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Abstract—Knowledge of currents in individual Low Voltage
feeders of a secondary substation is interesting for distribution
system operators for a variety of purposes. Deploying measure-
ment devices at each feeder in each substation, however, can
be costly. Due to the increasing deployment of Smart Meters,
the knowledge about currents at each connected customer is
in principle available. This paper proposes and evaluates an
approach to determine the feeder currents taking into account
the impact of measurement errors of Smart Meter measure-
ments. The developed approach makes a rigorous derivation
of confidence intervals for the calculated voltage and current
values utilizing a subset of measured voltages and currents as
input. The approach is applied to two realistic low voltage grids
and the impact of measurement errors and missing smart meter
measurements is quantitatively analyzed.

Index Terms—Distribution grid, measurement errors, smart
meter data quality, confidence intervals in grid calculations

I. INTRODUCTION

Measurements of electrical variables such as voltages and
currents are becoming increasingly available also in the dis-
tribution grids, providing an improved opportunity for grid
observability that previously was not existing. Key examples of
measurement devices include smart meters and smart inverters
at customer connection points or measurement devices in sec-
ondary substations. However, such measurement devices may
have different measurement accuracy and time granularity.
Furthermore, not all customer connections may be measured
and not necessarily all deployed measurement devices can
provide data for a specific time interval of interest, e.g. due
to bandwidth constraints of low-bandwidth communication
networks, [1], [2] or for non-technical reasons [3]. Inaccuracies
or missing data from customer connections limits or reduces
the benefit of grid observability applications.

One example application, for which customer-side measure-
ments can benefit, is the feeder current calculation: The knowl-
edge of currents of individual feeders of a secondary substation
is interesting for the distribution system operator for, e.g.,
grid congestion detection. While installing multiple devices for
feeder current measurements at each substation can be costly,
the increase in deployment of Smart Meters and other smart
customer side equipment provides knowledge of currents at
connected customers, which can be used to estimate feeder
currents. However, such estimation must take into account

measurement errors and unavailability of measurements from
customer connection points. This paper develops an approach
to quantitatively determine the impact of measurement errors
on the feeder current estimation based on a rigorous derivation
of confidence intervals. The approach is applied to a realistic
low voltage grid and the impact of measurement errors and
unavailable measurements at customer connection points is
quantitatively analyzed.

The feeder current calculation problem can be generalized
to calculating voltages for all grid nodes and currents for
all branches in the grid. In such calculations, it is important
to quantify the measurement errors of the input data and
to quantify the impact of the measurement data quality on
the results of the calculation. The approach presented in this
paper uses a grid model together with a subset of current
(and optional voltage) measurements to calculate the feeder
currents. Further, input to the approach is the standard devi-
ation of the normally distributed error of the input measure-
ments. Subsequently, the approach uses this quantification to
derive quantitatively the error for all calculated parameters,
expressed by their standard deviation. The approach assumes
normally distributed measurement errors as typically resulting
from measurement noise and in some cases also from time
alignment errors [4].

Grid estimation has a long history, starting from transmis-
sion grids in the 70ies [5] and in the last 20 years gaining
increasing attention also in the distribution grids. A large share
of the work has focused on obtaining numerically tractable
models from power flow equations describing AC grids [6],
[7], in most cases resulting in linearized models. In contrast to
this part of the existing work, this paper takes a linear model
and focuses on the method to rigorously specify stochastic
measurement errors on the input measurands and use those to-
gether with the linear model in order to derive confidence inter-
vals for the calculated voltages and currents. With increasing
attention on estimation of distribution grids and in particular
low voltage grids, the aspect of erroneous measurements has
recently started to gain momentum: approaches using weighted
minimum squared error [8], [9], [10] allow in principle via
the selection of the weights to mimic different input error
magnitudes. However, they require another model to derive
the relation of the quantitative measurement error description



to the chosen weight. Furthermore, the approach does not
lead to quantitative specifications of the error of the estimated
values. In [11] a comprehensive overview over variants of
weighted least squares estimation approaches is provided; their
analysis points out that solutions by the Gauss-Newton method
either become computational costly or sensitive to bad data or
missing data.

