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Abstract—Smart grids allow operators to monitor
the grid continuously, detect occurring incidents,
and trigger corrective actions. To perform that, they
require a deep understanding of the effective situation
within the grid. However, some parameters of the
grid may not be known with absolute confidence.
Reasoning over the grid despite uncertainty needs
the consideration of all possible states. In this paper,
we propose an approach to enumerate only valid
potential grid states. Thereby, we allow discarding
invalid assumptions that poison the results of a given
computation procedure. We validate our approach
based on a real-world topology from the power grid in
Luxembourg. We show that the estimation of cable load
is negatively affected by invalid fuse state combinations,
in terms of computation time and accuracy.

I. Introduction

The embedding of information and communication
technology within smart grids enhances grid operations
with management systems that can continuously monitor
the grid, detect incidents, and trigger healing mechanisms
[1], [2]. Such systems rely on (near) real-time knowledge
about the grid (e.g., the grid topology and power flow, the
customer consumption data sent by smart meters, etc.)
and automated ways to interact with it (e.g., fuses that can
be controlled remotely). These further pave the way for
developing recommender systems to support operations
by suggesting relevant actions to perform on the grid [2].

However, the knowledge required to achieve this can be
incomplete or inaccurate [3], due to a legacy of unsys-
tematic documentation standards and procedures. This is
the case for Creos S.A. (named “Creos” hereafter), our
industrial partner, and the energy distributor in Luxem-
bourg. Creos identified a significant number of inaccuracies
among collected information related to the low-voltage
grid, which is still operated manually. That includes, for
instance, missing reports of grid configuration changes
(e.g., closing/opening fuses) and also undocumented in-
frastructure updates (e.g., a new cable was installed but is
not encoded in the management system). Because of that,
there exist discrepancies between the actual state of the
grid (topology and power flow) and the view Creos has
on it. That hinders the management systems’ ability to
produce reliable insights, as their computations (e.g., ca-
ble loads) might be substantially affected by erroneous

assumptions. For example, operators might suspect a cable
is overloading while it is not, or even worse, might overlook
an overloading. Fixing documentation inaccuracies is a
daunting task that would require manual inspection of
a tremendous amount of data. While data quality is a
growing concern at Creos and will certainly improve over
time, for now, operators have no choice but to deal with
uncertainty in their knowledge of the grid.

In this paper, we tackle the problem of computing the
electrical loads of the cables in the presence of uncertain
knowledge about the states of fuses. Uncertainty on fuses
will create different configurations for the same topology.
We exploit measured data and domain-specific validity
rules to reduce noise in such computations and define an
efficient propagation uncertainty. We evaluate the impact
of a configuration on the cable load estimation: (RQ1) how
much do estimations of cable loads vary in different grid
configurations? In our case study, we found out that the
highest estimated load can be four times higher than the
lowest estimated load. Then, we show that invalid config-
urations impact the validity of approximated load: (RQ2)
do invalid configurations significantly alter the cable load
estimations? Moreover, we show that our work contributes
to improving reasoning procedures built upon smart grids,
in the presence of uncertainty in their topology: (RQ3)
what is the performance gained by filtering out invalid
grid configurations?

II. Related work
Uncertainty in power grids has been studied since the

early ’70s [4], [5]. Some studies focused on stochastic
input’s impacts due to energy generated from renewable
sources such as wind or thermal. To tackle this problem,
they define approaches to compute the load efficiently.
These approaches are referred to as probabilistic optimal
power flow (POPF) [6], or, more generally, probabilistic
power flow (PPF) [4], [5]. Different approaches have been
defined to tackle this problem. For example, authors of [7]
proposed a solution using a quasi-Monte Carlo simulation
and copula function. [8] described a model that uses the
Dirichlet process mixture to solve the challenge of POPF.
The dependency between the different stochastic power
energy has been studied in [9]. Another uncertainty in the
power grid that has been considered is the one affecting
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Fig. 1. Schema of the topology used as running example

measurements. Sensed data are affected by measurement
errors, measurement precision, and by a loss of data.
In [10], the researchers described an approach to address
this problem by representing the measurement’s confi-
dence level with a complex normal distribution. None
of the proposed solutions considers the uncertainty of
the grid configuration (fuse states) from the best of our
knowledge. [9] classified the PPF approaches into four
categories. The classification has been made according
to the methodology used: analytical methods, e.g., [11],
approximate techniques, e.g., [6], heuristic procedures,
e.g., [12], and Monte Carlo simulations, e.g., [7]. We
assume that fuse states can be represented by a binary
variable. The uncertainty on such elements can be repre-
sented by the Bernoulli distribution, and the computation
made is simple enough to be done analytically.

