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Abstract—Reliability and voltage quality in distribution net-
works have been achieved via a combination of transformer
power rating satisfaction and voltage management asset control.
To maintain reliable operation under this paradigm, however,
future grids with deep DER penetrations would require costly
equipment upgrades. These upgrades can be mitigated via
judicious coordination of DER operation. Earlier work has
assumed a hierarchical control architecture in which a global
controller (GC) uses detailed power injection and DER data
and knowledge of DER owners’ objectives to determine setpoints
that local controllers should follow in order to achieve reliable
and cost effective grid operation. Having such detailed data
and assuming knowledge of DER owners’ objectives, however,
are often not desirable or possible. In an earlier work, a 2-
layer DER coordination architecture was shown to achieve close
to optimal performance despite infrequent (e.g., once per day)
communication to a global controller. Motivated by this work,
this paper proposes a day-ahead coordination scheme that uses
forecasted power profile ranges to generate day-ahead dynamic
power rating bounds at each transformer. Novel features of this
scheme include: (i) the GC knows only past node power injection
data and does not impose or know DER owner objectives,
(ii) we use bounds that ensure reliable operation to guide the
local controllers rather than setpoint tracking, and (iii) we
consider electric vehicle (EV) charging in addition to storage.
Simulations using the IEEE 123-bus network show that with
random placements of 50% solar, 50% EVs and only 10% storage
penetrations, the uncoordinated approach incurs rating violations
at nearly all 86 transformers and results in 10 times higher
voltage deviation, while our approach incurs only 12 rating
violations and maintains almost the same voltage deviations as
before the addition of solar and EVs.

Index Terms—Distributed energy resources, Distribution sys-
tem operator, Battery Storage, Electric Vehicles

I. INTRODUCTION

Maintaining reliable and high quality electricity supply to
consumers on a distribution grid is traditionally achieved
via satisfaction of transformer power ratings and the use of
voltage management assets. The introduction of distributed
energy resources (DERs), such as rooftop photovoltaics (PV),
energy storage, and flexible loads such as electric vehicles
(EVs), however, disrupts this paradigm. Distributed PV gen-
erates excess power during peak daylight hours causing back-
feeding, which increases voltage levels. Many existing assets
are unidirectional, thus, not designed to work under back-
feeding and can further exacerbate the voltage rise rather than
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help regulate it [1], [2]. Even bidirectional voltage regulators
suffer from high solar variability causing rapid switching,
which reduces their life expectancy. Moreover, both residential
and commercial EV charging can cause significant power
spikes [3], resulting in excessive transformer aging [4], [5].

Addressing the above challenges under the current oper-
ation paradigm will lead to costly asset upgrades. In [8],
the breakdown of costs when installing new EV charging
infrastructure shows that upgrading grid assets can be very
costly. A report from the CPAU [9] specifically mentions
both voltage fluctuations from distributed PV and transformer
overloading due to EV charging as concerns that will require
costly infrastructure upgrades.

The adverse effects of high DER penetration can be miti-
gated by judicious coordination of storage and flexible loads
in the distribution network. Recent work on coordination of
DERs typically involves a hierarchical control architecture
with data exchange occurring between a global controller
(GC) and local controllers (LCs) at the DERs, e.g., see [10]–
[14]. The work in [10], [12] assumes frequent and low
delay communication between the global and local controllers,
which may not be practical using smart meters and consumer
broadband networks. The work in [13], [14], however, has
shown that such frequent communication may not be needed,
demonstrating close to optimal performance even with once
per day communication between the GC and LCs due to the
ability of each LC to accurately forecast its own demand and
act on it in real time. Most recent work on DER coordination
assumes that the GC knows past power injection data, storage
SOC, and charging rates, as well as the objectives of all
LCs in the system, and uses this knowledge to determine
optimal power injection setpoints for each local controller
to follow to achieve close to optimal power injections. This
includes data-driven approaches such as [15] in which the LCs
learn to mimic an offline centralized controller, and [16] in
which a centralized stochastic OPF dictates the operation of
its resources using forecast error distributions. Such detailed
knowledge of DER data and LC objectives, however, is not
desirable or even possible as DER owners may wish to
keep their data and objectives private. Moreover, most of the
aforementioned recent work on DER coordination does not
consider EV charging.