Approaches based on Kalman filters [12] allow the specifi-
cation of input errors via covariance matrices; however, these
approaches apply to a sequence of grid estimation steps, in
which the evolution of the grid behavior is described by the
linear evolution model, which in low-voltage (LV) grids with
potentially highly time varying loads can be problematic. In
contrast to such work, this paper focuses on the calculation of
currents (and voltages) of a LV grid based on measurements
for a single measurement time interval.

The specific problem of feeder current calculation based
on Smart Meter data can be approximated by a simple ad-
ditive procedure. Section II-A introduces this approximation
as comparison case and discusses qualitatively its drawbacks.
III-A then describes the linear equation system resulting from
a single phase representation of a Low Voltage (LV) grid.
Section III-B introduces the stochastic assumptions and shows
how to perform the calculation of the impact of measurement
errors; this section also shows how the resulting covariance
matrix can be used to obtain confidence intervals for the
calculated values. Section IV applies the calculation method
to two realistic low-voltage grids: a simulated reference grid
model and a real LV grid. Finally, Section V summarizes the
paper and presents next steps.

II. FEEDER CURRENT CALCULATION SCENARIO

Target of this paper is to obtain values of the magnitude of
the currents, Fi, i = 1, ...,#feeders, of the LV side feeders
of a secondary substation. In order to make the presentation of
the approach and analysis easier to read, we focus on a single-
phase representation of LV grids, so we target to calculate one
magnitude value for a current on each feeder. Generalisations
to unbalanced multi-phase LV grids are however possible,
while introducing a more complex structure of the grid model
[13].

Input to the feeder current calculation are measurements
of currents and optionally voltage at the customers that are
connected to this secondary substation, e.g. obtained by Smart
Meters or Smart Inverters at customer connection points. In
addition, measurements of the voltage and total current of the
secondary substation LV bus bar or at intermediate busbars in
junction boxes may be optionally available.

All input measurements are assumed to be subject to nor-
mally distributed measurement errors, where the parameters
of the normal distribution are known. The standard deviation
may be obtained from the upper bounds stated in legal require-
ments for measurement devices, see e.g. [14]. Without loss of
generality, the mean of the normally distributed measurement
errors is assumed to be zero.

While more general assumptions can be included, the co-
variance between measurement errors of different measure-
ment devices is in practice hard to obtain. Therefore, this paper
will in the analysis later focus on independent measurement
errors.

A. Comparison case: Approximation of feeder currents for
radial distribution grids

The scenario in this subsection is a simplified base case
that is used as initial approximation and for comparison to the
enhanced method.

In a radial grid, for each feeder i, the current in the feeder
from the secondary substation results as the sum of all currents
of the connected prosumers, using appropriate signs:

Fi ≈
∑
j∈Ci

Ij .

Ij is the measured complex current at customer j, where
the phase angle is relative to the measured complex voltage
Uj at the same measurement device and Ci is the set of
customers on Feeder i. Note however that Smart Meters
and other measurement devices in the LV grid are not time
synchronized on small time-scales, so that there is in practice
no common reference point for phase angles and only the
relative phase angle at one measurement locations are known.
By convention, consumption is present when the resulting
active power P = real(U · I∗) has a negative sign, and
generation for a positive sign.

This way of calculating feeder currents however only
applies to a radial grid and it does not allow to include
additionally available measurements, e.g. measurements of the
voltage or total current at the secondary substation LV busbar
into the feeder calculation.

On the other hand, such simplified calculation of feeder
currents easily allows to include jointly normally distributed
measurement errors via the standard formulas, here given for
the assumption of independent errors:

V ar(Fi) ≈
∑
j∈Ci

V ar(Ij).

Additional advantage of this simple approximation method is
that it only requires very rudimentary grid topology informa-
tion: only the knowledge about which customer is connected
to which feeder is required.

B. Approach for general grids

The method that is presented subsequently in the paper
will allow to calculate feeder currents and the corresponding
standard deviations of these currents based on any number
of input measurements of currents and voltages at any node
in the grid. Measurements are assumed to be subject to a
normally distributed error with zero mean and known standard
deviation. The method will use a grid model, which requires
the knowledge of the LV grid topology and of the cable
impedances.

The details of this approach are introduced in the next
section.



III. GRID CALCULATION MODEL WITH STANDARD
DEVIATIONS

A. Linear grid model

We represent a low-voltage grid as a graph with three types
of nodes: 1) the busbar on the LV side in the secondary
substation is the root node as Node 1. 2) Any type of interme-
diate bus bar or any sleeves are represented by intermediate
nodes. 3) Terminal nodes represent the connection points to
customers; in case of the presence of a Smart Meter, this
terminal node is the point of measurement of the Smart Meter.

