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Abstract—As the Internet of Things grows, the number of wire-
less sensor networks deployed in close proximity will continue to
increase. By nature, these networks are limited by the battery
supply that determines their lifetime and system utility. To
counter such a shortcoming, energy harvesting technologies have
become increasingly investigated to provide a perpetual energy
source; however, new problems arise as a result of their wide
spatio-temporal variation. In this paper, we propose opportunistic
energy trading, which enables otherwise independent networks to
be sustained by sharing resources. Our goal is to provide a novel
cooperation model based on negotiation to solve coordination
conflicts between energy harvesting wireless sensor networks.
Results show that networks are able to satisfy their loads when
they agree to cooperate.

Index Terms—Ambient energy harvesting; autonomous sen-
sors; Multiagent systems; agent-based sensor networks; oppor-
tunistic cooperation; energy negotiation.

I. INTRODUCTION

Internet of Things (IoT) deployments in industries, cities,
healthcare and home automation are spread all over the
world. A core technology required for IoT are wireless sensor
networks (WSNs), which gather information from the envi-
ronment, analyse it, make decisions and act accordingly. In
many of these applications, sensor nodes are battery-powered
and limited in energy supply. Thus, one proposed solution is to
extend performance optimisation to the inter-network approach
by enabling cooperation among networks that co-exist in a
physical location [1]–[4].

Energy harvesting technologies have also gained widespread
attention to enhance node lifetime. Moreover, ways to capture
green energy from regenerative sources for self-sustainable
operation is a key driver in today’s low-power devices for
smart applications. However, energy harvesting wireless sensor
networks (EHWSNs) are conditioned to spatio-temporal vari-
ations of energy availability. The main objective of EHWSNs,
because of their unlimited power supply, is the optimisation
of their energy use to operate continuously. This mode of
operation is called energy-neutral operation: a harvesting node
achieves it if the energy supply during a harvesting period is
sufficient to replace the amount consumed during the same
time [5].

Adaptive algorithms have been developed to address the
spatio-temporal variation of ambient energy sources and scale

a node’s performance appropriately, in order to deliver energy-
neutrality. These algorithms typically adjust parameters such
as the duty-cycle or sampling rate [6], [7]. Other energy-
neutral algorithms exploit the spatial variation and distribute
load according to energy reserves [8]. However, these algo-
rithms are limited by the bounds of one network domain; i.e.
if one node is expecting insufficient energy and the rest has a
scarce energy input, no solution exists.

The cooperation problem among distinct WSNs has been
studied in a game theoretic setting [1], [2]. These works model
the behaviour of a network as a game to analyse the existence
of strategies, looking for equilibrium among rational players
that negotiate with each other to maximise their own benefit.
They focus on the conditions under which cooperation is the
best strategy in multi-domain WSNs, and make an exhaustive
search on the available space to find a solution for each
network’s authority (i.e. those that form a Nash equilibrium
with the highest possible lifetimes). For a WSN, this would
necessitate nodes making a significant effort to calculate and
store not only all their possible actions at each decision point,
but also the ones corresponding to the other nodes. This
is not feasible for devices with limited memory and power.
One approach to deal with this complexity is to simplify
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Fig. 1: Direct interconnection between co-located EHWSNs.

the settings in which nodes interact with each other and
use heuristic methods. Before cooperation can be established,
networks should be able to interact and find a mutually-
acceptable agreement in favour of maximising their utilities.
In the domain of EHWSNs, they must find an energy flow that
deals with the spatio-temporal profile of their energy sources
and satisfies as much as possible their energy consumption



profile from collaborative effort. A multi-agent approach is a
natural fit to this setting as individual sensor nodes need to
autonomously negotiate and form an agreement as to how to
share their resources [9], [10].

Against this background, we motivate the use of a solution
based on automated negotiation and propose a novel approach
to model cooperation between nodes with a direct intercon-
nection architecture, i.e. without an intermediary (Figure 1).
The contributions of the work reported in this paper are:
• An alternating offers protocol for the nodes to exchange

offers to trade energy-hungry services.
• An optimisation algorithm based on Linear Programming

(LP) to optimise the allocation of energy to maximise
individual actors’ preferences.

• An analysis of time-dependent negotiation strategies in
EHWSNs for energy re-allocation of distinct energy
harvesting sources.

