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Personalized Demand Response
via Shape-Constrained Online Learning

Ana M. Ospina, Andrea Simonetto, and Emiliano Dall’Anese

Abstract—This paper formalizes a demand response task
as an optimization problem featuring a known time-varying
engineering cost and an unknown (dis)comfort function. Based
on this model, this paper develops a feedback-based projected
gradient method to solve the demand response problem in an
online fashion, where: i) feedback from the user is leveraged to
learn the (dis)comfort function concurrently with the execution
of the algorithm; and, ii) measurements of electrical quantities
are used to estimate the gradient of the known engineering cost.
To learn the unknown function, a shape-constrained Gaussian
Process is leveraged; this approach allows one to obtain an
estimated function that is strongly convex and smooth. The
performance of the online algorithm is analyzed by using metrics
such as the tracking error and the dynamic regret. A numerical
example is illustrated to corroborate the technical findings.

I. INTRODUCTION

Net-load and demand response (DR) strategies hold promise
to increase the flexibility and efficiency of power systems by
allowing controllable devices to provided services at various
time-scales – from real-time frequency and voltage support
to a slower time-scale peak-shifting service [1]–[4]. Typical
DR formulations involve a composite cost function to strike
a balance between system-level operational objectives and
(dis)satisfaction of the device’s owner [5], [6]; e.g., deviations
from a preferred indoor temperature or charging profile of the
electric vehicle. This aspect renders the actual implementation
of DR programs challenging: users preferences, satisfaction
and responsiveness to pricing [7] are not easy to model;
synthetic cost functions adopted in existing demand response
and net-load management frameworks favor computational
tractability, but may not capture the users goals truthfully.

In this context, this paper formalizes a DR task as an
optimization problem featuring a known time-varying en-
gineering cost and an unknown (dis)comfort function. The
engineering cost can be related to operational efficiency and
may capture objectives such as aggregate setpoint tracking
when devices aggregate in a virtual power-plant fashion; it
is time-varying [8] in a sense that it captures time-varying
objectives (e.g., tracking of a power setpoint that evolves over
time), dynamic pricing, or real time measurements. In lieu of
synthetic mathematical models for the user’s functions (based
on e.g., statistics or averaged models), this paper leverages
Gaussian Processes (GPs) [9], [10] to learn the function
from data (e.g., users’ feedback). Approximating a function
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with a GP often leads to a nonconvex smooth cost; to favor
computational tractability, and since user’s preferences are
often well approximated by convex functions (see, e.g., [11]
and references therein), we leverage a shape-constrained GP
approach where the discomfort function is approximated with
a function that is strongly convex, differentiable, and with a
Lipschitz gradient [12]. The paper then develops a feedback-
based projected gradient method to solve the demand response
problem in an online fashion. The proposed strategy allows to
overcome the following challenges:
C1) Discomfort function uncertainty: The functions that model
the users’ discomfort may not be known and models may be
inaccurate. Feedback from the user is leveraged to learn the
(dis)comfort function concurrently with the execution of the
algorithm using a shape-constrained GP.
C2) Pervasive metering: To solve the optimization problem,
one may require the measurements of the powers of non-
controllable loads at all locations in real time, and this is a
problematic task in power systems. In the proposed strategy,
measurements of electrical quantities are used to estimate the
gradient of the known engineering cost, and information about
the non-controllable loads is not necessary.

Examples of related works on real-time DR include the
online convex optimization strategy applied to DR problems
in [3]; however, the function associated with heating, venti-
lation, and air-conditioning (HVAC) systems of commercial
buildings is known, and no measurements are utilized in the
algorithm. An online learning approach for computing users’
optimal scheduling policy were investigated in [4], for a given
householder’s cost function. Also, an online learning approach
was considered in [13], based on a multi-armed restless bandit
problem with controlled bandits. Price responsiveness of the
end users that participate in DR programs was studied in, e.g.,
[7] by using a dynamical model that captures the temporal
behavior of the users. Community-level energy management
systems that weakly control consumers were investigated
in [14]. For completeness, we point out that users’ perception
was incorporated in the decision making process with GPs in
other application domains as discussed in, e.g., [15], [16].