The cables are represented by edges, ei,j which connect
Nodes i and j. The total number of nodes is denoted by N ,
the total number of edges by E; in case of a radial grid, the
resulting graph is a tree with E = N − 1. The resistance and
reactance of the cable is obtained from cable type and cable
length and represented by the complex impedance Zi,j . We
leave it for future work to also take in non-linearities in cable
impedance and ageging effects.

The variables used to describe the grid status are then
complex values of voltages Ui in relation to ground at each
node (busbar, connection point), and complex values for the
currents Ii,j between Node i and Node j.

For simplification of the following description, we assume
a tree topology (while the implementation is more general to
also cover meshed LV grids). The used grid model results in
three types of linear equations:

1) The Kirchhof equation for each intermediate node i:

Iparent(i),i −
∑

j∈children(i)

Ii,j = 0.

2) Linear equations that link the voltages to the currents
for each cable, i.e. for each edge ei,j :

(Ui − Uj)− Zi,j · Ii,j = 0.

3) Measurement equations for all measured voltages Uj =
uj and currents Ik,l = ik,l.

We then define the complex variable vector x for the true
voltages and currents by an arbitrary ordering scheme on the
N voltage variables Ui and the current variables Ii,j . The
first two types of equations are then summarized in the matrix
notation by:

Cx = 0,

and the third type of measurement equations by:

Dx = d,

where all entries in the matrices and vectors are complex
values.

Note that the above two matrix equations can be jointly writ-
ten as Bx = m, where B is the vertical concatenation of the
matrices C and D, and m contains 0 in the first components,
and the last components correspond to measurement values.
In the general case, B is not a square matrix. In particular,
depending on the number of intermediate nodes in the LV grid
topology and depending on the number of input measurements,

the equation system may be over-determined, i.e. B has more
rows than columns. A standard linear regression solution (or
equivalently, minimization of the 2-norm of the residuals)
would result from solving

BHBx = BHm,

where BH is the conjugate transposed of the matrix B.
However, using this standard linear regression has three

disadvantages: (1) Some of the equations are formulated in
terms of voltages, others in terms of currents; the linear
regression solution would minimize the residual ||Bx −m||,
but that residual vector would contain values with different
units; (2) the quantification of measurement errors cannot be
included in the standard linear regression solution. (3) The
approach does not provide estimation errors on the estimated
voltage and current values. While the first two disadvantages
could be addressed also by approaches to weight the different
equations [11], [13], all three will be removed by the approach
introduced in the following.

B. Confidence intervals by constrained regression
We now introduce measurement errors as follows: for each

measurement dj (which could be a voltage or a current), we
assume a complex normally distributed measurement error
with the real and imaginary part independent and both with
standard deviation σj .

In the following, we use the notation:
• N : numbers of nodes in the LV grid.
• k: number of grid state variables used, i.e. N voltage

values and, in a tree topology, N − 1 cable currents, i.e.
in total in that case k = 2N − 1.

• n: number of available measurements, n ≤ k
• q: number of linear equations, called constraints, that re-

sult from the grid model; here q = N−1+# intermediate
nodes, q = 2N − 2−# leaf nodes.

Model: Under the assumptions stated before, the model is
defined by

d = Dx+ ε, ε ∼ CNn(0,Σ),

where d ∈ Cn, D ∈ Cn×k, x ∈ Ck, Σ ∈ Cn×n, and
CNn denotes the n-dimensional circularly symmetric complex
normal distribution. In our case, Σ is a diagonal matrix with
the jth entry given by 2σ2

j , so it is in fact real-valued, but
everything below carries through for complex valued matrices
as well. Equivalently,

d̃ = D̃x+ ε̃, ε̃ ∼ Nn(0, I), (1)

where d̃ = Σ−1/2d, D̃ = Σ−1/2D, and ε̃ = Σ−1/2ε.
Furthermore, x is subjects to the constraints

c = Cx (2)

where c ∈ Cq and D ∈ Cq×k (in our case c is a zero vector).
Thus this is a variant of a general linear model with (1)
complex entries, (2) linear constraints, (3) a known, arbitrary
covariance matrix, (4) a (typically) under-determined system
in the sense that the number of available measurements n, is
less than the number of variables to estimate, n < k.