In this paper, we propose a day-ahead DER coordination
scheme that significantly reduces the need for data exchange
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between the control layers and does not require any knowledge
of DER owners’ objectives or detailed DER data, e.g., SOC of
storage or EV charging rate. Each day, the GC uses past power
injection data from smart meters to compute target upper and
lower power injections for the next day instead of setpoints as
in previous work. It, then minimizes a weighted sum of the
squared bus voltage deviations and distance from the power
injection targets subject to power flow constraints to determine
the upper and lower bounds, which are sent to the LCs. Upon
receiving the bounds, each LC minimizes a combination of its
own objective and deviation from the bounds subject to the
DER constraints. We explore only real power control in this
paper because we assume reactive power control is handled
automatically by the inverter according to IEEE std. 1547 [17]
as is done in practice. Our scheme considers both flexible loads
in the form of electric vehicles (EVs) in addition to storage.

Through simulation with real residential data, we compare
the results using our coordination scheme to the setpoint track-
ing scheme in [14] and two benchmarks: (i) DERs respond
intelligently to time of use (TOU) prices without knowledge
of the bounds, and (ii) DERs respond to both prices and
the static transformer power rating bounds. We demonstrate
that our dynamic bounds enable the coordination of DERs
to promote distribution grid reliability, reducing the need for
asset upgrades over the benchmarks with similar voltage and
transformer rating violations to the tracking scheme in [14],
which require much more DER information and knowledge of
DER owners’ objectives.

II. MODELS AND ASSUMPTIONS

We consider a distribution grid with randomly distributed
solar generation and EVs. The solar and storage penetrations
are defined as percentages of the total network demand,
and solar is randomly distributed as in [14]. The general
architecture we propose is shown in Figure 1.

Fig. 1. Illustration of the architecture with the global controller that computes
the bounds, local controllers, residential DERs, and larger commercial DERs
with fast chargers.

EV charging model: We use Gaussian mixture models with
parameters determined from [18] to sample the percentage of
cars charging each day, the starting time, initial charge, and
final charge for each EV in the network. The total number
of EVs in the network is calculated from the number of
houses in the network times the EV penetration percent. We
set aside the 4 largest nodes in the network to have fast
charging stations with a total capacity of 120 chargers. EVs

with start times before 10 AM have a high probability of
charging at a fast charging station while cars starting at other
times are more likely to charge at home or a parking lot.
The probabilities are tuned so that approximately 15% of EVs
are fast charging each day. Fast chargers have a maximum
charging power of 40 kW while residential chargers can charge
up to 6 kW. We assume the charge rate can be set anywhere
from 0 to the maximum, and the amount of time available for
charging is 50% longer than the minimum required time in
order to provide some degree of controllability to the LCs for
scheduling EV charging.
AC power flow model: We use the SOCP relaxation of the
AC power flow for radial distribution networks [19] in the
same manner as the setpoint algorithm in [14].
Nomenclature: Table I introduces the nomenclature used
throughout this paper.

TABLE I
VARIABLES AND CONSTANTS.

Symbol Description
t, T, k, i, j,N time, timesteps in horizon, battery index, node

indices, nodes in network
Z, E, E set of controllable nodes, set of EVs, set of

network edges
s, x net complex power injection, real part of s which

is the upper or lower bound
w,W, y,Wtol node voltage squared, voltage squared semidefi-

nite matrix, line impedance, squared voltage limit
ptarget, pbase, sforecast target real power injection, baseline real power

injection, baseline complex power injection
λv , λd, Ib cost of voltage deviation, cost of baseline devia-

tion, indicator of upper or lower bound
c, d,Q, p battery charge power, discharge power, available

capacity, local power forecast
λe, λb, γl, γc, γd energy cost, battery operation cost, battery leak-

age, charge, and discharge efficiency

III. COORDINATION SCHEME

The coordination scheme consists of a day-ahead scheduling
phase run by the GC, for example the grid operator, to
determine power injection upper and lower bounds, and an
operating phase run entirely by the LCs. Each LC optimizes
its objective in real time with a high penalty for violating the
power injection bounds sent by the grid operator.