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Modeling

We consider a power network with M controllable loads
or DERs – hereafter refereed to as “devices” for brevity1.

1Notation: Upper-case (lower-case) boldface letters will be used for ma-
trices (column vectors), and (·)> denotes transposition. For a given column
vector x ∈ Rn, ‖x‖ :=

√
x>x. A vector of zeros is represented by 0 and a

vector of ones by 1, with the corresponding dimensions. O refers to the big
O notation; that is, given two positive sequences {ak}∞k=0 and {bk}∞k=0, we
say that ak = O(bk) is lim supk→∞(ak/bk) <∞.
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Time is discretized as t ∈ T := {k∆, k ∈ N}, where ∆
is a given time interval (e.g., one second or a few seconds [3],
[17]). Commands are dispatched to the DERs at each time t,
and the commanded setpoint for the mth device is denoted
as xm,t ∈ Xm,t, where Xm,t ⊆ R is a convex and compact
set modeling hardware or operational constraints (e.g., real
power commands or temperature setpoints). If a device (e.g.,
a load) can be controlled at the slower rate (e.g., at the minute-
level), the respective setpoint is obviously kept constant over
a number of time steps (i.e., Xm,t is a singleton set). To
simplify the notation, the setpoints at time t are aggregated in
the column vector xt = [x1,t, x2,t, . . . , xM,t]

> ∈ Xt ⊆ RM ,
where Xt is a convex and compact set and is defined as
Xt := X1,t ×X2,t × · · · × XM,t.

The setpoints xt are mapped to pertinent electrical states
yt ∈ RS through a mapping yt = M(xt,wt), where
M : RM ×RW 7→ RS models the power network effects and
wt ∈ RW is a (possibly high-dimensional) vector of powers
consumed by W non-controllable devices. In particular, in this
paper we focus on a model of the form:

yt = Axt + Bwt, (1)

where A ∈ RS×N and B ∈ RS×W are known (and possibly
time-varying) network matrices. Examples for how to build
these matrices will be provided shortly.

The objective is to formulate a demand-side management
problem [5], [6] that allows real-time scheduling of end-user
devices by minimizing a cost that accounts for both network
performance metrics and user satisfaction. Accordingly, let
Um : Xm 7→ R be a “discomfort function” for the the mth
user or device. For example, for a thermostatically controllable
load, this function may model the discomfort of the user for
deviations from a preferred setpoint; for an electric vehicle,
Um may model the dissatisfaction of the user for deviations
relative to a preferred charging profile2. Many exiting works
presume that the function Um is known and it is convex; as
explained shortly, here Um will be learned from data.

Consider the following time-varying problem [8]:

min
{yt∈RS ,xt∈Xt}Ti=1

M∑
m=1

Um(xm,t) + Ct(yt) (2a)

subject to: yt = Axt + Bwt (2b)

for t ∈ T , where Ct : RS 7→ R is a time-varying smooth and
convex function associated with the vector of states yt. Let
x∗t be an optimal of (2); the objective is then to identify an
optimal trajectory {x∗t , t ∈ T }. Before proceeding, a couple
of examples of applications are provided.

Example 1: Feeder-level problem. For a feeder, yt can
collect voltages at some selected nodes [17] and the net
powers measured at the point of connection of the feeder
with the rest of the grid. One may want to drive the state yt
towards a time-varying reference point yref,t using the function
Ct(xt) = β

2 ‖Axt + Bwt − yref,t‖2, with β > 0. In this case,

2The function Um is assumed to be time-invariant for simplicity; however,
the proposed approach can be naturally extended to cases where some of the
functions Um,t are time-varying functions to model a dynamic user behavior.

A can be constructed based on the Jacobian of the power flow
equations, linear approximations of the power flow equations,
or by estimating the sensitivities of the network. As shown
shortly, the proposed algorithmic framework does not need
knowledge of the matrix B.

