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Abstract—Public charging stations provide charging services
as well as parking for the growing population of electric vehicles
(EVs). Effective management of these facilities is becoming
crucial, with a significant proportion of drivers remaining parked
even after the services are completed. This phenomenon, known
as overstay, results in an underutilization of station resources
and becomes a barrier to other electric vehicle drivers seeking
charging services. To that end, this article presents (i) stochastic
modeling of charging stations with overstaying customers, and (ii)
a methodology to calculate station capacities with respect to a
performance metric probability of loss of load that represents
the percentage of unsatisfied demand. The station model is
constructed using a two-dimensional Markov chain reflecting
interactions among the ‘“idle”, ‘“‘charging”, and ‘“overstaying”
customers. Initially, the generalized small-scale charging station
model is studied to investigate the behavior of the station param-
eters. Then, the general model is extended using the statistical
large deviation theory to cover the case of large-scale charging
stations. Effective demand, a deterministic quantity, for each
charger is calculated, and station capacity is calculated in terms
of the above-mentioned performance metric. The case studies
demonstrate that calculating effective demand-based capacity
leads to substantial savings when provisioning station resources.
However, a significant proportion of these savings diminish with
increasing rate of overstay customers and durations.

Index Terms—electric vehicles, charging needs, stochastic pro-
cess, overstay

I. INTRODUCTION

The pressure for emission reductions in the transportation
sector requires the phaseout of gasoline- and diesel-fueled
internal-combustion vehicles (ICEVs) which are powered with
gasoline or diesel [1]. technological options for providing
a lower-carbon transport alternative to ICEVs [2]. Despite
significant improvements in the battery technology [3], the
adoption rates are hindered by lack of sufficient public charg-
ing infrastructures needed to support drivers who do not have
access to a dedicated charger. In fact, recent measurement
studies show that the EV driving experience is very risk-
adverse due to range anxiety and limited charger coverage
[4].

Public charging stations can consist of faster chargers
(50+kW) and/or slower chargers (7.2-22kW) to accommodate
different customer needs [5]. At public charging facilities, EV
drivers often encounter congestion [6] when all chargers are
occupied or some EVs overstay [7], [8]. The former occurs
during peak traffic hours, while the latter could happen more
frequently when EV owners keep their vehicles parked even
if the charging service has been completed [9]. EV overstay
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Fig. 1: Charging and overstay statistics [10].

is a serious issue as it reduces charging station utilization,
increases station congestion, and decreases access to chargers
at public charging locations.

There are only a few published literature on managing
EV overstay problem. In [9] interviews were conducted with
electric vehicle owners to learn their acceptance of different
management styles for overstay charging, such as authoritative
(enforce rules), collective (employee-driven rules), and non-
managed (no rules). In [7], charging station planning problem
with overstay is studied. EVs who overstay are interchanged
with waiting customers to increase charger utilization. The
model is applied to real-world statistics collected from parking
lots in California. It is shown that average charging duration
is 2 hours, however, 90% of the EVs tend to overstay for
75% of their charging duration. In our previous work [10],
we examined the charging behavior of EVs located in a major
North American University Campus. In Fig. 1, charging and
overstay statistics are presented. It can be seen that a sizable
portion of the EVs stay extended periods of time due to lack
of control schemes.

In [8], the overstay problem is addressed by devising
pricing schemes to induce human behavior and reduce station
congestion. In real-world applications, overstay is tackled by
offering myopic prices such that an overstay fee is charged
after a short grace period when an EV is connected and not
charging. For instance, in Tesla Superchargers, overstaying
EVs are charged 0.5 USD/min and 1 USD/min when the
station is 100% occupied [11].

Markov chain-based modelling of EV charging stations has
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Fig. 2: Markov chain model for single state charger.

been presented in the literature. In our previous work [12], we
proposed a Markov Modulated Poisson Process to compute
optimal size of on-site storage units for EV charging stations.
In [13], a continuous time Markov chain is used to model the
behavior of a single-charger multiple-socket charging stations.
Similar to our work, blocking probability is used as the main
performance metric to size station capacity.

