
ar
X

iv
:2

20
7.

11
46

5v
2 

 [
cs

.L
G

] 
 8

 S
ep

 2
02

2

Distributed Nonlinear State Estimation in Electric
Power Systems using Graph Neural Networks

Ognjen Kundacina, Student Member, IEEE, Mirsad Cosovic, Member, IEEE, Dragisa Miskovic, Dejan

Vukobratovic, Senior Member, IEEE

Abstract—Nonlinear state estimation (SE), with the goal of
estimating complex bus voltages based on all types of measure-
ments available in the power system, is usually solved using the
iterative Gauss-Newton (GN) method. The nonlinear SE presents
some difficulties when considering inputs from both phasor
measurement units and supervisory control and data acquisition
system. These include numerical instabilities, convergence time
depending on the starting point of the iterative method, and
the quadratic computational complexity of a single iteration
regarding the number of state variables. This paper introduces
an original graph neural network based SE implementation over
the augmented factor graph of the nonlinear power system SE,
capable of incorporating measurements on both branches and
buses, as well as both phasor and legacy measurements. The
proposed regression model has linear computational complexity
during the inference time once trained, with a possibility of
distributed implementation. Since the method is noniterative and
non-matrix-based, it is resilient to the problems that the GN
solver is prone to. Aside from prediction accuracy on the test
set, the proposed model demonstrates robustness when simulating
cyber attacks and unobservable scenarios due to communication
irregularities. In those cases, prediction errors are sustained
locally, with no effect on the rest of the power system’s results.

Index Terms—Machine Learning, Graph Neural Networks,
Power Systems, State Estimation, Real-Time Systems

I. INTRODUCTION

Motivation: The power system state estimation (SE) is a

problem of determining the state of the power system repre-

sented as the set of complex bus voltages, given the available

set of measurements [1]. The dominant part of the input data

for the SE model consists of legacy measurements coming

from the supervisory control and data acquisition (SCADA)

system, which have relatively high variance, high latency, and

low sampling rates. Increasingly deployed phasor measure-

ment units (PMUs), provided by the wide area measurement

system (WAMS), have low variance and high sampling rates

and are a potential enabler of real-time system monitoring.

Taking into account both legacy and phasor measurements

results in the SE model formulated by the system of nonlinear

equations and is traditionally solved using the iterative Gauss-

Newton (GN) method. Different approaches can be used to
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integrate phasor measurements into the established model with

legacy measurements. A standard way to include voltage and

current phasors coming from PMUs is to represent them in

the rectangular coordinate system [2]. The main disadvantage

of this approach is related to measurement errors, where mea-

surement errors of a single PMU are correlated and covariance

matrix does not have diagonal form. Despite that, because of

the lower computational effort, the measurement error covari-

ance matrix is usually considered as diagonal matrix, which

has the effect on the accuracy of the SE. The diagonal form

of the covariance matrix could be preserved by representing

voltage and current phasors coming from PMUs in the polar

coordinate system, which requires a large computational effort

with a convergence time significantly depending on the state

variables’ initialisation [3]. Additionally, using magnitudes of

branch current measurements can cause numerical instabilities

such as undefined Jacobian elements due to the “flat start”

[4, Sec. 9.3]. Furthermore, different orders of magnitude of

phasor and legacy measurement variances can make the SE

problem ill-conditioned by increasing the condition number of

the estimator’s gain matrix [2]. A single iteration of the GN

method involves solving a system of linear equations, which

results in near O(n2) computational complexity for sparse

matrices, where n denotes the number of state variables.

Graph neural networks (GNNs) [5], [6] are a promising

method for iterative problems in large-scale systems because

once trained, they have a O(n) computational complexity,

with the possibility of distributed implementation. Apart from

not being restricted to training and test examples with fixed

topologies like the other deep learning approaches, GNNs are

permutation invariant, have a smaller number of trainable pa-

rameters, require less memory for the deep learning model, and

can easily incorporate topology information into the learning

process. Since GNN inference is a noniterative procedure, its

computational time depends on the power system size only and

is not sensitive to state variable initialisation. Furthermore, it

does not suffer from numerical instability since it is not based

on the matrix model of the power system.

