Yaa Yau

YT
au Yuu

)−1
=

(
Zaa Zau

ZT
au Zuu

)
(8)

It is known from algebra that for block matrix of the form
above, where Yaa and Yuu − YT

auY−1aa Yau are invertible
matrices, one can write [14]:

Zaa = (Yaa −YauY−1uuYT
au)
−1 (9)

Zau = −ZaaYauY−1uu (10)

Using (9) and (10), we can represent the blocks of Za in terms
of blocks of Y. Pre-multiplying both sides of (5) by Z−1aa using
the definition of Zaa in (9), we can write:

b− (I | −YauY−1uu )̃IE = −YauY−1uu δIu (11)

where b is defined as follows:

b = Z−1aa δVa − δIa.

Let the singular value decomposition of YauY−1uu to be:

YauY−1uu = USWH (12)

where U is K × K̃ and K̃ ≤ K, S is a diagonal matrix
containing the K̃ all the non-zero singular values of YauY−1uu

and WH is of size K̃ × (M − K). To whiten the noise in
(11), we pre-multiply both sides of (11) by R = S−1UH to
obtain:

Rb− (S−1UH | −WH )̃IE = −WHδIu. (13)

The proposed whitened least-square problem is:

`∗ = argmin
`∈F(t)

||b̂− (S−1UH | −WH)︸ ︷︷ ︸
D

ĨE,`||22 (14)

where b̂ = Rb. The correlation of the columns of the sensing
matrix D is of our interest; specifically we next investigate:

DHD =

(
US−2UH −US−1WH

−WS−1UH WWH

)
(15)

The structure of (15) is very insightful as all the four
blocks of this matrix are dependent on the singular values
decomposition of YauY−1uu and, thus, this matrix controls the
size and number of communities. Since we have very few
observable nodes, the rank of the matrix Yau is limited by
its number of rows. However, the algorithm performs best
if the rows of Yau are as uncorrelated from each other as
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possible. Recall, that Yau is sparse and the weights (the
admittance values) tend to have similar values; that means that
the correlation among its rows can be largely inferred from
looking at the support (non-zero elements) of the different
rows of Yau: small overlap implies near orthogonality. Rows
that have a strong overlap in the support and high correlation,
on the other hand, point to parts of the graph that are direct
neighbors. Bigger overlap implies that a particular community
increase its size and the ambiguity to locate the actual fault
location also increases.

This also suggests a good sensor placement strategy, which
is to have communities with the smallest sizes possible, since
it leads to the least overlap among the non-zero elements of
rows of Yau; in turn, since the admittance matrix indicates
the adjacency of nodes in the grid, a good heuristic is to
place sensors on parts of the grid that are more sparsely
connected. To illustrate it, consider the one-line diagram as
shown in Fig. 2. The second block −US−1WH of the

1 2 3 4 5 6
34y 45y 56y12y

23y

Fig. 2. One-Line Diagram of a Sample Radial Network

correlation matrix DHD, which corresponds to the correlation
of the observable and unobservable nodes, has a sparsity
pattern identical to that of of YauY−1uu . Suppose we have two
µPMUs to place in the network (which are insufficient for
observability). The first requirement of a good placement is to
avoid putting two µPMUs next to each other. If that can be
done, Yaa is diagonal. Also, we want each observable nodes to
cover as much unobservable nodes as possible, having nearly
non-overlapping rows for Yau. We also want a nearly block
diagonal structure for Yuu (and therefore Y−1uu ) that mimics
the non-overlapping blocks in the rows of Yau. Considering
Fig. 2, if the µPMUs are placed at bus 2 and 5, we have
one such good design and the admittance matrix with blocks
partitioned based on available and unavailable is as follows:

Y =


y2 0 −y12 −y23 0 0
0 y5 0 0 −y45 −y56
−y12 0 y1 0 0 0
−y23 0 0 y3 −y34 0
0 −y45 0 −y34 y4 0
0 −y56 0 0 0 y6


The placement in this example is done so that all the columns
of Yau connect the available nodes to all the unavailable
nodes. As it can be seen, the sparsity pattern of Yau in
this placement suggest non-overlapping support for the rows
of Yau to cover all the unavailable nodes. What the design
we just illustrated does, is making YauY−1uu already behave
almost as a set of orthogonal rows, providing the best condi-
tioning for the algorithm.

