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Abstract—Fine-grained Smart Meters (SMs) data recording and
communication has enabled several features of Smart Grids (SGs)
such as power quality monitoring, load forecasting, fault detection,
and so on. In addition, it has benefited the users by giving them
more control over their electricity consumption. However, it is well-
known that it also discloses sensitive information about the users,

F|i e., an attacker can infer users’ private information by analyzing
QN> . . .
Othe SMs data. In this study, we propose a privacy-preserving
approach based on non-uniform down-sampling of SMs data. We
Nformulate this as the problem of learning a sparse representation
===of SMs data with minimum information leakage and maximum
,_3>utility. The architecture is composed of a releaser, which is a
recurrent neural network (RNN), that is trained to generate the
[“~sparse representation by masking the SMs data, and an utility
«and adversary networks (also RNNs), which help the releaser to
minimize the leakage of information about the private attribute,
IEwhile keeping the reconstruction error of the SMs data minimum
(i.e., maximum utility). The performance of the proposed technique
mis assessed based on actual SMs data and compared with uniform
j down-sampling, random (non-uniform) down-sampling, as well as
the state-of-the-art in privacy-preserving methods using a data
manipulation approach. It is shown that our method performs
better in terms of the privacy-utility trade-off while releasing much
ess data, thus also being more efficient.

—i
—i
I. INTRODUCTION
LO The Smart Grid (SG) aims at improving the efficiency,
reliability, and security of the electric power systems by using
OO0 intelligent transmission, control, and distribution networks [1].
(© One of the main components of the SG are smart meters (SMs),
l\- which are devices that enable data exchange between users and
O Utility Provider (UP) by recording the electricity data of the
« consumers [2]. This fine-grained electricity consumption data
C_\! is used for billing, load forecasting, energy theft detection,
~ and several other applications for improving the grid operation.
, However, the SMs data can be eavesdropped or be shared with
><a third-party, which can potentially infer sensitive information
about users, including the behavioural patterns or even the type
of appliances used in the dwelling [3]], [4].

There are several privacy-preserving techniques that have
been proposed to address the SMs data privacy issue, which
can be divided in two main categories: Data Manipulation (DM)
and Demand Load Shaping (DLS). The DM approaches modify
the SMs using techniques such as data obfuscation/perturbation,
anonymization, down-sampling, etc. [5]-[13]]. Many of the
most recent studies of this family, incorporated information
theoretic measures such as Mutual Information (MI) or Directed
Information (DI) to model the amount of information leaked
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about the sensitive attributes and used Machine Learning (ML)
algorithms for their implementation. On the other hand, the
DLS approaches use physical resources such as rechargeable
batteries, electric vehicles, and even renewable energy resources,
to shape the users’ power consumption to mask the sensitive
patterns [[14f]-[25]]. Recently, Reinforcement Learning (RL) and
Deep Reinforcement Learning (DRL) methods have been used
to tackle this problem, showing good performance against strong
ML based attackers.

One of the most simple and naive methods in the DM
family is that of down-sampling. Although this is a straight-
forward and efficient mechanism that can reduce the stress
on the communication channel and storage requirements, by
communicating SMs data with lower rate, it has received less
attention than other techniques. The motivation for this method
is based on the fact that high granularity or temporal resolution
of data can tremendously improve the accuracy of the electricity
consumption disaggregation methods [26]]. Therefore, by down-
sampling the data, the performance of the disaggregation algo-
rithms can be controlled, which means in turn that less sensitive
information is shared with third-parties or UPs [27]-[30]. In the
literature, however, there have been more efforts on motivating
and analyzing down-sampling than presenting a comprehensive
way for getting the most use out of this technique. In This work,
we adopt a non-uniform down-sampling approach using deep
neural networks for its implementation. Concretely, we pose the
problem as that of learning a sparse representation of SMs data
by decimating some of its samples with a learned probability
distribution. Our framework includes three deep recurrent neural
networks (RNNs): a releaser, a utility, and an adversary. The
releaser is trained to generate a sparse representation of the SMs
data by getting feedback from the utility and adversary networks
regarding the reconstruction error of the original SM data, and
privacy of the representation, respectively. Following our earlier
study [12]], DI between the sensitive data and its estimation (by
the adversary network) is used as privacy measure and the mean
squared error between SM data and its reconstructed version
(by the utility network) is considered as the utility measure.
Finally, the performance of the presented framework is tested
using actual SM data and compared empirically with a state-of-
the-art method [12f], uniform down-sampling, and random (non-
uniform) down-sampling in terms of privacy-utility trade-off,
average released data rate, and the leakage of information about
the sensitive attribute. To the best of our knowledge, this is the



first work where a down-sampling privacy-preserving approach
is implemented using deep neural networks for SM data.