Literature Review: Various studies suggest using well-

known deep learning models like feed-forward and recur-

rent neural networks to approximate the existing iterative

SE solvers [7] or to provide them with the state variable

initialisation [8]. Recently, there have been several proposals

for applying GNNs to similar power system analysis problems,

like power flow [9], [10] and probabilistic power flow [11].

The work described in [12] presents a hybrid model and a978-1-6654-3254-2/22/$31.00 ©2022 IEEE
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data-based method for simultaneous power system parameters

and state estimation using GNNs. The model predicts active

and reactive power injections based on the bus voltage phasor

measurements, whereas it does not take into account other

measurement types, such as legacy measurements and branch

current phasor measurements. The regularisation term in the

SE loss function in [13] uses a GNN trained on the histor-

ical dataset to forecast voltage labels. The GNN component

of the proposed algorithm considers only inputs from node

voltage measurements, while the other components consider

different measurement types, resulting in an overall O(n2)
computational complexity during the inference phase. In [14],

state variables are predicted using a GNN with gated recurrent

units trained on a time-series of node voltage measurements

acquired from PMUs.
Contributions: In this work, we propose a data-driven

nonlinear state estimator based on graph attention networks

[15]. The proposed approach is an extension of our previous

work on linear SE with PMUs [16] and linear SE with PMUs

considering covariances of measurement phasors represented

in rectangular coordinates [17]. The contributions are listed as

follows:

• We provide an original implementation of GNNs over a

factor graph [18] obtained by transforming the bus/branch

power system model. Furthermore, we augment the factor

graph to increase the information propagation in unob-

servable scenarios.

• The proposed method takes into account all of the legacy

measurements, as well as bus voltage and branch current

phasor measurements, and provides a trivial way to

remove or add additional measurements by altering the

corresponding factor nodes in the graph.

• We designed the GNN-based state estimator to be fast, ro-

bust to ill-conditioned scenarios, and an accurate nonlin-

ear SE approximator, once trained on the relevant dataset,

labelled by the nonlinear SE solved by GN. The proposed

model has O(n) computational complexity during the

inference and can be distributed among geographically

separated processing units.

• We evaluated the performance of the proposed method by

testing on various data samples, including unobservable

cases caused by communication errors or measurement

device failures, and scenarios corrupted by malicious data

injections.

• In addition to the standalone application, the proposed

approach can be used as a fast and accurate initialiser of

the GN method by providing it with a starting point near

the exact solution.

II. NONLINEAR STATE ESTIMATION PRELIMINARIES

In a general scenario, the SE model is described with the

system of nonlinear equations:

z = h(x) + u, (1)

where bus voltage magnitudes V and bus voltage angles θ

are observed as state variables x = [V,θ]T ∈ R
n, the

vector z ∈ R
m contains measurement values, and the vector

h(x) comprises a collection of m nonlinear equations. Next,

u ∈ R
m is a vector of uncorrelated measurement errors, where

ui ∼ N (0, vi) represents a zero-mean Gaussian distribution

with variance vi. The nonlinear SE model (1) is a consequence

of legacy and phasor measurements provided by SCADA and

WAMS, respectively. The typical set of legacy measurements

provided by SCADA includes active and reactive power flow

and injection, branch current magnitude, and bus voltage

magnitude measurements. The WAMS supports phasor mea-

surements and includes magnitude and angle measurements of

bus voltages and branch currents [19, Sec. 5.6].

Each measurement is associated with the measurement

value zi, the measurement variance vi, and the measurement

function hi(x). The form of the function hi(x) depends on

the branch model of the power system. Usually, the two-port

π-model is used, where the branch between buses i and j is

settled using complex expressions:

[

Īij
Īji

]

=





1

τ2ij
(yij + ysij) −α∗

ijyij

−αijyij yij + ysij





[

V̄i

V̄j

]

, (2)

where the parameter yij = gij + jbij represents the branch

series admittance, and half of the total branch shunt admittance

is given as ysij = jbsi. The transformer complex ratio is

defined as αij = (1/τij)e
−jφij , where τij is the transformer

tap ratio magnitude, while φij is the transformer phase shift

angle. The complex expressions Īij and Īji define the branch

currents from the bus i to the bus j and from the bus j to the

bus i, respectively. The complex bus voltages at buses i and

j are given as V̄i = Vie
jθi and V̄j = Vjejθj , where Vi, θi and

Vj , θj denote the voltage magnitude and angle at buses i and

j, respectively.