Example 2: Neighborhood-level problem. For an aggrega-
tions of devices in a neighborhood or community, yt represents
the total active power at the point of interconnection of the rest
of the grid. In this case, A boils down to a row-vector with
all ones and xm,t represents the active power setpoints of the
devices. In the spirit of a “virtual power plant,” yref,t can be
a time-varying reference signal for the active power at the
point of interconnection (to provide, for example, primal or
secondary grid services). Section IV will illustrate this case.

However, solving problem (2) at each time step t might
be not viable because of the main challenges C1)-C2); more
specifically, one may not be able to collect measurements of
the non-controllable powers wt because of sensing limitations,
and because the function Um may be unknown or largely
different from synthetic models. In this paper, we propose
a feedback-based online algorithm where: i) measurements
of yt are utilized to estimate the gradient of the function
Ct (Axt + Bwt); and, ii) feedback from the users are utilized
to estimate the functions {Um}Mm=1 concurrently with the
execution of the online algorithm. In this paper, the function
Um is estimated using feedback information from the user via
GPs. Specifically, a shape-constrained GP approach [12] is
pursued to approximate the discomfort function with a strongly
convex and smooth function. Accordingly, let Ûm(xm,t) be the
estimate of Um(xm,t) available at time t. In lieu of (2), the
goal is then to identify solutions of the following optimization
problem in an online fashion:

x∗t = argmin
{xm,t∈Xm,t}Mi=1

M∑
m=1

Ûm(xm,t)+Ct (Axt + Bwt) . (3)

How to construct Ûm(xm,t) is explained next.

B. Shape-constrained Gaussian Processes

In this section, we introduce the main concepts underpinning
GPs [9] and shape-constrained GPs [12]. They both offer
a non-parametric model that is convenient for the learning
setting of this paper because of the simplicity of the online
updates and the ability to handle asynchronous and noisy data.
In this section, the subscripts m and t are removed under the
understanding that the technical arguments apply to each of
the discomfort functions for all times.

1) Gaussian Process in a nutshell: A GP is a stochastic
process U(x) and it is specified by its mean function µ(x) and
its covariance function k(x, x′); i.e., for any x, x′ ∈ X ⊆ R,
µ(x) = E[U(x)] and k(x, x′) = E[(U(x) − µ(x))(U(x′) −
µ(x′))] [9]. Let xp = [x1 ∈ X , . . . , xp ∈ X ]> be the set of p
sample points and let zi = U(xi) + εi, with εi

iid∼ N (0, σ2)
Gaussian noise, be the noisy measurements at the sample
points xi ∀ i = 1, . . . , p; and, define zp = [z1, . . . , zp]

>. Then,
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the posterior distribution of (U(x)|xp, zp) is a GP with mean
µp(x), covariance kp(x, x′), and variance σ2

p(x) given by:

µp(x) = kp(x)>(Kp + σ2Ip)
−1zp (4a)

kp(x, x
′) = k(x, x′)− kp(x)>(Kp + σ2Ip)

−1kp(x
′) (4b)

σ2
p(x) = kp(x, x) (4c)

where kp(x) = [k(x1, x), . . . , k(xp, x)]>, Kp is the positive
definite kernel matrix [k(x, x′)], and the subscipt p indicates
the number of data points in xp. Thus, an estimate of
the (unknown) function U(x) can be written as U(x) ∼
GP(µp(x), kp(x, x

′)). The covariance function specifies the
covariance cov(U(x), U(x′)) between pairs of random vari-
ables; using squared exponential (SE) kernel as an example,
it is defined as

k(x, x′) = σ2
f e
− 1

2l2
(x−x′)2 (5)

for the univariante input case, where the hyperparameters are
the variance σ2

f and the characteristic length-scale l.
2) The Derivative Processes of GP: It is convenient to

consider the SE covariance function because the resulting
process has derivatives of all orders (see, e.g., [18, Theorem
2.2.2]). Since differentiation is a linear operator, derivatives
of the GP remains a GP [9]. To obtain a strongly convex
function, we will use the second derivative process of the
GP. In particular, the corresponding mean and covariance
function (jointly with the original process and the second-order
derivative process) are [12]:

E
[
∂2U(x)

∂x2

]
=
∂2µ(x)

∂x2
= 0 (6a)

k22(x, x′) := cov
[
∂2U(x)