The rest of the paper is organized as follows. In Section|[[I} the
problem formulation of the SMs privacy-utility based on down-
sampling is developed in relation with sparse representation of
the SMs. Details of implementation of the proposed technique
using deep RNNs are given in Section Empirical results
for our method and comparisons with other approaches are
presented and discussed in Section [[V] Finally, some concluding
remarks are presented in Section [V]

II. ProBLEM FORMULATION

Consider the electricity consumption of a household (useful
data), denoted as a time series sequence Y' = {Y,}_,, that is
recorded by SMs and needs to be communicated in real-time
to the UP. To avoid violating the users’ privacy, a privacy-
preserving mechanism generates a representation of Y7, denoted
as Z' = {Z,)]_,, which attempts to preserve the utility of ¥”
while leaking minimum information about a private attribute
X" = {X,}, that needs to be hidden. Therefore, instead of the
actual SM data Y7, its new representation ZT would be released
and shared with the UP. The scheme is shown in Fig[l]
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Fig. 1. (a) Smart meter data are communicated with the utility provider
in real-time and could be attacked by either an eavesdropper or a third-
party. (b) Sanitizing the smart meter data using a privacy-aware model before
communicating it with the utility provider.

In this work, the mechanism used by the privacy-preserving
system is based on reducing the granularity of the SM data,
i.e. down-sampling the data. However, unlike common down-
sampling, we propose a more sophisticated non-uniform down-
sampling by deciding whether to release the data at each time
instant ¢ or not. Specifically, the release mechanism M is as
follows:

Y, wp. q(W)
M . Wt - Z[ = (1)
0 wp. 1-g(WH

where t € {1,...,T}, g,(.) determines the chance of releasing
sample Y; at time instant 7, and W, is the observed data or input
to by privacy-preserving system at time ¢ (which uses both X;
and Y;, see Algorithm (1| for details). Notice that M produces
a sparse representation of the data, which is stochastic and a
function of the input W7.

Following the study [12]], we use the DI I(X” — X7) between
the private attribute X7 and its estimation by a worst-case
adversary XT as the privacy measure. On the other hand, the
utility is measured based on the expected distortion between
YT and its best reconstruction ¥7 based on Z7. Therefore, the
problem of finding the optimal sparse representation following
the mechanism M in (]D, which leaks minimum information
about sensitive attribute while keep the utility of the data, can
be formulated as follows:

1 o E[IYT - ¥713]

rr;}n TI(X - X ) s.t. T <eg, 2)
where ||-||> is the euclidean norm, and & > 0 is the maximum
tolerance on the expected reconstruction error.

III. PRIVACY-PRESERVING FRAMEWORK AND IMPLEMENTATION

The general framework for designing the privacy-preserving
system is shown in Fig. ] Notice that, in addition to a releaser
network, two more networks named as utility and adversary
are included. On the one hand, the releaser keeps the recon-
struction error minimum by getting feedback from the utility
network, which estimates the useful data. On the other hand, the
adversary network, which estimates the sensitive attribute from
the released data, provides feedback for the releaser network
to measure the leakage of information about the sensitive data.
This process continues until all networks converge.
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Fig. 2. Privacy-preserving model framework for sharing/releasing the SMs data.