The GN method is typically used to solve the nonlinear SE

model (1), where the measurement functions h(x) precisely

follow the physical laws derived on the basis of (2):
[

J(x(ν))TWJ(x(ν))
]

∆x
(ν) = J(x(ν))TWr(x(ν)) (3a)

x
(ν+1) = x

(ν) +∆x
(ν), (3b)

where ν = {0, 1, . . . , νmax} is the iteration index and νmax

is the number of iterations, ∆x
(ν) ∈ R

n is the vector

of increments of the state variables, J(x(ν)) ∈ R
mxn is

the Jacobian matrix of measurement functions h(x(ν)) at

x = x
(ν), W ∈ R

mxm is a diagonal matrix containing inverses

of measurement variances, and r(x(ν)) = z −h(x(ν)) is the

vector of residuals. Note that the nonlinear SE represents

a nonconvex problem arising from nonlinear measurement

functions h(x) [20]. Due to the fact that the values of the

state variables x usually fluctuate in narrow boundaries, the

GN method can be used.

The SE model (1) that considers both legacy and phasor

measurements, where the vector of state variables x = [V,θ]T

and phasor measurements are represented in the polar coor-

dinate system, is known as simultaneous. The simultaneous

SE model takes measurements provided by PMUs in the

same manner as legacy measurements. More precisely, the

PMU generates measurements in the polar coordinate system,



which delivers more accurate state estimates than the other

representations [2], but requires more computing time [3] and

produces ill-conditioned problems [2]. To address these issues,

we propose a non-matrix-based and noniterative GNN base

SE, which can be used as a standalone approach to solve (1),

or as a fast and accurate initialiser of the GN method (3).

III. GRAPH NEURAL NETWORK BASED NONLINEAR STATE

ESTIMATION

This section introduces the fundamentals of spatial graph

neural networks, the transformation of the power system’s

bus/branch model to an augmented factor graph, and the

proposed GNN architecture, specialised for augmented factor

graphs.

A. Fundamentals of Spatial Graph Neural Networks

The spatial GNNs perform recursive neighbourhood aggre-

gation, also known as message passing [5], over the local sub-

sets of graph-structured inputs to create a meaningful represen-

tation of the connected pieces of data. More precisely, GNNs

act as a trainable local graph filter which has a goal of trans-

forming the inputs from each node and its connections to a

higher dimensional space, resulting in an s-dimensional vector

embedding h ∈ R
s per node. The GNN layer, which represents

one message passing iteration, combines multiple trainable

functions commonly implemented as neural networks. The

message function Message(·) : R
2s 7→ R

u calculates the

message mi,j ∈ R
u between two node embeddings, hi and

hj . The aggregation function Aggregate(·) : Rdeg(j)·u 7→ R
u

combines the arriving messages in a specific way, and outputs

the aggregated messages mj ∈ R
u for each node j. At the end

of one message passing iteration, aggregated messages are fed

into the update function Update(·) : Ru 7→ R
s, to calculate

the update of each node’s embedding. Node embedding values

are initialised with the node’s input feature vector transformed

to the s-dimensional space, after which the message passing

repeats K times, with K being a hyperparameter known as

the number of GNN layers. One message passing iteration

corresponding to the kth GNN layer is displayed in Fig. 1

and also described analytically by (4):

mi,j
k−1 = Message(hi

k−1,hj
k−1)

mj
k−1 = Aggregate({mi,j

k−1|i ∈ Nj})

hj
k = Update(mj

k−1)

k ∈ {1, . . . ,K},

(4)

where Nj denotes the 1-hop neighbourhood of the node j,

and the vector superscript corresponds to the message passing

iteration. The outputs of the message passing process are

final node embeddings hj
K , which are then passed through

the additional neural network layers, creating the outputs that

represent the predictions of the supervised GNN model. GNN

training is performed by optimising the model parameters

using the variants of the gradient descent algorithm, with the

loss function being some measure of the distance between the

labels and the predictions. For a comprehensive overview of

GNN foundations and algorithms, please refer to [6].