• Results showing how negotiation can be delimited by a
short-term deadline and end in social-welfare maximising
deals.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We assume an initial simplified setting where two distinct
EHWSNs with a different type of energy harvesting source
(e.g. solar and wind) share the same location and direct
interconnection is possible between each pair of nodes with
overlapping radio range [11]. Our main motivation in inves-
tigating negotiation applied in this domain is to observe the
effects of cross-boundary energy transfer for sensor’s power
management and this setting is suitable for that purpose.

While it is convenient to envisage opportunistic energy
trading as physically transferring energy across a network
boundary, energy is actually logically transferred by accepting
energy-consuming tasks as data processing or packet forward-
ing [1]–[3]. For example, each network involved may control
the agreed energy flow by asking for/providing routing favours.

A. Model Assumptions

Each network Nk, k ∈ {1, 2} is formed by a set of unique
sensor nodes and a sink. Each node is controlled by an agent,
which is denoted as αk,i, i ∈ N. The agent has complete
knowledge of all the relevant node’s information, such as its
energy profile variables, battery capacity and residual energy.

We assume that the period at which energy is harvested by
a node is T (e.g. 24 hours for solar energy) and it is divided
into discrete time slots T = (1, ..., n) of equal duration L.

B. Energy Consumption Model

Each node controlled by αk,i consists of an energy harvester
unit, a rechargeable battery and several loads: a radio, CPU
and sensors. We use the energy model introduced in [12] and
define Ec

k,i = (Eck,i(1), ..., E
c
k,i(n)) : E

c
k,i ε R+ as the energy

consumed by αk,i over n time slots. At any given slot t, we
can calculate the total energy Eck,i that an agent αk,i consumes
as:

Eck,i(t) = V ·
[
D · Iactive + (1−D) · Isleep

]
· L (1)

Then, the energy is dependent on the duty cycle D, supplied
voltage V , active mode current Iactive and sleep mode current
Isleep. D is chosen by the application, while Iactive, Isleep

and V can be known in advance using datasheet information.

C. Energy Management Model

Our model is built on the models proposed by [5] and
[13]. We assume that all nodes can harvest energy and store
it in their battery for future use. Without loss of generality,
we assume that the replenishment of energy occurs at the
beginning of each time slot t.

The expected energy input during each slot t can be forecast
from historical information with a high level of accuracy.
Energy can then be allocated to each slot t. We use Eck,i(t)
and Ehrvk,i (t) to denote the energy profile variables for each
time slot. The amount of energy that can be generated by
the harvesting unit in n time slots is defined as Ehrv

k,i =

(Ehrvk,i (1), ..., E
hrv
k,i (n)) : Ehrv

k,i ε R+. For example, if the
harvesting period starts at 00:00 and L is 1 hour, then Ehrvk,i (1)
is the expectation for the energy harvested during slot 1 (from
00:00 to 01:00), Ehrvk,i (2) is the expectation of energy during
slot 2 (01:00 to 02:00), etc.
Bk,i(t) is used to represent the residual battery energy

at the beginning of slot t in agent αk,i. Then Bk,i =
(Bk,i(1), ..., Bk,i(n)) : Bk,i ε R+ denotes the battery level
in n time slots. The battery is characterised by a limited
capacity Bmaxk,i and charging efficiency η. The battery enables
an agent to save and use energy throughout a day, which
helps the agent to compute an energy allocation, Ealloc

k,i =

(Eallock,i (1), ..., Eallock,i (n)) : Ealloc
k,i ε R+, to assign the har-

vested energy Ehrvk,i to the energy consumed Eck,i by the load
of the node.

When Ehrvk,i (t) is lower than Eck,i(t), some of the energy
used by the sensor node is discharged from the battery. We use
d = (d(1), ..., d(n)) : d ε R+ to represent this amount. When
Ehrvk,i (t) is higher than Eck,i(t), all the energy used in the node
is provided by the energy source and the battery is charged
with the excess, as required. We use c = (c(1), ..., c(n)) :
c ε R+ to denote this amount in n time slots. Any excess
energy received at times when the battery is full is discarded by
the node. The energy that the agent is unable to use or store is
waste, denoted by wk,i = (wk,i(1), ..., wk,i(n)) : wk,i ε R+.
Then we can calculate the energy used from the battery in any
slot t as:

Bk,i(t)−Bk,i(t+ 1) = d(t)− η · c(t) (2)

In our domain, an opportunistic energy trade is triggered
when a node’s energy level has dropped below a threshold.
Then, the initial battery status Bk,i(1) is equal to η ·b where b
is the energy level at t = 1. At each time t, αk,i also considers
the amount of energy to receive/give from the negotiation,
which is defined by o = (o(1), ..., o(n)) : o ε R+. o represents
the offer of energy at each time slot, i.e. The issues of this
negotiation domain. We call these offers energy flow offers.
A valid energy flow offer must include the energy values
for the predetermined time of cooperation, e.g. If networks
expect to cooperate for 24 hours, then the energy flow must



include 24 values. The direction of the energy flow is denoted
by a positive or negative sign. If positive, the amount is an
offer of energy from the agent to its opponent, otherwise, it
represents the energy to be received from the opponent. For
example, if two agents are willing to cooperate with each
other for a period of 2 hours and L is set to 30 minutes,
then an offer of energy from agent αk,i to the other party can
be o = [−1.88,−0.7, 18,−4]; where -1.88 mWh, -0.7 mWh
and -4 mWh represent the energy savings of αk,i from the
opponent’s cooperation (e.g. by packet routing) at time slots
1, 2 and 4 respectively, while αk,i compromises to provide 18
mWh through collaborative effort to its opponent at time slot
3.
D. Utility Function

The objective function of this model is described as the
total energy consumption that is satisfied (i.e. energy allocation
Eallock,i ) at period T . Then the utility of an agent represented
by u is defined as follows:

Objective maxu =
n∑
t=1

Eallock,i (t) (3)

Subjected to the following constraints:

Eallock,i (t) = Ehrvk,i (t)− c(t) + d(t) + o(t)− w(t) (c1)

Eallock,i (t) ≤ Eck,i(t) (c2)

Bk,i(t)−Bk,i(t+ 1) = d(t)− η · c(t) (c3)

Bk,i(1) = η · b (c4)

0 ≤ c(t) ≤ Bmaxk,i (c5)

Eck,i(t)− Ehrvk,i (t) ≤ d(t) ≤ Bmaxk,i (c6)

0 ≤ Bk,i(t) ≤ Bmaxk,i (c7)

0 ≤ w(t) ≤ Ehrvk,i (t) (c8)

Equations (c1) and (c2) represent the energy balancing con-
dition. The allocated energy to a node defined by the harvested
energy, battery flow, the energy offer and waste is equal or
smaller than the node’s load at time slot t. Equations (c3)-
(c7) define the battery status and flows constraints regarding
its capacity. Equation (c8) is used to guarantee that the energy
waste is an excess of the energy harvested.

The solution to the optimisation problem yields the amount
of energy that must be allocated to a sensor node in every t
and the evolution of residual energy in its battery over period
T . Following the model described, an agent can compute the
optimal energy flow that benefits both agents, but this requires
complete information and high computation capabilities since
the set of all possible agreements is exponential in the number
of time slots. Cooperative approaches must ideally result in
Pareto-efficient outcomes, which means that one agent cannot
be better off without making the other agent worse off. In
section IV, we present a cooperative solution that satisfies this
property of efficiency known as the Nash Bargaining Solution
(NBS) [14] to find an agreed energy flow between agents, but
first, we describe the heuristic model used for the bargaining
process of this domain.

III. HEURISTIC APPROACH FOR OPPORTUNISTIC ENERGY
TRADING

There are four fundamental parts in a negotiation model
described by a heuristic approach: 1) the negotiation protocol
or rules of interaction for the agents, 2) the definition of issues
or objects in contention (see II-C), 3) the utility function or
agents’ preference model (see II-D), and 4) the tactics or
offers’ generator functions that are applied during the bargain-
ing process, which along with the utility function comprise
the decision making apparatus the participants employ to act
according to the negotiation protocol and reach their desired
goals [15], [16]. The protocol and tactic employed are defined
below.

A. Multi-issue Bilateral Negotiation Protocol

We adopt Rubinstein’s alternating-offers protocol [17] for
the negotiation of energy among neighbouring EHWSNs. In
a bilateral negotiation, both agents desire to cooperate but
have conflicting interests regarding their preferences (in this
domain due to distinct batteries, power consumption and
energy harvesting profiles).