IV. CASE STUDY

As a case study, we use IEEE-34 bus test case [15], where
a 100 kW generator is added at bus 848. This radial grid
is an unbalanced grid with untransposed lines and one phase
laterals. The one-line diagram of the test case is shown in

800
802 806 808

810

812 814
R1

850

816

818

820

822

824 826

828 830 854 856

852

R2

832

T1
888 890

838

862

840836860834858

864
842

844

846

848

Substation

DG1

Fig. 3. One-Line Diagram of IEEE-34 Test Case with Added Generator.

Fig. 3. OpenDSS software is used to perform the analysis
here [16]. A snapshot of power flow is solved to get the data
before fault and then a fault is introduced in the dynamic mode
to represent the behavior of the grid after a fault occurs. Note
that the tap changers usually have a delay for 15-30 seconds
in their settings to respond to a change so the voltage and
current data should be recorded before the tap values change
so that the required bus impedance matrix in the formulation
stays the same before and after the fault.

Assume that 5 µPMUs are available placed on the three-
phase nodes to provide the three phase voltage and current
flowing in the lines incident to the bus, to which they are
connected. The nodes with µPMU are listed in Table. I. As

TABLE I

Test Case #µPMUs Location
IEEE-34 5 800-830-848-832-862

it can be seen, two of the µPMUs are located next to source
buses that contribute to the fault current in order to obtain an
approximation for the fault current vector IG.

A. Limitation Evaluation of the Metric in (6)

In this section, through some numerical analysis, we show
the limitations of the proposed metric in (6), corroborating our
early discussions.

Scenario 1: In this scenario, a three-phase fault is intro-
duced at bus 25 and the fault current is approximated using
the data from sensors at buses 800 and 848. Fig. 4 shows
the value of the squared norm of the objective function in (6)
for the candidate locations, where a three-phase fault could
potentially happen. As it can be observed, the value of the
objective function is very close for a set of neighboring nodes
that can be a candidate for the fault. The algorithm can simply
pick a wrong location if the data is corrupted with noise. Even
with clean data, it can be seen that the objective function is
returning a smaller value for bus 860 as opposed to the value
for bus 834 (actual location of the fault). That can be attributed
to the fact that we only have access to approximate fault
current and also to the fact that part of the grid is unobservable.

Scenario 2: In this scenario, we assume that the exact value
of the fault current is somehow given to us. The reason for this
assumption is to show that the approximate fault current is not
only the cause for the aforementioned ambiguity and, in fact,
the similarity of the corresponding columns of Za is the root
cause of this ambiguity. In this scenario, a three-phase fault is
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Fig. 4. Objective Function Value of (6) for Three-Phase Fault-Bus 834 .

introduced at bus 836. The result of the metric for this case
is given in Fig. 5. It is clear from the results that there is an
inherent ambiguity in locating the fault in this case even when
the exact fault current is available: due to the correlation of the
columns in Za buses 840, and 862 are prone to be mistaken
with bus 836 as the fault location.

B. Test-Case Community of Nodes

In this part, the correlation of the columns of the matrix
pre-multiplied by ĨE,` in (6) and (14) is shown. We use the
following definition to look at the normalized value of the
unsigned correlation of the columns.

Definition. The absolute value for the correlation coefficients
of the columns of a matrix X = [x1,x2, . . .] that is used is
defined as follows:

[C]m,n =
|xH

mxn|
||xm|| ||xn||

(16)

Fig. 6 shows the correlation of the columns of Za (on the
left) and D (on the right) corresponding to phase-A that is
produced using the definition3 given in (16) based on the
placement in Table. I.

3Note that the correlation between the columns corresponding to phase
i (i = a, b, c) and j (j 6= i) is not important since for a faulty phase i, the
indices corresponding to phase j are not candidates.
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Fig. 5. Objective Function Value of (6) for Three-Phase Fault-Bus 836 .
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Fig. 6. Correlation of Columns related to Phase-A of a) Za and b) D.