Message

Message Aggregate Updateh2
k−1

h1
k−1

m1,j
k−1

m2,j
k−1

...

mj
k−1

hj
k

Fig. 1. One message passing iteration, implemented as a GNN layer, consists
of several trainable functions, shown as yellow rectangles with indicated inputs
and outputs.

B. Augmented Power System Factor Graph and the Proposed

GNN Architecture

Inspired by the application of probabilistic graphical models

for the nonlinear power system SE [21], we first transform the

bus/branch power system model into the power system’s factor

graph, a bipartite graph comprised of the factor and variable

nodes. We use variable nodes to generate an s-dimensional

node embedding and the predictions of the state variables,

i.e., magnitudes and angles of the bus voltages, Vi and θi, i =
1, . . . , n. Because variable nodes have no other input features,

binary index encoding is added as an input feature to help

the GNN model distinguish between similar subgraphs. Factor

nodes propagate legacy and phasor measurement values and

variances to neighbouring variable nodes via GNN message

passing via corresponding node embedding. When creating the

factor graph from the bus/branch power system model, each

phasor measurement generates two factor nodes, while each

legacy measurement generates one factor node. As an example,

we consider a simple two-bus power system, in which we

placed one voltage phasor measurement on the first bus and

one legacy voltage magnitude measurement on the second

bus. Additionally, we placed one current phasor measurement

and one legacy active power flow measurement on the branch

connecting the two nodes. The factor graph of this simple

power system consists of the generated factor and variable

nodes, connected by full-line edges, as shown in Fig. 2. In

contrast to approaches such as [12], in which GNN nodes

correspond to state variables only, we find applying GNNs to

factor-graph-like topologies more flexible. Since factor nodes

can be added or removed from any point in the graph, it is

simple to simulate the inclusion of different types and numbers

of measurements both on power system buses and branches,

such as multiple legacy and phasor measurements on a single

branch.

As shown in [16], augmenting the factor graph by adding

direct connections between the variable nodes separated by

only one factor node1 notably improves the model’s per-

formance when some portion of measurements are removed

from GNN inputs, like when simulating communication failure

scenarios. We simulate the measurement data loss by removing

the corresponding factor nodes from the factor graph, which

can eliminate the connections that physically exist in the power

1Although augmenting the factor graph in the described way no longer
makes it bipartite, we will continue to use terms such as augmented factor
graph, factor nodes, and variable nodes.



fV1
fθ1

V1 θ1

fI12 fθI12

V2 θ2
fV2

fP12

Fig. 2. Factor graph (full-line edges) and the augmented factor graph for
a simple two-bus power system. Variable nodes are depicted as circles, and
factor nodes are as squares, colored differently to distinguish between phasor
and legacy measurements.

system, reducing the message passing between the nodes. For

example, removing both phasor and legacy measurements from

the branch in the described two-bus power system divides the

factor graph into two isolated parts, disabling the message

passing between the pairs of variable nodes. Augmenting the

factor graph preserves the physical connection between the

variable nodes, improving the message passing in unobserv-

able scenarios. In the two-bus power system example, the

augmented factor graph consists of nodes connected by both

full and dashed-line edges in Fig. 2.