According to the protocol, all the agents involved have
one turn per round to respond to the current state of the
negotiation. One of the negotiating agents starts with an offer
to its opponent. Whenever an offer is made, the opponent
can accept or reject the offer. If the offer is accepted, then
the bargaining ends and an agreement is reached. If the offer
is rejected, the agent in turn proposes an agreement, which
again the opponent may accept or reject in the next round.
We continue the negotiation until a final negotiation round.
When one negotiating agent reaches a final round without a
favorable response or an agreement is found, the negotiation
ends. In the first case, the negotiation fails and terminates with
no deal possible.

In our domain, we must consider the number of messages
exchanged between nodes and limit the negotiation to a short-
term deadline. Thus, a predefined maximum negotiation round
is set. Specifically, in our scenario, automated negotiation
can complete in seconds, which makes time inappropriate
to model the deadline. In each negotiation round, an offer
contains multiple issues that are negotiated simultaneously. We
assume that the knowledge of the negotiation domain (issues,
deadline, initial negotiating agent) is known by both agents
beforehand, and is not changed during the whole negotiation
process. As defined in II-C, o represents the offer of energy.
Thus, or1,1→2,1 is a vector of values proposed by agent α1,1

to agent α2,1 at round r, where or1,1→2,1(t) is the value of
energy proposed from α1,1 to α2,1 for time t. Each issue o(t)
has an acceptable range of values represented as the interval
[mink,io(t),maxk,io(t)].

B. Negotiation tactic

In the negotiation context, heuristics are useful for the
generation of initial offers, evaluation of proposals and de-
cision of counter offers, based on computational approxima-
tions that produce good close to Pareto-efficient outcomes.



The main advantage of using heuristics in this domain is
to model encounters between networks that are discovered
opportunistically and have no information about the resources
and preferences of each other.

Faratin et al. [15] studied strategic negotiation between
autonomous computational agents and develop a formal model
of reasoning to address the coordination problem. They defined
a number of heuristic functions, which receive the name of tac-
tics and use a single criterion (time, resources, behaviour, etc.)
to generate new values for each issue in the negotiation set.
The following family of tactics for counter-offer generation
were applied in this domain.

1) Time-dependent tactics (TDT): The time elapsed in the
negotiation is what conducts the values of the negotiation is-
sues. It is the same for rounds, the more rounds has passed the
more pressure is induced and faster concessions are possible.
Then the value of o(t) proposed by agent α1,1 to agent α2,1

at round r is giving by the following equation:
If α1,1’s utility decreases with issue o(t):

or1,1→2,1(t) = min1,1o(t) + γro(t)(max1,1o(t)−min1,1o(t))
(4)

If a’s utility increases with issue o(t):

or1,1→2,1(t) = min1,1o(t)+(1−γro(t))(max1,1o(t)−min1,1o(t))
(5)

We define γro(t) as a polynomial function parameterised by
β ∈ R+

n as follows:

γro(t) = k1,1o(t)+(1−k1,1o(t))(min(r, rmax1,1)/rmax1,1)1/β.

(6)
The constant k at t = 1 represents the initial bargaining

value of o(t) while rmax is the deadline. β>0 defines the
convexity degree of the curve. When β > 1, the agent is
benevolent and characterised by a conceder behaviour (such
tactic is called Conceder) and the offer rapidly changes to the
reservation value. At 0 < β < 1, the agent is tough and main-
tains its initial offer until it almost approaches the deadline
(such tactic is known as Boulware). We limit our examinations
to these negotiation tactics, while behavioural heuristics would
be more appropriate in a dynamic environment as EHWSNs.
But, these are less successful in short-term deadlines [15].

IV. NUMERICAL ANALYSIS

We assume agents observe that their residual energy level
has dropped below the threshold set, they are appropriately
synchronised and plan to cooperate for the next 24 hours,
which start at 00:00 and end at 23:00 local time with L=1
hr, i.e. agents negotiate an energy flow of 24 values. Then T
corresponds to the same period and time slots T = (1, ..., 24).
Numerical results are shown to demonstrate the performance
of the agents with trading over the individualistic approach.
All the results are obtained using MATLAB.