∂x2
,
∂2U(x′)

∂x′2

]
= σ2

fe
− 1

2l2
(x−x′)2×

1

l4

(
1

l4
(x− x′)4 − 1

l2
6(x− x′)2 + 3

)
(6b)

k02(x, x′) := cov
[
∂2U(x)

∂x2
, U(x′)

]
= σ2

fe
− 1

2l2
(x−x′)2

(
1

l4
(x− x′)2 − 1

l2

)
(6c)

3) Shape Constraints: Suppose that one acquires noisy
observations zp of the GP at p points xp (based on, e.g.,
the user’s feedback), but no observations over the derivative
process are available. However, we will impose derivative
constraints at q points d := [d1, . . . , dq]

> [12]; that is,
constraints on the shape of the function are imposed even at
points where there is not observation of the actual process.

Let U(x) = [U(x1), . . . , U(xp)]
> and U′′(d) =

[U ′′(d1), . . . , U ′′(dq)]
>; then, the joint distribution of the GP

and its second-order derivative is:[
U(x)
U′′(d)

]
∼ N

([
µ1p
0q

]
,

[
K(x,x) K02(x,d)
K20(d,x) K22(d,d)

])
,

where K(x,x) = Kp, K02(x,d) = [k02(x, d)], K20(d,x) =
K02(x,d)> and K22(d,d) = [k22(d, d′)].

In the following, we will impose constraints via indicator
functions. Assign to U(·) a GP prior, and consider obtaining an
estimated function that is LU -smooth and γU -strongly convex,

for a given LU > 0 and γU > 0. We adapt the results presented
in [12] for the marginal constrained prior distribution.

Following [12, Lemma 3.1], the joint conditional posterior
distribution of (U(x◦)|U′′(d),xp, zp), for a point x◦ of a new
set of p◦ points, given the current observations zp, is a GP with
mean, covariance, and standard deviation given by:

µ̄p◦(x
◦) = µ1p◦ +B3(x, x◦,d)B1(x,d)−1(zp − µ1p)

+ (A2(x◦,d)−B3(x, x◦,d)B1(x,d)−1A1(x,d))U′′(d),
(7a)

k̄p◦(x
◦, x◦′) = A(x, x◦,d), (7b)

σ̄p◦(x
◦) =

√
A(x, x◦,d), (7c)

and the posterior distribution of (U′′(d)|xp, zp) is given by:

(U′′(d)|xp, zp) ∝ N (µ(d),D(d,d))1{γU≤U ′′(di)≤LU , i=1,...,q}

where (U′′(d)|xp, zp) is a truncated normal distribution and,
µ(d) = K20(d,x)(σ2I + K(x,x))−1(zp − µ1p),

D(d,d) = K22(d,d)

−K20(d,x)(σ2I + K(x,x))−1K02(x,d),

A1(x,d) = K02(x,d)K22(d,d)−1,

A2(x◦,d) = K02(x◦,d)K22(d,d)−1,

B1(x,d) = σ2I + K(x,x)

−K02(x,d)K22(d,d)−1K20(d,x)

B2(x◦,d) = K(x◦, x◦)

−K02(x◦,d)K22(d,d)−1K20(d, x◦),

B3(x, x◦,d) = K(x◦,x)

−K02(x◦,d)K22(d,d)−1K20(d,x),

A(x, x◦,d)) = B2(x◦,d)

−B3(x, x◦,d)B1(x,d)−1B3(x, x◦,d)>

with µ and σ2 given parameters of the prior. The parameters l
and σ2

f of the GP can be estimated, for example, by using the
maximum likelihood estimator [9]. The locations of the virtual
derivative points are defined beforehand. By imposing the
smooth and strong convexity constraints on points d that are
dense enough, shape-constrained GPs ensure that the posterior
mean function µ̄p◦(x◦) is “practically” (i.e., indistinguishable
for all practical purposes) smooth and strongly convex [12].
The choice of shape-constrained GPs versus exact methods,
such as smooth strong convex regression [19] (which would
ensure shape properties exactly and everywhere) is motivated
by the fact that the latter is more computationally intensive
and its learning rate can be significantly slower.