A. Day-ahead power bounds scheduler
First, we describe the day-ahead scheduling of the power

injection bounds run by the GC.
Determining upper and lower power targets: The sched-
uler runs each day to determine the power bounds for each
participating node in the network for the following day. The
scheduler first specifies an upper and lower target value for the
power injection at each participating node defined as ptarget.
There are several ways to determine these targets.
1. The targets are determined through a day-ahead market
for the DER operators to bid on the amount of flexibility
and capacity they would like to be given by the grid—higher
flexibility means a larger gap between the upper and lower
power targets and higher capacity means a larger upper target.
Low flexibility operation would reduce the uncertainty of the
grid operator, which would reduce the cost of balancing power
in the system. Additionally, there is a limit to the amount of



power each node under the same transformer can consume.
Nodes that would like to consume more power would have
to pay for a higher upper target. The auction will have time
varying prices that balance the amount of power across the
network so that each node could potentially find a time period
to consume more power than what would have been previously
supported by the network.
2. The targets are determined by adding the flexibility of the
DERs, e.g. storage charging capacity, to a baseline estimate.
3. The targets are determined using historical data to fore-
cast the day-ahead power consumption. This method can be
performed by the grid operator using AMI data, but it may
be exploitable by the DER aggregators who can deliberately
increase their uncertainty to be awarded with more flexibility.

A deeper exploration of methods for selecting the upper and
lower power injection targets is a topic for further investigation
since the goal of this paper is to determine if day-ahead upper
and lower bound scheduling can achieve similar performance
to setpoint approaches with significantly less information.
Toward this goal, we use the last method in which we
add/subtract one standard deviation of forecast error to the
forecast to obtain the upper/lower bounds for the experiments
in this paper. Finally, the upper and lower targets are compared
to the two-way static transformer power ratings, and the tighter
of the two are input to the bounds optimization. This ensures
that the nodes are not assigned bounds that are beyond the
ratings of their transformer.
Network power bounds optimization: To determine the up-
per and lower bounds on power injection for each participating
node in the network, the scheduler solves two optimization
problems. The objective functions for these problems combine
terms to determine the upper or lower power injection bounds
based on the targets and the sum of the squared voltage
deviations over all buses proposed in [14] to penalize bus
voltage magnitudes that are out of the desired range.

More specifically, the scheduler solves the following op-
timization problem once to determine the lower bounds and
again to determine the upper bound, each time solving for
x ∈ RN×T , which is the bound for all nodes over the time
horizon.

min
x,w

λv

N∑
i=0

T∑
t=0

([wit −Wtol+]+ + [Wtol− − wit]+)
2 (1a)

+

N∑
i=0

T∑
t=0

(xit − ptarget
it )2 (1b)

+ λd

N∑
i=0

T∑
t=0

[Ib(xit − pbase
it )]+ (1c)

s. t. sit = sforecast
it ∀i /∈ Z (1d)

xit = <(sit) (1e)

sit =
∑

j:(i,j)∈E

(wijt − wiit)y
∗
ij (1f)

W{i, j}t � 0. (1g)

The term (1a) in the objective function is the voltage penalty
and has a steep weight λv . It replaces the more commonly used
hard voltage constraints in order to avoid excessive tightening
of the bounds and solution infeasibility, see [14]. The term (1b)
aims to find a feasible set of power injection points in the
network that is close to the nodes targets without incurring
excessive voltage penalty. The term (1c) provides a penalty
to discourage sensitive nodes in the network from having
bounds that do not provide a minimum capacity given by
pbase . The (1d) constraint assumes that the non participating
nodes (nodes not in set Z) are assigned their forecasted power
consumption. The variable Ib is equal to 1 for the upper bound
and −1 for the lower bound and determines the direction of
the bound.