In this figure,4 the correlated columns of D in Fig. 6b in
our proposed method reveal clusters of nodes that a fault can
be localized up to their level, whereas these clusters do not
appear in the correlation of the columns of the sensing matrix
Za in (6) as shown in Fig. 6(a) so the performance of the fault
localizer cannot be investigated in this method.

To better understand the location of highly correlated nodes
with respect to each other, we first choose a threshold of τ on
the correlation coefficient and build an adjacency matrix A as
follows:

[A]m,n =

{
1 if [C]m,n ≥ τ,m 6= n

0 else
(17)

Fig. 7 shows a graph corresponding to the adjacency matrix
A, built using the correlation coefficients of columns of D
and overlaid on the IEEE-34 test case topology. The heat-map

Adjacency Matrix Graph

  800   802   806   808   812
  814   816

  818

  824

  820

  822

  828   830   854

  832

  858
  860

  836   840

  862

  850

  852

  864

  888   890

  834

  842

  844

  846

  848

Fig. 7. Adjacency Matrix Graph for Correlation Coefficients of Columns of
D with τ = 0.814.

for the correlation coefficients of the columns corresponding
to phase-B and phase-C in the matrix D follow a similar
pattern as in Fig. 6(b). As expected based on our analysis
in Section III-A, the nodes with high correlation are those
that are located in a neighborhood of each other. The fault
location in the presented approach can locate the fault up to
the resolution of these communities, which can be interpreted
as a low-resolution representation of the graph.

It should be noted that the communities that emerge are de-
pendent on the locations of the sensors. The placement based
on Table I has been done leveraging the heuristic discussed at
the end of Section III-A. To show how a bad placement change

4The ordering of the nodes have changed here to put the neighboring nodes
as close as possible to each other to better visualize the communities, whereas
the actual matrix is separated as blocks of available and unavailable nodes.
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the detected communities, we place the sensors according to
Table II. The thresholded heat-map corresponding to phase-A

TABLE II

Test Case #µPMUs Location
IEEE-34 5 800-814-816-848-850

is shown in Fig. 8. It can be seen that since the µPMUs are
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Fig. 8. Thresholded Correlation Coefficients of Columns related to Phase-A
D with τ = 0.814.

more condensed on the left side of the grid, the ambiguity
in detecting faults among nodes where there is no sensor
increases. On a separate test, we saw that the placement
according to Table I results in a Yau that is of full row
rank, whereas the placement according to Table II makes Yau

extremely ill-conditioned.

C. Fault Location Using Metric in (14)
In this part, we introduce different types of faults and

use the metric in (14) to locate the fault assuming that the
sensors are placed according to Table I. Even though the new
formulation improves the fault location algorithm, there is
still an ambiguity involved, and localization is reliable at the
community level but not at the bus level.

Table. III summarizes the results for three different types
of faults. The first column in this table is the type of the

TABLE III
IDENTIFIED FAULT LOCATIONS WITH METRIC IN (14)

Fault Type Exact Fault Location Locations with Close Objective
Values in (14)

LLL 816 814-816-850
A-G 822-A 814-A,816-A,818-A,820-A,

822-A,850-A
BC-G 852-B-C 832-B-C,852-B-C

introduced fault and the second column indicates the exact
location, where the fault is introduced. In the third column,
a list of candidate locations, for which the objective function
values in (14) are close to each other is listed. These locations
can be mistaken with the exact location due to some noisy
measurements or poor fault current approximation, or not
having enough sensors compared to the size of the network.
The comparison of the results in this table with the commu-
nities detected in Fig. 7 confirms the claim that errors are

concentrated within the same community where the exact fault
location exists.

V. FUTURE WORK AND CONCLUDING REMARKS

We investigated the performance of distribution line fault
localization. Our results showed that using our proposed
method, a fault is identifiable up to a level of “community” of
neighboring nodes, which is referred to as “low-resolution”
fault localization. We also discussed the effect of sensor
placements on the size and the number of these communities
and provided algebraic interpretation for a good versus a bad
sensor placement. Our future work includes a mathematical
way to formulate an optimal sensor placement when a limited
number of µPMUs are available in order to have the highest
fault localization resolution.
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