III. ONLINE GP-BASED DEMAND RESPONSE

When the functions {Um}Mm=1 are known and the non-
controllable powers can be measured at each time instant t,
then the time-varying problem (3) can be solved in an online
fashion using the following online projected gradient method:

xt = projXt
{xt−1 − α (∇xU(xt−1) +∇xCt(xt−1))} (9)

where U(x) :=
∑M
m=1 Um(xm) for brevity, projX {y} :=

arg minx∈X ‖x − y‖2 is the projection operator, and α > 0
is the step size. To address the challenges C1)-C2), the online
algorithm (9) is modified as explained next.
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A. Online Algorithm

Recall that t ∈ T is the time index. We now introduce an ad-
ditional index pm(t) (one per device or user), used as a counter
for the number of data points zm,t := [zm,1, . . . , zm,pm(t)]

>

received from the mth user up to time t; we recall that
zm,pm(t) = Um(xm,t) + εm,t (t being the time when the
pmth user feedback is received). The counter pm(t) does not
generally coincide with t, since a user may provide feedback
sporadically or at a slower time scale (whereas the algorithm
is run an a fast time scale). Hereafter, we omit the dependence
of pm on t for notation simplicity.

With pm data points available (i.e., received from the mth
user), we define the estimate Ûm,pm(xm,t) of Um(xm,t) as:

Ûm,pm(xm,t) := µ̄m,pm(xm,t) (10)

where µ̄m,pm(xm,t) is given by (7a) based on pm data points
(which we remind that is “practically” smooth and strongly
convex). In other words, Ûm,pm(xm,t) is obtained via the mean
of the shape-constrained GP when feedback from the user is
received pm times. Further, at a given point xm,t, the derivative
of Ûm,pm(xm,t) is estimated via finite-difference as [20]:

vm,pm(xm,t) :=
Ûm,pm(xm,t + δ)− Ûm,pm(xm,t)

δ
(11)

with δ a pre-selected parameter. For future developments, let
v(xt) := [v1,p1(x1,t), ..., vM,pM (xM,t)]

>.
The evaluation of the gradient of C(xt) requires measure-

ments of the non-controllable devices wt at each time step t.
Similar to, e.g., [17], [21], measurements ŷt can be utilized
in the computation of the gradient of C(xt) instead of the
map yt = Axt + Bwt. For example, if the function Ct(xt)
is Ct(xt) = β

2 ‖Axt + Bwt − yref,t‖2, its gradient reads
∇Ct(xt) = βA>(Axt +Bwt−yref,t); on the other hand, an
estimate of the gradient using the measurement ŷt amounts
to st := βA>(ŷt − yref,t). Indeed, st can be interpreted as a
noisy version of ∇xC(xt) [8].

Overall, the proposed shape-constrained GP-based online
projected gradient descent (SGP-OPGD) method involves the
sequential execution of the following step:

xt = projXt
{xt−1 − α (v(xt−1) + st)} (12)

where we recall that v(xt) is an estimate of the gradient of
Û(xt), where Û(xt) :=

∑M
m=1 Ûm,pm(xm,t), st is a noisy

version of ∇xC(xt), t represents the time index, and pm is
the data counter for the user’s feedback per device.

The steps of the SGP-OPGD are detailed in Algorithm 1.
Notice that the update of xt decouples into M parallel steps
(one per device); this enables a distributed setting with a
so-called “gather-and-broadcast” architecture where measure-
ments of ŷt are collected at a central location, st is broadcasted
to the devices, and xm,t is computed locally at each device.
Further, the function Ûm,pm(xm,t) is computed locally.

B. Analysis

The convergence of the online algorithm is compared
against the optimal trajectory {x∗t }t∈T and the optimal value
function of (3). Presuming a synthetic function U(x), the

Algorithm 1: SGP-OPGD method

Initialize: x0, α = 2
γ+L ; prior on {Ûm}Mm=1 if available.