In the following, we describe how to implement the privacy-
preserving framework of Fig[2 using deep neural networks. To
this end, the sparse representation Z7 is considered as a masked
version of the Y7 as Z7 = Y7 o M” where o is the Hadamard
product (or element-wise product) and M7 is a 0 — 1 mask.
In the training phase, the releaser network would learn a soft
mask with elements g, where 0 < g, < 1. This can be done
using the sigmoid function o (z) := 1/(1 +exp(—2z)). Fig@ shows
the privacy-preserving framework implemented using RNNs to
model the temporal correlation in the data. We now define the
loss functions for training each of the networks. On the one
hand, since the goal of the utility network is to recover the actual
SMs data, we use the expected distortion as its loss function:

1 A
Luw) = ZE[IY" - PTI3]. 3)

where  are the parameters of the utility network. Let us assume
that X, is a discrete random variable, so the adversary act as a
classifier and we use the cross-entropy as its loss function:

T

La@) = 7 O E[-log py (X120 @

t=1
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Fig. 3. Privacy-preserving framework implemented based on Long-Short Term
Memory (LSTM) layers. The seed noise is generated according to a Uniform
distribution, i.e. U, ~ U[0, 1].

where ¢ are the parameters of the utility and adversary networks.
Finally, the loss functions of the releaser network can be
determined based on the optimization problem (2). Since the
DI is intractable, we use the following upper bound [[12]]:

T

1(X" - &7) < T loglX|- Z HRIZ)). 5)
=1

Therefore, by substituting this bound as a surrogate of the DI,

the following loss function is obtained:

1 N 1S, o
Le@. o0 = 2BV = PTR| - = ) HEZ), (©)
t=1

where A controls the privacy-utility trade-off. The complete
training algorithm for this privacy-aware framework is presented
in detail in Algorithm [T}

Algorithm 1: Privacy-preserving model based on down-
sampling. Batch size B, seed noise dimension m, number
of steps to apply to the Adversary k, and ¢, regularization
parameter 8 are hyperparameters.

1: for number of training iterations do
2 for k steps do

3 Sample minibatch of B examples wT = (xOT BT u<b>T)}f=lA

4 Generate released data {z(b)T}B=l as the Hadamard product of soft
mask {M(”)T}f:I and data {y(’)T}f:].

5: Compute the gradient of L#(¢), approximated empirically for

minibatch, with respect to ¢ and update ¢ by applying the
RMSprop optimizer [31].
s end for
7 Sample minibatch of B examples {w(b)T},lj=l and generate {z(b)T},f;I.
8. Compute the gradient of Lq;(y), approximated empirically for
minibatch, with respect to ¢ and update ¢ by applying the RMSprop
optimizer.
o.  Compute the gradient of Lg(6, ¢, y, 1), approximated empirically for
minibatch, with respect to 6.
10: Use Ridge(L,) regularization [32] with value 8 and update 6 by
applying RMSprop optimizer.
1: end for

After training the privacy-preserving framework in Fig[3]
using Algorithm [I} in the testing phase, the soft mask can be
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Fig. 4. Soft mask thresholding in the testing phase of the privacy-preserving
model. The level of threshold is a hyperparameter.

treated in two ways by changing the thresholding operation:
considering a 0—1 mask or a zero and non-zero mask (see Fig[4).
In the former case, privacy is provided just using the down-
sampling mechanism, i.e., removing some time instances for
hiding sensitive information, while in the later case both down-
sampling and multiplicative distortion mechanisms are used.

IV. REesuLrs AND DiscussioN

In this study, the performance of the proposed model is
assessed based on the Electricity Consumption & Occupancy
(ECO) dataset. The ECO dataset collected and proposed by [33]]
includes 1 Hz power consumption of five houses in Switzerland
labeled with the occupancy status of the dwellings. These occu-
pancy labels are considered as a private attribute. Therefore, the
goal of the releaser network is to generate a sparse representa-
tion from which an adversary cannot infer the occupancy labels
while the utility network can use the released data to recover the
actual power consumption. In this setting, the releaser and utility
are regression networks while the adversary is a binary classifier.
To make the proposed model comparable with the state-of-
the-art method such as the one proposed in [12], the dataset
is re-sampled every one hour and daily samples (with length
T = 24) are considered. The total 11225 sample sequences are
split into train and test dataset with the ratio 85 : 15, and 10%
of the training dataset is used as the validation dataset to tune
the hyperparameters of the model. The proposed smart down-
sampling method (with and without multiplicative distortion) is
compared with uniform down-sampling, random (non-uniform)
down-sampling, and the additive distortion approach proposed
in [12]. The architectures of the networks used for each method
are presented in Table m Notice that, unlike the smart down-
sampling, for the uniform down-sampling and random down-
sampling, since there are no parameters to be learned, the sparse
representation is generated independently of the utility network.
It should be noted that the releaser for the random method would
be a non-uniform down-sampling of the SMs data where the
decimated time instances are selected randomly.