We propose a GNN architecture specialised for working

on heterogeneous augmented factor graphs, consisting of two

types of GNN layers, Layerf(·) : R
deg(f)·s 7→ R

s used for

updating embeddings of factor nodes f , and Layerv(·) :
R

deg(v)·s 7→ R
s for variable nodes v, with different sets

of trainable parameters. In addition to variable-to-factor and

factor-to-variable node message functions, with the augmen-

tation, we introduce new variable-to-variable node messages

and we model them with separate trainable message func-

tion Messagev→v(·) : R
2s 7→ R

u. For all of the message

functions we used two-layer feed-forward neural networks,

single layer neural networks for the update functions and

the aggregation function based on the attention mechanism

from graph attention networks [15]. State variables predic-

tions x
pred are generated by feeding the final variable node

embeddings h
K into the additional two-layer neural network

Pred(·) : R
s 7→ R. Equations (5) describe the recursive

neighbourhood aggregation and the state variable prediction

processes:

hv
k = Layerv({hi

k−1|i ∈ Nv})

hf
k = Layerf({hi

k−1|i ∈ Nf})

xv
pred = Pred(hv

K)

k ∈ {1, . . . ,K},

(5)

where Nv and Nf denote the 1-hop neighbourhoods of vari-

able and factor nodes v and f . We use the mean squared

difference between state variable predictions and labels xlabel

as a training loss function, calculated over the entire mini-

Layerf

Layerv

hf
K−1

hv2
K−1

hv
K

Layerv

PredLoss

...

...

...

...

output

label

Fig. 3. The high-level computational graph displays the final message passing
iteration along with prediction and loss calculation for the variable node v.
Yellow rectangles represent trainable functions implemented as feed-forward
neural networks.

batch of graphs:

L(θGNN) =
1

2nB

2nB
∑

i=1

(xi
pred − xi

label)2, (6)

where 2n is the total number of variable nodes in a graph, B
is the mini-batch size, and θGNN represents all the trainable

parameters. Fig. 3 displays a high-level computational graph

of the final message passing iteration, state variable prediction,

and the loss function calculation for the part of the augmented

factor graph given in Fig. 2.

The power system augmented factor graph has bounded

node degree, prediction for a single node requires only infor-

mation from the node’s K-hop neighbourhood, and the number

of GNN layers is small. Analogously to [17], we can conclude

that the computational complexity of the proposed model’s

inference for a single state variable is constant, which implies

that the overall complexity of the proposed GNN-based SE is

O(n). The implementation of the GNN model in large-scale

networks can be further improved by distributing the inference

computation among local processors in the power system,

avoiding the communication delays between the measurement

devices and the central processing unit in the centralised SE

implementation. For arbitrary K , measurements required for

the single complex bus voltage inference are located within the

⌈K/2⌉-hop neighbourhood of the corresponding power system

bus.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we describe the GNN model’s training

process and test the trained model on various examples to

validate its accuracy, and its robustness under measurement

data loss due to communication failure and cyber attacks in

the form of malicious data injections. The described GNN

model for augmented factor graphs is implemented using the

IGNNITION library [22] and trained for 100 epochs in all

experiments using the following hyperparameters: 64 elements

in the node embedding vector, 32 graphs in a mini-batch, four

GNN layers, ReLU activation functions, Adam optimiser, and

a learning rate of 4 × 10−4. We conducted separate training

experiments for IEEE 30 and IEEE 118-bus test cases, for

which we generated a training set containing 10000 samples



and validation and test sets containing 100 samples each.

Each sample is created by randomly sampling the active and

reactive power injections and solving the power flow problem.

Measurement values are created by adding Gaussian noise to

the power flow solutions, and the nonlinear SE is solved by GN

to label the input measurement set in each sample. We used

a Gaussian noise variance of 10−5 for phasor measurements,

10−3 for bus voltage magnitude and active and reactive power

flow legacy measurements, and 10−1 for active and reactive

injection legacy measurements.

For the IEEE 30-bus test case, we placed 100 legacy

measurements and three PMUs (i.e., three bus voltage phasors

and eight branch current phasors) in each sample, resulting in

2.03 measurement redundancy. The trained model performed

well on the test set, with the average test set mean square

error of 1.233 × 10−5 between predictions and ground truth

labels; the average test set MSE for voltage magnitudes of

5.221× 10−6; the average test set MSE for voltage angles of

1.944 × 10−5. Fig. 4 shows the average test MSE per each

bus, where the upper plot corresponds to voltage magnitudes

and the lower one to voltage angles.