Equations (1f) and (1g) are the convex relaxation for
the power flow equations, where W represents the rank 1
semidefinite matrix of voltages (see [19] and [14] for more
details). Note that the forecasts themselves do not appear in
the scheduler equation directly, but are part of the target power
injections ptarget calculated as previously described. DER
constraints are deliberately not included in the optimization
because we wish to find power injection bounds with respect to
voltages regardless of resource capabilities, which are handled
by the local controllers.

This method of calculating bounds compares to our previous
work in the following ways. The method of calculating bounds
in [13] and [14] was for a single node at a time and assumed
all other nodes are following their optimal trajectory. These
bounds supplemented the setpoint tracking to provide flexibil-
ity; however, we found that they are often loose. Our scheduler
considers a scenario in which we assume the maximum or
minimum power injections for all nodes occur simultaneously
when determining the targets. Although the use of these targets
results in conservative bounds, we find that they are not so
conservative as to adversely affect the local DER objectives
for this case as shown in Section IV.

B. Local controllers
During the operating phase, each LC operates in a rolling

horizon fashion. The objective is to minimize local costs
while remaining within the bounds provided by the day-ahead
scheduler. The output is the storage charging profile to be
executed by the storage unit, if any, and the charging profile
of any EVs under the LC’s control. The formulation is as
follows:

min
c,d,Q

T∑
t=0

λe
[
pt +

K∑
k=0

(c
(k)
t − d(k)

t )
]
+

(2a)

+ λv

T∑
t=0

([pt − x+]+ + [x− − pt]+)2 (2b)

+ λb

T∑
t=0

K∑
k=0

(c
(k)
t + d

(k)
t ) (2c)

s. t. 0 ≤ c ≤ cmax (2d)
0 ≤ d ≤ dmax (2e)



Qt = γlQt−1 + γcct − γddt (2f)
Qmin ≤ Q ≤ Qmax (2g)

Q
(k)
t=end = Q

(k)
final ∀k ∈ E . (2h)

The term (2a) in the objective function is the cost of energy
without any net metering incentives (we assume that there
is no profit for selling energy back to the grid). This term,
however, can be customized based on the DER objectives.
The term (2b) is a quadratic penalty for the power consumed
above or below the bounds, and its minimization enables the
LCs to respect the bounds sent from the GC. The term (2c)
discourages excessive wear on the battery with cost λb. Since
the other terms in the objective function consider only the
difference between c and d, charging and discharging cannot
simultaneously occur as such simultaneity would increase the
cost. The battery variables are indexed by k for each EV or
stationary battery under an LC. The variable pt represents the
local power forecast at time t. The forecast can be improved by
the addition of forecast scenarios as in [13], but we decided not
to include scenarios here for simplicity of notation. The battery
operating constraints (2d) (2e) (2g) are for the capacity limits
defined as cmax, dmax, Qmax, respectively, and constraint (2f)
defines the battery dynamics. Equation (2h) requires the charge
capacity of each EV (set of all EVs is E) to reach the final
value by the end of the charging period to ensure quality
of service. The battery operation constraints are vectors with
elements representing EVs and stationary battery under an LC.
We do not consider vehicle to grid interaction, hence dmax = 0
for all EV batteries. We use two battery charging parameters
c and d to enable more accurate modeling of efficiency. The
objective is minimized when either c or d is 0 since only
the difference between them is considered while their sum is
penalized in (2c).

C. Benchmarks
We compare the performance of our scheme to three

different benchmarks. The first is with LCs operating their
DERs independently without any bounds signals. The second
is with the LCs operating with static bounds determined
by transformer power capacity ratings. The only difference
between these benchmarks and our method is the value of
the bounds in the local objective. The final benchmark is the
global setpoint tracking scheme specified in [14].