As the first comparison, the privacy-utility of the models
(on the test dataset) are assessed based on the performance of
an attacker which is trained (by having access to the (Z7,X7)
training dataset, i.e., in a supervised manner) to infer the private



TABLE I
NETWORKS ARCHITECTURES AND HYPERPARAMETERS VALUES FOR THE PRIVACY-AWARE MODELS.

Releaser

Adversary Utility Attacker B k m
4 LSTM layers each 2 LSTM layers each 3 LSTM layers each 3 LSTM layers each 18 4 3
with 64 cells and 8 = 1.5 with 32 cells with 48 cells with 32 cells

Smart Down-Sampling v v v v v v v
Smart Down-Sampling

and Multiplicative Distortion v v v v v v v

Uniform Down-Sampling* — — v v - — —

Random Down-Sampli — v v - - —

Additive Distortion [12] v v — v v v v

* To generate the released data, the resample function of Matlab is used where a FIR Antialiasing Lowpass Filter is applied to the data.
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Fig. 5. Privacy-utility trade-off of the proposed model compare with the
uniform down-sampling, random (non-uniform) method, and additive noise
approach [[12]. The result of the random method are averaged over five times
random testing.

attributes. It should be noted that since the attacker is a classifier,
the performance of the attacker is evaluated using balanced
accuracy, defined as follows [34]:

Cl1 €22

+ ) (7
2 t+ 2

where ¢;; is the fraction of samples of class i classified as
class j. The utility on the other hand, is measured based on
the normalized square error, defined as follows:

1
Balanced Accuracy := 3 (

¢ tcen

E[IYT - #7|]]
NE, = —— .
E [IY711]

The privacy-utility trade-off for the different methods is shown
in Fig. 5] As expected, the smart down-sampling greatly outper-
forms both the uniform and the random down-sampling meth-
ods. In addition, the performance of the smart down-sampling is
closely comparable with the additive noise approach, and smart
down-sampling with multiplicative distortion approach actually
outperforms the state-of-the-art.

As another comparison, we evaluate the average number of
samples released daily (non-zero samples in down-sampling
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Fig. 6. Averaged number of samples released daily versus the utility for the
proposed models.
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Fig. 7. Information leakage about the users’ private attribute (occupancy labels)
from the shared data based on the KSG approximation of mutual information.

methods) by each scheme. Results are presented in Fig. [6]
Interestingly, looking at this figure and Fig. 5} we can see that,
for a fixed level of distortion, the smart down-sampling method
outperforms the other methods in terms of privacy while also
reducing the sample data rate.

The general leakage of information about the users’ private
attribute (occupancy labels for this study) from the shared data
is estimated by considering the mutual information between the



occupancy labels X7 and the shared data Z” as a function of
the distortion (see Fig. [7). In this figure, the mutual information
is approximated based on the Kraskov-Stdogbauer—Grassberger
(KSG) method (with parameter 4). For more information about
the KSG method, the reader is referred to [35]]. Fig[7] clearly
shows that for the same level of distortion, the smart down-
sampling method would leak less information about the users’
power consumption compared with other methods.

V. CoNcLUDING REMARKS

In this study, we presented a privacy-preserving method for
electricity consumption data, recorded by SMs, based on down-
sampling or reducing the data rate of SMs data. The problem
was first formulated as learning a sparse representation of
the SMs time series signal which leaks minimum information
about private data while keeping the reconstruction error of the
original data minimum. This was implemented by simultane-
ously training three deep recurrent neural networks: a releaser
network (providing the representation of the data to be shared),
a utility network (which estimates the power consumption from
the representation) and an adversary network (which attempts
to infer the sensitive attribute from the representation). The
performance of the proposed technique was tested based on
actual SMs data and compared with a state-of-the-art algorithm,
uniform down-sampling, and random down-sampling methods.
The empirical results showed that this simple technique is as
good as the state-of-the-art in terms of the privacy-utility trade-
off, while reducing the data rate tremendously. This reduction in
the temporal data resolution is of interest for smart grids since
it reduces the stress on the data communication channel and
relaxes the storage requirements.
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