A. Simulation Setup

In this section, we study the problem of cooperation in a
simplified scenario with a pair of nodes (each from a different

network); negotiating agents α1,1 and α2,1 of N1 and N2,
respectively.

Agent α1,1 is simulated as controlling a Memsic eKo mote,
containing a 3.3 cm × 6.35 cm photovoltaic cell (assumed to
be 10% efficient) to recharge a 600 mAh battery. We consider
η = 0.7, which is typical of NiMH batteries. Agent α2,1

is simulated as controlling a Memsic MICAz node, with a
micro-wind turbine to recharge a 600 mAh battery. The energy
model in II-B is used to evaluate the energy consumption
of both agents, using parameters obtained from empirical
measurements and datasheets [18]. We consider a realistic
scenario where an eKo node operates at 1% duty cycle, and
the average power consumption is 0.615 mW. For the MICAz
mote, an average load of 2.86 mW at 5% duty cycle of
operation is expected. Thus, agent α1,1 and α2,1 demand 0.615
mWh and 2.86 mWh of energy in each time slot, respectively.
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Fig. 2: Solar (agent α1,1) and wind energy (agent α2,1) harvested
throughout a day.

The meteorological information used to compute the en-
ergy generation corresponds to the area of Southampton, UK
(50.8997◦N , -1.3955◦W , Elevation 32 m) [19], [20].

The values of solar irradiance from April 2017 are used to
estimate the hourly power output of a photovoltaic system for
a day, which is proportional to the solar radiation, the panel
dimension, and its efficiency. The estimated hourly energy
output is shown in Figure 2. The energy exhibits a temporal
variation that favours time slots 6-19 which correspond to
times 05:00-18:00. The total energy generated is 452 mWh.

We adopt daily data from April 2017 to estimate the hourly
average wind speed for a day. The power from the wind source
can be calculated from its speed as in [21] considering a swept
area of 5 cm × 5 cm for the wind turbine. From April data,
we chose April 1st. The diversity between generation times in
solar and wind creates an opportunity for energy trading. Then
we scale this data to get the hourly power output of a highly
efficient micro-turbine (Figure 2). The total energy generated
in a day is 41.4 mWh.

B. Results

With the nodes’ information and energy profiles described
above, agents can compute their utilities (without trading)
using the LP model described in Section II-D when the offer o
is null. We compare the utility achieved by the agents without
trade, by NBS and by the bilateral negotiation protocol using
TDT. Figures 3 and 4 for agents α1,1 and α2,1 respectively,
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Fig. 3: Agent α1,1: Results of utility maximisation without trade,
with NBS and with TDT.

show how agents can increase their utilities via cooperation
and reduce the waste of energy excess. As presented in
Figures 3.(a) and 4.(a), the energy allocation without trade
is insufficient at time slots 1-5 for agent α1,1 and 10-13, 17-
24 for α2,1, while it is equal to the load when there is energy
trading. Thus, u for α1,1 increases from 0.79 to 1 and 0.59 to 1
for agent α2,1 when they reach an agreement to cooperate. The
achievement of energy-neutrality in both scenarios depends in
this case on the amount of unused energy from both agents
and their matching requirements.

The results shown of TDT are obtained for a negotiation
deadline set to 10 rounds. At the beginning of the negotiation,
the agents make the offers that give the highest utility
to themselves. No matter how low or high we vary the
concession shape β (0.5 or 1.8) for any agent, the negotiation
process with TDT ends with these results. If agent α1,1

starts, the process ends in the first round, otherwise it ends
in the second round after α2,1 agrees with the counter offer
of agent α1,1. Agent α1,1 has a large excess of energy to
offer that satisfies agent α2,1 requirements (Figure 3.(b)
Without Trade) and α2,1 is also able to assist α2,1 in its
lack of energy during periods 1-5. In result, the utilisation
of energy is maximised from 52.2 mWh to 83.3 mWh by
negotiation while maintaining the application performance at
the same rate at all times, i.e. the duty cycle is not affected.
Then, the total energy saved via cooperation can be up to
7.08% for one day of the energy generated. The energy saved
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Fig. 4: Agent α2,1: Results of utility maximisation without trade,
with NBS and with TDT.