For the IEEE 118-bus test case, we placed 500 legacy

measurements and seven PMUs (i.e., seven bus voltage phasors

and 26 branch current phasors) in each sample, resulting in

2.39 measurement redundancy. The average test set mean

square error equals 2.038 × 10−5, with the average test set

MSE for voltage magnitudes of 1.572× 10−5 and the average

test set MSE for voltage angles of 2.505 × 10−5. Based on

the insights from both experiments, we can conclude that the

proposed GNN model is a good approximator of the nonlinear

SE solved by GN.
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Fig. 4. The test set MSE between the predictions and the labels per each bus
for voltage magnitudes and angles in the IEEE 30-bus test case.

A. Robustness to Loss of Input Data

Next, we observe predictions of the GNN models previ-

ously trained on IEEE 30 and IEEE 118-bus test data when

exposed to the loss of input data caused by communication

failures or measurement device malfunctions. We simulate

the described cases by randomly removing a percentage of

all input measurements, ranging from 0% to 95% with a

step of 5%. We create 20 test sets per IEEE test case, each

containing samples with the same percentage of excluded

measurements, and show the average test set MSEs in Fig. 5.

Proposed GNN models yields predictions in all examples,

with an expected growing trend in MSE as the number of

excluded measurements increases. In comparison, the GN

method could not provide a solution for many examples due

to underdetermined and ill-conditioned systems of nonlinear

SE equations. A possible explanation for significantly lower

MSEs for the IEEE 118-test case in these scenarios is that it

contains a greater variety of subgraphs for GNN training. To

investigate the GNN predictions further, we create a test set

by excluding five measurements connected to the two directly

connected power system buses from each test sample, resulting

in the average test set MSE of 1.488 × 10−4. Fig. 6 shows

the results for one test sample, where vertical dashed lines

correspond to the buses in the 1-hop neighbourhood of the

excluded measurements. We can observe that the deviation

from the ground truth values manifests mainly in the vicinity

of the excluded measurements, not affecting the prediction

accuracy in the rest of the power system.
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Fig. 5. Average MSEs of test sets created by randomly excluding measure-
ments.
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Fig. 6. GNN predictions and labels for one test example with all measure-
ments connected to two neighbouring buses removed. Dashed lines indicate
the buses in the 1-hop neighbourhood of the excluded measurements.



B. Behavior Under Malicious Data Injections

We examine the robustness of the proposed GNN model

to malicious data injection type of cyber attacks by randomly

altering the values of five neighbouring measurements in each

test sample. We compare the proposed GNN model’s predic-

tions with the solutions of the GN method and the ground

truth values obtained using the GN method applied on the

uncorrupted measurement data. The GNN model demonstrated

an order of magnitude better performance than the GN method,

with the average test set MSEs 1.281×10−4 and 1.034×10−3,

respectively. Fig. 7 depicts the comparison of the state variable

predictions under corrupted input data for one example from

the test set.
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Fig. 7. GNN predictions and GN based SE solutions for one test example
with corrupted input data.

V. CONCLUSION

In this paper, we introduced a method for nonlinear SE

considering legacy and phasor measurements based on the

GNN model specialised for operating on augmented power

system factor graphs. The method avoids the problems that

traditional nonlinear SE solvers face, such as numerical insta-

bilities and convergence time depending on the state variable

initialisation. Additional benefits of the proposed GNN model

are linear computational complexity regarding the number of

state variables during the inference phase and the possibil-

ity of distributing the inference computation across multiple

processing units. By testing the GNN on power systems of

various sizes, we observed the prediction accuracy in the

normal operating states of the power system and the sensitivity

when encountering false data injection cyber attacks and input

data loss due to communication irregularities.

Since the proposed GNN model generates predictions even

for underdetermined SE systems of equations, it could be

applied to highly unobservable distribution power systems.

Another application of the proposed model could be the fast

and accurate initialisation of the nonlinear SE solver, resulting

in a hybrid approach that is both model-based and data-driven.
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