Statistical Estimation: We estimate the parameters x using
least squares estimation under the linear constraints (2). This
is considered in the case that n < k in [15], where we need
to generalize the results to the complex valued case and do
a few minor modifications, such as using an arbitrary, known
covariance matrix.

To find the least squares estimate of x̂ under the constraints,
we minimize the Lagrange function

L(x̂, λ) = (d̃− D̃x̂)H(d̃− D̃x̂) + Re(2λH(Cx− c)), (3)

where λ denotes the complex Lagrange multiplier and H
denotes the conjugate transpose. This yields the following
result for the least squares estimate for x, which is similar
to the real-valued case (see [15]).

Proposition 1. Assuming the setup given by formulas 1 and
2, we get the least squares estimate for x as he solution to[

D̃HD̃ CH

C O

] [
x̂
λ

]
=

[
D̃H d̃
c

]
, (4)

where O denotes a zero matrix of appropriate size (here q×q)

Due to space limitation, the proofs of the propositions will
be given in an extended version of this paper.

For short notation we write (4) as

Ax̃ = b. (5)

Provided that A is invertible, the equation has a unique
solution given by x̃ = A−1b.

Given that D̃HD̃ is invertible we have the case where the
system is fully measured, and a closed form expression for x̂
can be obtained. If this is not the case, however with A being
invertible, we have a case which allows us to use the solution
above. This is the typical case that we discuss in our paper,
where some data is not present for what reasons that might
be. In the case A is not invertible, that is measurement and
constraints equations are too few, then we do not get a unique
solution and we will require additional information to find a
solution that is meaningful.

Next we consider the distribution of x̂. Firstly, following
an approach in [15], notice that although the inverse of A
typically does not have a nice expression, we can write it as
a block matrix, i.e.

A−1 =

[
F11 F12

F21 F22

]
, (6)

where the submatrices of A−1 have the following dimensions:
F11 ∈ Ck×k, F12 ∈ Ck×q, F21 ∈ Cq×k, F22 ∈ Cq×q . This
yields the following result on the distribution of x̂.

Proposition 2. If A is invertible, the least squares solution x̂
given by the solution to (4) has the distribution

x̂ ∼ CNk(x, F11).

In addition to providing a nice expression for the distribution
of x̂, Proposition 2 also verifies that x̂ is an unbiased estimate
of x. Furthermore, we use the result in proving the following

proposition, which is vital for creating confidence intervals
for the absolute value of any (complex) entry in x, where it
should be noted that the diagonal of F11 is real, since F11 is
non-negative definite.

Proposition 3. If A is invertible, then

abs(x̂i)
2

(F11)ii/2
∼ χ2

nc

(
2,

abs(xi)
2

(F11)ii/2

)
,

where χ2
nc denotes the non-central χ2-distribution.

This result does not provide a closed form expression for
the confidence interval of the absolute value of xi, but using
formula (11) from [16] provides an approximate confidence
interval for the non-centrality parameter of a non-central χ2-
distribution, i.e. abs(xi)

2

(F11)ii/2
in our setting. To obtain this interval,

one should let the parameters x, σ and ξ in (11) in [16] be x =
abs(x̂i)

2

(F11)ii/2
, σ = 2

√
x, and ξ = ±zα/2 to obtain the two end

points, say δ1 and δ2, of the approximate confidence interval
for abs(xi)

2

(F11)ii/2
. Transforming both end points δj for j = 1, 2 by√

δj(F11)ii/2 then gives an approximate confidence interval
for abs(xi).

IV. QUANTITATIVE EVALUATION AND COMPARISON OF
FEEDER CURRENT ESTIMATION METHODS

We now apply the approach introduced in the previous
section to two realistic LV grids. Main target of the numerical
results is to understand, which benefits the feeder current
calculation method based on the linear grid model shows,
and to understand the impact of erroneous measurements and
missing measurements.

Relative errors of the measurements are defined as standard
deviation of the additive measurement error divided by the
measurement value; unless stated explicitly to be different, the
relative errors of the Smart Meter measurements at customer
connections are by default assumed to be 1%, and for the mea-
surements at the LV side busbar of the substation, if included,
a measurement error of 0.1% is assumed; background for the
latter is the assumption of a higher precision measurement
device deployed at the substation. See the beginning of Section
III-B for details on how this normally distributed error is added
to the complex representation of measurements of voltage and
currents.