III. Motivation and Running Example
Figure 1 shows a topology example with one transformer

(at the top of the figure) and four cabinets (white rectan-
gles). These entities (transformer and cabinets) are linked
through six cables (bold lines). At each end of any cable,
there is a fuse noted in, with 1 6 n 6 12. Each cable
has a measured prosumption noted iLk, with 1 6 k 6 6.
Among the cables, Cable 1 and Cable 2 are parallel, just
like Cable 4 and Cable 5. They thus form two circles. One
is composed of fuses i1, i2, i3, and i4. Fuses i7, i8, i9, and
i10 constitute the other circle.

A fuse is said “uncertain” when its state is not known
with absolute confidence. We quantify this uncertainty
with a Bernoulli distribution [13]. Each fuse state (closed
and open) is attached with a confidence level (probability
value) between 0 and 1. The sum of the confidence levels
of each state equals 1. If i2 is uncertain, the operator
might know that the fuse is closed with a confidence level
of 62% and open with 38% confidence.

We define a configuration as a set containing the states
of all fuses. For example, {i1 : C, i2 : C, i3 : C, i4 : C, i5 :
C, i6 : C, i7 : C, i8 : C, i9 : C, i10 : C, i11 : C, i12 : C},

{i1 : C, i2 : C, i3 : C, i4 : C, i5 : C, i6 : C, i7 : O, i8 : C, i9 :
C, i10 : C, i11 : C, i12 : C}, and {i1 : C, i2 : C, i3 : C, i4 :
C, i5 : C, i6 : C, i7 : O, i8 : C, i9 : C, i10 : O, i11 : C, i12 : C}
are three different configurations for the topology depicted
in Figure 1, with C that indicates closed state and O the
open state. Among those, the last configuration is invalid
as it would disconnect Cable 4 from the energy network,
leading to disconnected customers. The configuration of
the grid obviously affects the load of each cable. For
instance, let us assume that the measured prosumption
(of directly connected customers) equals 40A in Cable 4
and 20A in Cable 5. The computed load for Cable 5 is 30A
for the first configuration and 60A for the second (because
i7 is closed in this second configuration).

When the state of some fuses is uncertain, the actual
configuration of the grid is not known. In turn, it entails
uncertainty in the computed load of the cables, which, as
the above example illustrated, is subject to significant vari-
ations. This raises the need to consider all configurations
that may exist when performing such computations with
their confidence level.

IV. Efficient propagation of uncertainty

In this section, we describe the full process to propagate
fuse states uncertainty to the approximated load. This
process is an extension of the load approximation proposed
by Hartman et al., [14]. It is composed of three steps. First,
we detect uncertain fuses. Based on them, we list all valid
configurations, and finally, we approximate the load.

A. Business rules
a) Rule 1: Disconnection of the grid: All customers of

a grid with a non-null prosumption should be connected.
For example, Cable 3 cannot be disconnected as it will dis-
connect customers directly linked to this cable and those
connected on Cable 4 and 5. Consequently, a fuse cannot
be open if it disconnects part of or the entire grid
with non-null prosumption (Rule 1). Applying this rule
to our example, i5 cannot be open as it will disconnect all
cables connected to Cabinet 2 and 3. i7 can be open as it
exists another power flow (i9, i10, i8) to connect Cable 4 to
the transformer. From this rule, we experimentally derived
five others (Rules 1.1 to 1.5). All rules should be valid for
the part of the grid with non-null prosumption, or that
feeds another part of the grid with non-null prosumption.
We notice that they are equivalent to Rule 1 while being
more efficient in executing during our experiments.

b) Rule 1.1: Mandatory power flow: We observe that
some parts of the power flow remain identical for all valid
configurations. This forms what we call the mandatory
power flow. Therefore, all fuses that belong to a mandatory
power flow are closed (Rule 1.1). Applying this rule on
our example, we know that i5 and i6 should be closed. We
can, thus, invalidate all configurations where at least one
of these fuses is open.



TABLE I
Business rules

Rule
nb. Area of application Description

1 All A set of fuses cannot be open if they disconnect part of or the entire grid.
1.1 Mandatory power flow All fuses are closed.
1.2 Cable One of the two fuses is closed.
1.3 Dead-end cable The fuse that does not belong to the dead-end cabinet is closed.
1.4 Transformer At least one fuse should be closed.