1 for t = 1, 2, . . . , T do
2 Collect measurement ŷt
3 Compute the estimate gradient st
4 for m = 1, 2, . . .M do
5 if Feedback is given:
6 pm → pm + 1
7 Collect zm,pm and add it to zm,t
8 Update Ûm,pm(xm,t) and compute vm,pm(xm,t)

9 else Keep Ûm,pm(xm,t−1) and vm,pm(xm,t−1)
10 Update setpoint as

xm,t = projXm
{xm,t−1−α(vm,pm(xm,t−1)+sm,t)}

11 end for
12 end for

difference between x∗t and a solution of (2) will be assessed
numerically in Section IV. Hereafter, we define ft(x) :=
Û(x) + Ct(x) for brevity.

We begin with the following standard assumptions.
AS1: The function ft is L-smooth on X ; i.e., ‖∇ft(x) −

∇ft(x′)‖ ≤ L‖x− x′‖ for all t ∈ T and x, x′ ∈ X .
AS2: The function ft is γ-strongly convex.
AS3: The inexact gradient ∇̃ft(x) = vp(x) + st is defined

as ∇̃ft(xt) := ∇ft(xt) + e1,t + e2,t, where e1,t is the
error in the gradient of {Ûm,pm}Mm=1 and e2,t is the
error in the estimated gradient st. The sequence {et :=
e1,t + e2,t ∈ RM , t ∈ T } is bounded; i.e., ‖et‖ <∞.

Regarding AS1, L is given by L = LU + LC , with LU
and LC the Lipshitz constants of the gradients of Û and Ct,
respectively; notice that the Lipshitz constant of the gradient
of each individual function Ûm,pm is set a priori as in (7). If Ct
is convex but not strongly convex, only the strong convexity
coefficient of Û plays a role in AS2 [cf. (7)].

The variation between any two consecutive optimal points
is defined as rt := ‖x∗t−1 − x∗t ‖. Now, define the path length
and the cumulative gradient error as [8], [22]

ωT :=

T∑
t=1

rt, ET =

T∑
t=1

‖et‖. (13)

These metrics will be utilized in the following results.

Proposition 1: Assume that α ∈ (0, 2/L). Under As-
sumptions AS1-AS3, the SGP-OPGD algorithm constructs a
sequence {xt}t∈T such that

‖xt − x∗t ‖ ≤ ρ‖xt−1 − x∗t−1‖+ ρrt + α‖et‖, (14)

where ρ := max{|1− αγ|, |1− αL|} < 1.

Corollary 1: Under assumption AS1-AS3, with α ∈
(0, 2/L), the cumulative tracking error of the SGP-OPGD
algorithm can be bounded as:

T∑
t=1

‖xt − x∗t ‖ ≤
1

1− ρ
[ρ‖x0 − x∗0‖+ ρωT + αET ] . (15)
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Proposition 1 establishes Q-linear convergence to a bounded
error of the SGP-OPDG algorithm [8]; that is, each step of
the algorithm is contractive up an error α‖et‖ + rt given by
the temporal variability of the problem and the errors in the
gradient computation. On the other hand, Corollary 1 asserts
that the tracking error of the algorithm is bounded if ET and
ωT grow as O(T ), and it goes to zero asymptotically if ET
and ωT grow sublinearly in T ; that is, if they grow as o(T ).

Finally, we provide a bound on the dynamic regret next.
Proposition 2: Suppose that Assumptions AS1-AS3 hold,

and let α ∈ (0, 2/L). Then, the dynamic regret of the SGP-
OPGD algorithm can be bounded as:

1

T

T∑
t=1

[ft(xt)− ft(x∗t )] = O
(
T−1ωT + T−1ET

)
. (16)

In par with Corollary 1, the dynamic regret is sublinear if
ωT and ET are both sublinear. If ωT and ET grow linearly,
then the dynamic regret behaves as O(1). Moreover, if the
gradient is obtained without error (i.e., et = 0), the dynamic
regret exhibits a behavior similar to [23].

The proofs follow steps similar to [23], [24]; Proposition 2
uses the fact that, from the continuity of the gradient and the
compactness of Xt, the norm of the gradient is bounded. The
proofs are not provided here due to the page limit.