IV. SIMULATION RESULTS

We perform simulations using the IEEE 123-bus net-
work [20] including unidirectional voltage regulators and
capacitor banks over two summer months of power injection
data provided by Pecan Street using the MATPOWER [21]
power flow simulator. The solar data is from NREL [22], and
the forecaster is the ARIMA model used in [14]. The EVs are
sampled from probability densities as explained in Section II.
We use hourly time resolution in both the GC and LCs to
match existing day-ahead markets, and the total optimization
horizon is 2 days (48 points). DER owners in this network
pay a time of use energy price with a peak price of 46.3 cents

TABLE II
VOLTAGE DEVIATION AND TRANSFORMER CAPACITY VIOLATION METRICS

WITH THE ADDITION OF DERS WITH NO STORAGE.
Scenario Voltage Deviations Transformer Violations
No DERs 0 0
Solar = 50% 3.649 0
EV = 50% 0 4.48 E6
Solar and EV = 50% 1.608 3.385 E6

per KWh from 4pm to 9pm and to 20.5 cents per KWh for
the rest of the day.

The metrics we choose to evaluate the results are (i) arbi-
trage profit, (ii) the voltage deviation metric defined in [14],
and (iii) a transformer capacity deviation metric. Arbitrage
profit is the money saved by the batteries buying electricity
during the low price period and offsetting demand during the
peak price period. The voltage deviation metric, which is the
sum of squared voltage deviation above the nominal range,
is in the objective funcion of the GC while the transformer
capacity deviation metric, which is the sum of squared power
deviation beyond the rating, is in the objective function of
the LC. The computation time for a single LC on a personal
computer is approximately 0.15 seconds, which demonstrates
its feasibility for use in real time control. Next, we evaluate
the performance metrics through simulation of different DER
scenarios.
Network without storage: We begin by examining the voltage
deviation and transformer capacity deviation caused by the
addition of DERs with no storage. Table II shows that before
the addition of any DERs, the network operates smoothly
without voltage or transformer violations, but adding solar
increases voltage deviations due to back-feeding during peak
sunlight hours. Adding EV charging to the network also
increases transformer capacity deviations especially due to the
high power consumption requirements fast charging. When
both types of DERs are included, they can help balance each
other somewhat; however, the performance can be greatly
improved through the coordination of distributed storage as
will be shown below.
Aggregate performance metric vs. Quantity of storage:
Here we compare the performance of the setpoint tracking
scheme and the two benchmarks to our proposed method by
simulating the control for each case and evaluating the voltage
deviation and transformer capacity deviation metrics at varying
penetrations of storage and 50% penetration of solar and EVs.
The storage is co-located with the solar generation and the
capacity is proportional to the power demanded by the node
connected to it. The penetration is defined as the percentage
of the total network daily energy that can be stored.

Figure 2 plots the voltage deviation metric. Note that the
voltage deviations are approximately the same for the no
bounds and the static bounds cases except when storage
capacity is large. They are significantly lower, however, for our
proposed dynamic bounds. The metric for the two benchmarks
becomes worse with high storage as the storage itself begins to
cause voltage violations. We can see that the dynamic bounds
can use storage better, enabling significant performance in-
crease with less storage than with the static bounds. This



Fig. 2. Sum voltage deviations versus storage penetration on a log scale.
Dynamic bounds achieves similar performance to setpoint tracking and signif-
icant improvement over the 2 benchmarks. The two benchmarks’ performance
becomes worse with large storage capacity as the storage itself begins to cause
voltage violations.

demonstrates that the dynamic bounds act as implicit bounds
on the bus voltage magnitudes and that transformer capacity
ratings alone is not sufficient to keep the voltages in the grid
within acceptable bounds. The performance of the dynamic
bounds matches that of the setpoint tracking scheme.

Figure 3 plots the transformer deviation metric. It shows
that adding transformer capacity bounds to the LCs can offer
a significant improvement over the no bounds case. Note that
the plots for all cases except for the no bounds benchmark
coincide because the IEEE 123-bus network is a residential
network in which all transformers are secondary transformers,
thus, the power flowing through them only serves their loads
and not other nodes. The majority of deviations are due to the
fast charging stations and lack of sufficient storage capacity
to protect from the highest power peaks, and not a limitation
of the LC algorithm.