1.5 Circle
If one cable has a measured prosumption different from zero, then exactly two fuses are open
if and only if they both belong to the same entity that can be a dead end. Otherwise, at most
one fuse of the circle is open.

c) Rule 1.2: Cable: A cable can be connected if and
only if at least one of its fuses is closed. If both are open,
then the cable cannot receive any power. Thus, Rule 1.2
can be formulated as follows: for all cables that have a
measure prosumption different from zero, at least one of
its fuses is closed. For example, Cable 4 can be connected
if and only if the fuse i7 or i8 is closed.

d) Rule 1.3: Dead-end cable: Dead-end cables, like
Cable 6, connect dead-end cabinets, a cabinet with only
one fuse. For all dead-end cables, the fuse that does not
belong to the dead-end cabinet is closed (Rule 1.3). For
example, fuse i11 should be closed. If the fuse is open, the
power flow will not be able to reach the dead-end cable.

e) Rule 1.4: Transformer: Transformers are the root
entities of the low-voltage grid. If all fuses are open, then
the power cannot be delivered to the grid. For example,
fuse i1 and i3 cannot be open at the same time. For all
transformers, at least one fuse should be closed (Rule 1.4).

f) Rule 1.5: Circle: Circles are formed either by two
parallel cables, such as Cable 1 and Cable 2, or by indi-
rectly parallel cables (not shown in our example). In this
kind of topology, one can open one fuse without breaking
the power flow. Opening more than one fuse breaks the
power flow between the open fuses. For example, fuse
i7 can be open without disconnecting any cable while
opening fuse i7 and i10 disconnects Cable 4. However, one
exception exists if a possible dead-end cabinet is part of
the circle. A possible dead-end cabinet contains two fuses
connected to only one other cabinet. For example, Cabinet
3 is a possible dead-end cabinet as it is only connected to
Cabinet 2. Opening the two fuses of a possible dead-end
cabinet does not break the power flow. For example, if i8
and i10 are open, the power flow can still go through i7 to
feed the Cable 4 and through i9 to feed the Cable 5. Com-
bining these two elements, the last rule can be formulated
as follows: in a circle, exactly two fuses are open if and
only if they both belong to a possible dead-end cabinet.
Otherwise, at most one fuse of the circle is open (Rule 1.5).

B. Inferring uncertain fuses
The first step infers uncertain fuses by applying Rule

1.1. To perform that, we detect fuses that belong to the
mandatory path as they must be closed. Therefore, the
grid operator knows with the most thorough confidence

what the states of these fuses are. In our example, if
the measured power prosumption value is different from
0 on Cable 3, 4, or 5, then fuses i5 and i6 are closed.
This first step allows us to reduce the number of possible
configurations. Removing n fuses removes 2n possibilities.
Therefore, this step is here to optimise the propagation.

Fuses that belong to the mandatory power flow depend
on the topology. Thus, this step can be executed once,
and the result can be saved. It becomes a tradeoff problem
between execution time and memory consumption that
we let engineers solve according to their requirements.

C. Listing all valid configurations and their confidence
We process circles independently to list all valid con-

figurations. All possible configurations are, first, listed
with their confidence level. It is done using the list of
uncertain fuses computed in the previous step. Invalid ones
are removed and their confidence levels are added to valid
ones. Finally, we merge all the valid configurations of each
circle to get the final list.

a) Computing the confidence level of a configuration:
The confidence of one configuration (valid or not) cor-
responds to the intersection of the confidence of all fuse
states. Let us assume that in our example, only i1, i4, and
i7 are uncertain. The grid operator knows that i1 is closed
with 79% confidence, that i4 is closed with 82% confidence,
and that i7 is closed with 64% confidence. The confidence
of the configuration that all fuses are closed equal to the
intersection of the confidence that all fuses are closed.
We consider that the states of fuses are independent and
disjoint1. Following the probability theory, the confidence
of this configuration equal 79% ∗ 82% ∗ 64% = 41, 46%.

b) Listing valid configurations of circles: Experimen-
tally, we observe that only fuses that belong to a circle
can be uncertain. Moreover, circles can be considered as
independent systems. The input2 and output3 loads do
not depend on the configuration of fuses inside circles4.
In our example, whatever the configuration is for fuses
{i1, i2, i3, i4}, the load in fuse i11 should correspond to
the prosumption measured in Cable 6. The load in fuse i5

1The state of one fuse does not impact the state of another fuse
2Last fuse(s) before (in terms of power flow) the circle that get(s).
3First fuse(s) after the circle that get(s) the power.
4If the configuration is valid.



should correspond to the prosumption measured in Cables
3, 4, and 5. In our example, for the circle composed of
{i1, i2, i3, i4}, there are 22 = 4 possibilities since only fuses
i1 and i4 are uncertain.: {(C,C); (C,O); (O,C); (O,O)}.