A. Scenario and evaluation approach

We use the realistic LV grid example from [17]: The
area constitutes a mixture of both industrial, commercial,
agricultural and residential buildings. The specific topology
and configuration of the grid we focus on in this paper is
a subset of that area which contains 116 households, and
is illustrated in Figure 1. This subset contains 37 residential
houses, partially equipped with PV and rechargeable batteries.
The topology shown has a ring between feeder on V18
and V33, which has been included to demonstrate that our
methodology works even with rings, however, we do not go
specifially into details of how this impacts estimates.



Fig. 1. Example grid from a smaller Danish town, [17].

We use a single-phase representation of this 3-phase LV
grid, therefore the nominal voltage is 400V. The grid model
uses the average cable length for all cables connecting junction
boxes, so each of these cables has resistance R = 0.104Ω and
reactance X = 0.026Ω. The cable from the Smart Meter to
the household is assumed to be short and have 1/100 of that
resistance and reactance; reason for this choice is hat the used
simulation model does not include this cable, so that the choice
of small values leads to minimal impact.

The grid has been implemented and simulated in the Matlab
tool DISC [18] and the complex values of currents at each
line and voltages at each node are available as output of this
simulation.

We then simulate Smart Meter measurements by adding a
normally distributed error to the selected set of ’available’
Smart Meters and use the linear grid model together with
the confidence interval approach from the previous section to
calculate all voltages and currents, among them the magnitude
of the 3 feeder currents, here called F1, F2, F3. Before
showing results on feeder currents, we first show the validation
of the model via voltage profiles.

B. Validation via voltage profile calculation

The calculations from the linear grid model are compared
to the output from the simulator; in reference to terminology
from the Machine Learning domain, we call the latter ground
truth. The standard deviation of the measurement error is
assumed as given earlier by the default values, while the actual
input values are the ground truth values (so no random error
added). The calculation method works upon the following
input: complex value of currents at EACH customer Smart
Meter, and the magnitude of the substation voltage. Note that
the substation current and also the voltages at customers are
not used as input for this validation step.

Figure 2 shows the resulting voltages and the 95% confi-
dence intervals as computed from the grid model in compar-
ison to the ground truth voltages. The figure shows an exact
match of the calculated estimate to the ground truth voltage

0 5 10 15 20 25 30 35

Metering Point No. (0=Substation)

392

393

394

395

396

397

398

399

400

401

V
o

lt
a

g
e

s

Validation of Voltage Profile: default values, ground truth input

Fig. 2. Calculated voltage profile for the reference grid based on Smart Meter
current values at all customers and on a voltage value at the substation; ground
truth voltages from simulations are shown by the circles. The metering point
IDs ≥ 1 corresponds to the load number in Figure 1.

therefore confirms the validity of the grid model and of the
implementation of the calculation method.

C. Feeder estimation - Comparison with baseline approach
from radial grids

In the following, erroneous measurement values are inves-
tigates as input to the grid calculation; these are obtained by
adding a normally distributed error to the ground truth values
from the simulation, before using these values as input to
the feeder estimation approaches, see details in the beginning
of Sect. III-B. The following figures show ONE random
realization of this stochastic error for a varying relative error
of all the customer-side Smart Meter measurements, while the
relative errors of the substation measurements is fixed to the
previously given default value. The dotted lines visualize the
95% confidence interval. The results in Figure 3 show that
the calculated confidence intervals contain the true value in
almost all cases; the size of the confidence intervals for the
calculated values and also the variability of the calculated
result increases strongly for smart meter measurement errors
of 10% and higher.

D. Incomplete customer measurement deployments

We now investigate scenarios of incomplete measurements,
i.e. when not all customers have smart meters, or when these
smart meters have not provided a measurement. When there is
no measurement from a Smart Meter, the following ’pseudo’-
measurements are used as input to the grid calculation:
• for customers that are purely consumers: U =nominal

voltage −5V , with a standard deviation of 50V ; I = 7A
with a standard deviation of 7A.

• for customers that contain also generators: U =nominal
voltage +5V with a standard deviation of 50V ; I = 0A
with a standard deviation of 12A.