IV. ILLUSTRATIVE RESULTS

We consider a neighborhood-level problem as in Example 2
in Section II-A. In the considered example, we control 15 bat-
teries, 10 HVAC units (equipped with variable speed drives),
and 5 electric vehicles (EVs). The objective is to maintain the
aggregate active power

∑
m xm,t close to a reference point

yref,t while minimizing the discomfort/dissatisfaction for each
user. The operational sets for the devices are: (i) batteries
constraints Xm = [−8, 8] kW ∀m = 1, . . . , 15; (ii) HVAC
constraints Xm = [5, 15] kW ∀m = 16, . . . , 25; and (iii) EV
constraints Xm = [7, 50] kW ∀m = 26, . . . , 30. To concretely
assess the performance of the shape-constrained GP, the dis-
comfort functions {Um}Mm=1 are assumed to be quadratic; the
minimum of each of the functions is inside the set constraints
Xm, and it corresponds to a preferred setting of the user. For
example, for EVs they represent a preferred charging rate;
for HVAC systems, they represent a preferred temperature
setpoint (converted into a preferred power setpoint) [3]. The
function Ct(x) is Ct(xt) = β

2 (
∑
m xm,t + 1>wt − yref,t)

2,
where the non-controllable loads are taken from the Anatolia
dataset (National Renewable Energy Laboratory, Tech. Rep.
NREL/TP-5500-56610) and have a granularity of 1 second.

As an example of estimation of the discomfort functions us-
ing the shape-constrained GP, Figure 1 illustrates the estimated
function for a device for a different number of observations
p; in particular, the estimated functions using a standard GP
regression and the shape-constrained GP are illustrated.

We run the online algorithm for a period of 12 hours staring
at 12:00 am; each step of Algorithm 1 is performed every 5
seconds (expect for HVAC, which are updated at a slower

(a)

(b)

Fig. 1. Example of the estimation of the discomfort function Ûm,pm with
hyperparameters σf = 1 and l = 10. (a) Standard GP regression and (b)
shape-constrained GP regression. The observations points are a mixed of prior
points and a sub-sequence produced by the online algorithm. One can see that
the function estimated with shape-constrained GPs is “practically” smooth and
strongly convex, as desired, after only a few feedback points pm.

rate). A prior {Ûm,pm}Mm=1 is determined from some noisy
measurements (σ = 5) and Ûm,pm(xm,t) is updated through
user’s feedback every 30 min. The results in Figure 2 for the
the SGP-OPGD algorithm are compared with two trajectories:
(i) trajectory for the optimal solution x∗t for a known synthetic
discomfort functions {Um}Mm=1, where the problem is solved
to convergence; (ii) trajectory for the learned optimal solution
x̂∗t when {Ûm,pm}Mm=1 is estimated as in (10), where also the
problem is solved to convergence. In this case, the estimate
of the gradients for {Ûm,pm}Mm=1 are calculated using a finite
difference method; 21 noisy observations (σ = 0.5) for each
{Um}Mm=1 are used. For the online algorithm, the step-size is
α = 0.002, that corresponds to the optimal step-size for the
online gradient descent algorithm.

Figure 3 shows the behavior of the performance met-
ric for the SGP-OPGD algorithm, i.e., the dynamic regret
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Fig. 2. Solution of the SGP-OPGD algorithm. Left top: references setpoints yref,t and aggregate non-controllable loads 1>wt. Left bottom: optimal trajectories
y∗t for a known synthetic functions {Um}Mm=1, learned trajectory ŷ∗t where Ûm,pm is used and the problem is solved to convergence at each time, and
trajectory yt for the SGP-OPGD algorithm. Center: Zoomed view for the trajectories y∗t , ŷ∗t and yt on the time period 4:00 pm - 6:00 pm. Right: example
of active power setpoints for the SGP-OPGD method of 6 representative devices on the time period 4:00 pm - 6:00 pm.

Fig. 3. Dynamic regret of the SGP-OPGD algorithm.

1
T

∑T
T=1 |ft(xt) − ft(x∗t )|. It can be seen that the dynamic

regret exhibits a O(1) asymptotic behavior; the jumps in the
dynamic regret corresponds to instants where the reference
yref,t changes abruptly.
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