Using rules defined in the previous sections, we remove
all invalid configurations. We experimentally observe
that when we remove an invalid configuration, we
always replace it by the configuration with the maximal
number of closed fuses. Therefore, we add the removed
configuration’s confidence level to the one with the most
closed fuses.

c) Merging each possibilities for each circle: For each
circle, there is a set of valid possibilities with their
confidence level. The set of all valid configurations for
the grid corresponds to the Cartesian products of these
configurations. In our example, we compute the Cartesian
product of the possible configurations of the first circle
({(C,C); (C,O); (O,C)}) with the possible configurations
of the second circle ({O, C}). The confidence level of a
possible configuration for the entire grid corresponds to
the intersection (and) of each circle’s confidence level. As
these confidence levels are independent and disjoint, it is
computed by multiplying them.

D. Approximating loads
For each of the valid configuration retrieved from the

previous step, we approximate the load. We apply the tech-
nique described in [14]. This gives us, for each possibility,
the load of the fuse to which we attach the confidence of
the configuration. Finally, for the cable load and for each
configuration, we compute the fuses’ maximal load, and
we attached the confidence level of the configuration. For
identical loads (cable or fuse), we merge the result, and we
add the confidence level of all the different configurations.

V. Experimental Setup
A. Research Questions

Our work starts from the premise that uncertainty can
significantly affect the computed grid properties. As such,
our first research question concerns the quantitative eval-
uation of this impact, particularly cable load estimation.
That is, we ask how different could be the estimated load
of a given cable in two alternative grid configurations
(resulting from the uncertainty of some fuses). We ask:
(RQ1) how much do estimations of cable loads vary in
different grid configurations?

To answer this question, we consider a real-world grid
topology from the Luxembourgish power grid, provided by
our industrial partner. Starting from the assumption that
all fuses are uncertain, we estimate each cable’s load under
each topology’s valid configuration. Then we measure,
for each cable, the median and standard deviation of its
estimated load in all configurations. A higher deviation
demonstrates a more significant impact of uncertainty on
the resulting cable loads. Given that energy production
and consumption determine cable load (and, thus, may

affect our conclusion), we repeat this process 10,000 times,
using each time different measured consumption data.

Having shown that uncertainty can indeed lead to vari-
ations in estimated cable load, we turn our attention
towards the factors which may poison (introduce unde-
sired noise in) these computations. In particular, we want
to assess whether invalid configurations can significantly
impact the results when not filtered out. Thus, we ask:
(RQ2) Do invalid configuration significantly alter the cable
load estimations? To address this question, we compute
the standard deviation of our real-world topology’s cable
load in two cases: considering valid configuration only
and considering all configurations (including invalid ones).
Different standard deviations would indicate that invalid
configurations alter cable load differently than valid ones.

An additional motivation to removing invalid configu-
rations is to reduce computation time (by reducing the
number of configurations for which one estimates cable
load). Our third and last research question evaluates this
benefit. We ask: (RQ3) What is the performance gained
by filtering out invalid grid configurations? We evaluate
this reduction by first measuring the proportion of invalid
configurations, and then quantitatively (by measuring the
actual computation time).

B. Implementation and Replication Package
We implemented our approach in a prototype tool

named SimSG. It is composed of a web user interface (in
JavaScript) and a backend (in Java). Both are publicly
available on Bitbucket5. To estimate cable loads, we reuse
the approach and prototype of [14]. We also provide
the implementation of our experiments in a separate
replication package.6 Regarding the performance evalu-
ation, we use the state-of-the-art framework for micro-
benchmarking: JMH7. We executed all our experiments
on a MacBook Pro 2016 with an Intel Core i7-6700HQ 2.6
GHz processor and 16 GB of RAM.

VI. Results
A. RQ1: Impact of uncertainty on load estimation

Figure 2 shows, for each cable, the standard deviation
(in amps) of the estimated cable load across valid grid con-
figurations, observed under different consumption values.
We notice that the remaining cables 1, 3, 11, 12, 13, 14,
and 15 exhibit a standard deviation of zero, regardless of
the consumption values. This is because these cables are
part of the mandatory power flow, and thus their load is
not impacted by the grid configuration.