This approach therefore uses constant values with a large
standard deviation. Pseudo-measurements for current values
are chosen depending on max currents of the customer type.
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The experiment starts from a full measurement sce-
nario and then removes measurements by over-writing them
with pseudo-measurements as explained above. The SMs
that are removed for the first 12 removals in a round-
robin fashion from the three feeders as follows: at loads
11, 23, 38, 7, 28, 31, 1, 15, 34, 13, 19, 36. For this investigation,
we decrease the relative measurement errors at the substation
and customer Smart Meters to 10−4 and 10−3, respectively. A
normally distributed error is added to all these measurement
values accordingly.

Figure 4 shows the behavior of the calculated feeder currents
and their standard deviation for an increasing number of loads
that are not providing Smart Meter measurements. The figure
shows that for up to 6 removed Smart Meters (so two on
each feeder), the calculated value is not too far from the
ground truth feeder current for all 3 feeders and the calculated
confidence intervals (indicated by dotted lines) remain narrow.
In comparison to the simple additive approximation of the
feeder current, plotted for Feeder 1 by the red dashed line
in Figure 5, the calculation from the linear model has the
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Fig. 5. Comparison of the calculated feeder estimation from the linear model
with the approximation from only adding SM measurements for Feeder 1.

advantage that also voltages and substation measurements can
be utilized, allowing useful estimates for incomplete measure-
ment scenarios. The simple additive approach, as demonstrated
in Figure 5, however fails to provide any useful result even
for a single nun-measured customer connection.

E. Application to real-life grid scenario with actual Smart
Meter measurements

Finally, we check the validity of the grid model by applying
it to a set of Smart meter measurements from an operational
LV grid in North Denmark. This LV grid area is served
by a secondary substation, which serves 10 customers; the
substation is Node 1 and the Customers are the leaf nodes
of the tree topology shown in Figure 7. The resistances and
reactances have been obtained from the cable types and from
the cable lengths that were available in the GIS system.
Customers at Nodes 11 and 17 operate PVs (of 9.5 and 6kW
rated power); Node 18 is a wind-turbine.

Fig. 6. Abstracted topology of a real grid from North Denmark.

The substation and all customers, except Node 3, contain
Smart Meters, which provide average values over 15min
intervals for the following measurands: voltage per phase,
current per phase, consumed active power, generated active
power, consumed reactive power, generated reactive power.
The voltages are integer values (so change in steps of 1V).
The currents are real positive values; in order to determine



the phase angle and the sign, the net active and reactive power
values are used.

Relative measurement errors of 0.5% and 1.5% are assumed
for voltage and current measurements, respectively. The non-
measured consumer is a low-power device which is repre-
sented by a current I3 = 3W/(230V ) with a relative error
of 100%.
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Fig. 7. Calculated voltage profile for the life LV grid based on the voltage
measurement at the substation and current measurements from the nine
measured customers. The measured voltages from the Smart Meters are
marked by circles, but not used in the grid calculation.

Figure 7 shows the resulting voltage profile when applying
the model to an individual phase (here L1) in isolation. The
measured voltages are shown as circles; they are in this
scenario always contained within the 95% confidence interval
of the calculated voltage values. Note that the smart meter
voltages are not used as input for the calculation model. The
example calculation shows that the calculation model can be
applied to data as provided by actually deployed Smart Meter
systems.

V. CONCLUSION

This paper investigates how missing low-voltage grid char-
acteristics can be obtained from substation and customer-
side measurements of currents and voltages; the latter can
for example be obtained from Smart Meters. The motivating
example application is the calculation of LV feeder currents
without deploying measurement devices at EACH feeder. The
proposed approach uses a linear grid model, allows to quantify
measurement errors of the input measurements, and rigorously
derives measurement errors of the calculated parameters. The
benefits of this approach in comparison to a simple current
measurement aggregation are demonstrated quantitatively in
several evaluation experiments.

Future work will analyse the obtained matrices in Section
III-B to derive criteria when these are invertible. Furthermore,
the approach will be extended to also allow for stochastic
distributions for the grid parameters (here the elements of
the impedance matrix) and to other error distributions, also
covering cases of malicious modifications (e.g., tampering
of Smart Meters). An extension to unbalanced 3-phase grid

models should also be investigated. Finally, the obtained
standard deviations and confidence intervals from the grid
calculation approach can be investigated in other application
contexts. Examples include the calculation of grid losses in
the LV grid and the detection of voltage levels violations.
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