corresponds to the energy reallocated in cooperation which
would otherwise go to waste without trade. The reduction of
energy waste is illustrated in Figures 4.(b) Without Trade and
Figure 4.(b) with TDT. Figures 3.(c), 3.(d), 4.(c) and 4.(d)
show the state of the battery during the day for each agent,
where the battery level matches the dynamics of the charging
and discharging flows and none exceeds the maximum battery
capacity. The difference in the battery dynamic between
NBS and TDT depends on the negotiation’s final outcome.
For NBS, the solution corresponds to the offer o1,1→2,1 =
[−1.88,−0.96,−0.62, 0, 0, 2.75, 1.78, 3.57, 1.23, 14.77, 1.07,
1.37, 2.7, 2.88, 5.33, 1.94, 3.25, 4.91, 2.64, 0, 0, 0, 0, 0]
while TDT finishes in o1,1→2,1 =
[−0.61,−0.61,−0.61,−0.61,−0.61, 3.54, 17.61, 28.49, 36.59
, 41.75, 44.59, 45.91, 45.92, 44.63, 41.8, 36.63, 28.63, 17.86,
5.39, 0, 0, 0, 0, 0], which represent the 24 energy values (in
mWh) agreed for a day of cooperation.

To evaluate the proposed cooperation model and compare
the different agent behaviours, we make a slight change and
match the load of agent α1,1 to agent α2,1. The results are
shown in Table I as the agent that starts the negotiation, who
finishes it, behaviours, utilities and final round. The following
cases are considered:

• Case 1: Both agents employ a Conceder tactic.
• Case 2: Both agents employ a Boulware tactic.
• Case 3: α1,1 is tough while α2,1 concedes.
• Case 4: α1,1 concedes while α2,1 is tough.



TABLE I: Comparison between different negotiation cases

First turn Final turn Case u α1,1 u α2,1 Final round
α1,1 α2,1 1 0.93 1 2
α2,1 α2,1 1 1 0.94 2
α1,1 α2,1 2 0.97 0.96 7
α2,1 α2,1 2 0.97 0.96 8
α1,1 α2,1 3 1 0.93 2
α2,1 α2,1 3 1 0.94 2
α1,1 α1,1 4 0.91 1 3
α2,1 α1,1 4 0.91 1 3

In those situations, energy-neutrality is only accomplished
by one agent at a time and only when the opponent is
benevolent. We can see that it is not possible to satisfy
any energy consumption profile if both agents adopt a tough
negotiation strategy. Similar to our simulation result before,
the required number of rounds is low. The highest energy
utilisation is given whenever agent α2,1 concedes faster at the
beginning of the negotiation and while it has the first turn. In
both cases, agent α1,1 reaches energy-neutrality. The second
result of the table matches the utility levels reached by the
optimal solution if a central and trustable authority is available
to collect the information about the agents and calculate NBS.
Since most of the parameters are the same for both agents
(except the energy harvested), the available energy is a decisive
factor in the establishment of cooperation. When sensors are
energy-aware, spontaneous cooperation cannot take place and
thus, a negotiation is required.

The presented results provide some insight on cooperation
initiated by a negotiation, but more simulations have to be
conducted to evaluate the model. For example, in our sce-
narios, additional costs for energy re-allocation, e.g. due to
offers exchange, are not yet considered. Such issues, as well
as further investigation in the effect of the network’s dynamism
on the negotiation model, is required.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a model of EHWSNs
and also applied a negotiation heuristic based on a TDT to
optimally allocate the harvested energy by the nodes involved
at each time slot. The main advantage of this cooperation
initiated by a negotiation is that it allows to establish an oppor-
tunistic interaction between networks that cannot be conceived
at design time about the resources of their neighbours, leading
to a more integrated system of EHWSNs, while at the same
time the use of the energy harvested is maximised.

The vision of WSNs cooperation brings many implications
(from protocol diversity to security concerns), where several
steps must be taken in order to ensure an effective interaction.
One of the main challenges in extending power management to
an area wider than the boundaries of one domain is the hetero-
geneity in terms of resources, which is the problem addressed
in this work. An essential factor to establish cooperation is to
know the costs and benefits that will incur to the parties. Here,
a negotiation approach has been evaluated as a mechanism for
networks to communicate and compromise to reach mutually
beneficial results. In the future, we expect to extend the model

to consider multiple nodes and the uncertainty generated by
the energy availability and unexpected weather conditions.
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