On the contrary, cables 2 and 4 to 10 exhibit standard
deviations greater than zero. Knowing that a cable load
typically ranges from 0 to 200 amps, this means that their

5https://bitbucket.org/sntcreos/simsg-website,
https://bitbucket.org/sntcreos/simsg-java

6https://bitbucket.org/sntcreos/bench-simsg-java
7https://openjdk.java.net/projects/code-tools/jmh/
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estimated load varies across the different grid configura-
tions. Cables 6 and 7 show the highest deviations. These
cables belong to the same circle, and they are not a dead-
end of the topology. Thus, it appears that the closer to the
transformation a circle a cable is, the larger the standard
deviation of his load will be. Indeed, a cable in a circle may
contain the load to feed all customers of the circle plus all
customers after (in the power flow), or just the customers’
load connected to this cable. A detailed look at our results
reveals that, between two configurations, the load of cables
2, 4, 8, and 9 can up to double, whereas, for cables 6 and 7,
the load can be multiplied by a maximum factor of 4. Over-
all, this shows that uncertainty in the grid configuration
can lead to drastic changes in the estimated cable loads.

B. RQ2: Load estimations within invalid configurations
Figure 3 shows the standard deviation in cable load

when all or only valid configurations are considered. As
before, a distinction has to be made between cables that
are part of the mandatory power flow and those that are
not. Interestingly, we observe that invalid configurations

introduce variance in the former category’s estimated
load, while there are none when only valid configurations
are considered. This is because invalid configurations do
not comply with the property that those cables (belonging
to the main power flow) receive any power flowing through
the grid. As for the other cables, a Mann-Whitney U test
reveals that the differences in standard deviations are
statistically significant, with a p-value smaller than 104.
This means that invalid configurations significantly affect
the variation of the cable load and should be disregarded.

C. RQ3: Performance
Figure 4 shows the performance gain achieved by filter-

ing out invalid configurations. More precisely, Figure 4a
shows the ratio of valid configurations, considering that
different numbers of fuses are uncertain (configurable)
while the other fuses have a known status (open or close).
We observe that this ratio diminishes as the number
of uncertain fuses increases. Thus, a higher uncertainty
entails a higher amount of wasted computation resources
(since invalid configurations are relatively more common
than valid ones). Combined with our RQ2 results, higher
uncertainty also induces a higher impact of invalid config-
urations on the cable load estimation results.

We show the actual performance impact in Figure 4b.
Therein, “naive” refers to cable load estimation when
considering all grid configurations (including invalid ones),
whereas “with rules” refers to the estimation made on valid
configurations only added to the time required to execute
our validity rules. The overhead of executing our rules is
offset as soon as three fuses on the grid are uncertain. More
generally, the performance gain increases exponentially
with the number of uncertain fuses, which is also explained
by the decreasing ratio of valid configurations. When all
fuses are uncertain, filtering out the valid configurations
reduces the total computation time by three orders of
magnitude (that is, more than 1,000).

D. Threats to Validity
The main threat to the validity of our conclusions comes

from the selection of our case study. Although taken from
the real world, the results presented are limited to this
particular topology. To improve confidence in the gener-
ality of our conclusions, we replicated our experiments
on two other real-world grid topologies (provided by our
partner) and 100 randomly generated topologies. Each
of these generated topologies comprises one substation
and ten cabinets (this ratio represents the power grid in
Luxembourg). Between the two cabinets, we randomly put
one or two cables.

It turned out that these new experiments led to the same
conclusions presented above. That is: (1) uncertainty can
profoundly affect the results of computing cable load es-
timations; (2) invalid configurations introduce significant
noise in those computations; (3) discarding those invalid
configurations yields a substantial performance gain.
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VII. Conclusion and future work

In this paper, we presented an approach to efficiently
and validly propagate fuse states’ uncertainty through the
load approximation. To perform that, we first defined a
set of business rules, all the derived version of a more
general one. These rules serve to validate or invalidate
the different possible grid configurations. In addition, we
define a process to propagate the confidence level from fuse
states to approximated load (cable or fuses). We validated
the rules and evaluated the process using a topology from
the power grid in Luxembourg. We show that our approach
outperforms the naive version due to the ratio of valid
configurations over the total number of configurations.

In this work, we focus on isolated transformers. That
is a simplification of what is happening in real topologies.
As future work, we will need to add new rules to consider
cables that (indirectly) connect two transformers. Know-
ing that, in the Luxembourgish power grid, the operator
avoids connecting two transformers as it makes the load
computation (or approximation) more complex. And it
could reduce the quality of his knowledge of the effective
situation. Moreover, we did this work in close relation with
the grid operator. We let for next steps the evaluation
of applicability over grid networks by using, for example,
the IEEE use case. Finally, in this study, we hypothesise
that fuse states’ confidence is given, and it is computed as
independent events. Future work should focus on how to
estimate the fuse states’ confidence level.
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