Figure 4 plots the arbitrage profit for the storage units that
perform cost minimization. Note that the two local bounds
test cases have nearly the same arbitrage profit as the no
bounds case, which shows that the use of bounds in the
LC does not hinder the storage units ability to perform
arbitrage. Although the dynamic bounds are conservative due
to the assumption that all nodes experience their peak power
injection simultaneously, they do not adversely affect the local
objectives. The setpoint tracking performance is slightly worse
because the setpoint is calculated using global forecasts, which
can be inaccurate, whereas the other cases use accurate local
measurements to calculate their objective within bounds [13].
Through these simulations, we can see that the dynamic
bounds scheme is able to match the performance of the best
case for all three metrics, making it a better scheme than any
single method overall.
Performance metrics per bus: Here we take a look at the
performance metrics for each bus individually. Figure 5 plots
the voltage deviation metric per bus with 10% penetration of
storage. The voltage deviation metric per bus is approximately
the same for the no bounds and static bounds cases, but
are significantly lower for our proposed dynamic bounds and
the setpoint tracking scheme. As expected, the unidirectional
voltage regulator located at bus ID 72 causes more severe
voltage deviations at neighboring buses due to the voltage

Fig. 3. Transformer capacity deviations vs. storage penetration. The inclusion
of bounds in the LC greatly improves performance, although it is the same
for either static bounds, dynamic bounds, or setpoint tracking. The violations
are due to the fast charging stations and lack of sufficient storage capacity for
the highest power peaks, thus, transformer upgrades are unavoidable.

Fig. 4. Arbitrage profit vs. storage penetration. The dynamic bounds has
similar arbitrage profit as both benchmarks, demonstrating that the bounds do
not hinder the LC objectives. The setpoint tracking scheme achieves lower
arbitrage profit because the setpoint is calculated based on delayed global
forecasts and can be inaccurate, while in the other cases, the LC uses local
data to compute its power injection trajectory.

Fig. 5. Voltage deviations at each bus for the different cases. They are
approximately equal for the no bounds and static bounds cases, but are
significantly lower for our proposed dynamic bounds and setpoint tracking.
The first 60 buses contain no voltage deviations as they are close to the
substation.

boost it provides during solar back-feeding.
Figure 6 shows the maximum transformer capacity violation

(in kW) at each secondary transformer in the network. The
violations are significantly worse when there is no control over
the maximum power allowed to flow through the transformer
as demonstrated by the no bounds case; however, the dynamic
bounds, static bounds, and setpoint tracking cases greatly
reduce the maximum capacity violation. We can see that using
bounds can avoid upgrading many transformers that would



Fig. 6. Transformer capacity violations at each bus for the different cases.
There are large capacity violations across the network with no power bounds,
but dramatically less violations with bounds or setpoints. The four peaks that
are cut off correspond to the fast charging stations, whose capacity violations
exceed the transformer capacity by over 150 kW.

otherwise need to be replaced due to the addition of DERs.
Only 12 transformers incur power violations greater than a
single EV charger (4 kW) with bounds, while nearly all 86
transformers have large violations without any bounds. The
four highest peaks are the fast charging stations.

V. CONCLUSION

We have presented a DER coordination method that involves
a day-ahead global scheduling of power injection bounds to
reduce voltage deviations and transformer capacity violations
in a distribution grid, with only smart meter data and no
required knowledge of the DER owners’ data or objectives.
The local controllers operate their DERs autonomously with
a penalty for deviating from the globaly scheduled bounds.
We have demonstrated via simulations on the IEEE 123
bus network that the addition of distributed solar can cause
voltage deviations due to back-feeding, and the addition of
EV charging can add transformer capacity violations, and the
coordination of storage and EV charging through the use
of our dynamic bounds scheme can greatly mitigate these
violations while maintaining unimpeded performance of the
DERs’ objective of arbitrage profit. Our dynamic bounds
scheme matches the best performance of any of the benchmark
cases for the three metrics, making it a better scheme than any
single method presented overall.

The method we described allows for the addition of other
controllable devices such as thermostats, PVs, or generators,
and different objectives can be run for each LC without any
needed changes at the global level. It is possible to add other
costs to the GC objective for distribution network reliability
such as costs associated with violating line ampacities. Finally,
potentially over conservative bounds can be loosened by per-
forming a Monte Carlo simulation over a distribution of target
forecasts instead of using only the maximum (or minimum)
power injections over all the nodes.
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