In this paper, we propose a probabilistic capacity planning
framework for EV charging stations with Overstay customers.
First, we develop a two-dimensional continuous time Markov
chain model to capture station state. Then, we present how
to calculate station capacity in respect to a quality of service
target represented by probability of loss of load that shows
the percentage of unsatisfied demand. Second, the proposed
model is extended for large-scale parking lots. In this case, the
proposed model exploits the stochastic behavior of chargers
represented by idle, charging, and overstay states. Then, the
effective demand, a deterministic quantity, of each charger is
computed using large deviations theory and station capacity is
computed at the cost of denying service to a small fraction of
customers. Third, we develop case studies to demonstrate how
the length and percentage of overstay EVs impact the overall
station capacity and discuss ways of reducing this pricing
policies.

II. PROBLEM FORMULATION
A. System Description

We consider an EV charging station with large num-
ber of homogenous chargers, with index denoted by ¢ =
{1,2,..., N}. Since most chargers have a power factor close to
1 [14], the capacity of the station (or the size of the supporting
transformer) is denoted by P and has a unit in kW. The EV
arrival process is assumed to follow a Poisson process with
parameter A (for similar assumptions, see [15] and [16]). An
arriving customer could have two types of demand: (i) energy
demand for filling up the EV’s battery and (ii) parking space
demand. It is assumed that if there is an idle parking space,
an arriving customer immediately starts charging and both
demand types are satisfied. During the charging, charger ¢’s
charging power is assumed to be constant at C;.

Upon service completion, one of the two distinct events
could occur: (i) the EV could continue to stay parked (overstay
event) and continue to occupy a charger without drawing
power or (ii) the EV could leave the system. Similar to
the previous assumption, both event types are assumed to

(N = Drp

Fig. 3: Generalized Markov-chain model for the charging
station with overstay customers.

follow a Poisson process with rates p and <, respectively.
It is further assumed that an EV in overstay state cannot
go back to charging state and leaves the station after an
overstay period. Similarly, an EV cannot use the station as
a parking lot without requesting charging service. To that end,
a single charger is modelled with a three state two-dimensional
continuous time Markov chain as depicted in Fig. 2. A state
is described by a tuple (j, k), where j denotes the number
of EVs getting charged, hence j could take values between 0
and N (for single charger case N = 1). Moreover, k denotes
the number of EVs that are in overstay state which, similar
to the previous case, k takes values between 0 and N. For
instance, in state (1,0) there is an EV getting charged and
upon service completion, the system state can move to state
(0, 0) with rate rp or move to overstay state (0, 1) with rate gpu.
Note that coefficients r and q represent the percentage of EVs
leaving the station and overstaying, respectively. They take
values between 0 and 1 and their sum adds to 1, i.e. r+q = 1.
For instance, if » = 1, there is no overstay in the system, all
EVs leave immediately after service completion. Similarly, if
r = 0.5, then half of the customer leave and the remaining
half moves to overstay. In this paper, it is assumed that r and
q are constant for all states, and we will explore their impacts
on the system performance. However, in our future work they
will be used as pricing-based control parameters which will
determine the amount of overstay values.

B. Generic Station Model

The Markov chain-based model described above could be
generalized for a station with N chargers, as shown in Fig.
3. In this case, the transition rates are updated according to
the number of EVs in the system. The bottom row shows



the state when there is no overstay, while the remaining rows
shows the states with overstay. The state (0, [N) represent the
case where all EVs have completed charging service, and
they are all in overstay state. The rightmost states (shown
in red) are “unsatisfied demand” states or “loss of load”
(LoLP) states because all station resources are completely
utilized and an arriving customer will not be accepted to the
system. Therefore, the ratio of unsatisfied demand or loss-
of-load probability (LoLP) naturally serves as a performance
metric to compute station capacity for given system parameters
such as arrival, departure, and overstay rates.

It can be seen from Fig. 3 that the number of states grows
with the number of chargers and can be written as

(N+1) x (N+2)

= 5 . (1)

The steady state probabilities for each state m;, ¢ € N can be
computed numerically by solving

Q=0 and » m=1, )

i=1

where 7 is the vector of steady state probabilities and Q is
7 X7 an infinitesimal generator matrix whose elements contain
the transition rate from one state to another. The elements of
the matrix ) denoted by row index [ and column index r has
the following structure

G >0, Yk #1 and g =—Y qw, Yk (3)
[

For small-scale charging stations, the minimum station capac-
ity can be found by computing station capacity in respect
to varying station parameters. However, in (2), there are 7
system states which grows exponentially as the station size
grows, and numerical evaluation becomes computationally
prohibitive. Therefore, for large scale public stations, we
propose a statistical sizing approach described in the next
section.

III. STATISTICAL CAPACITY PLANNING

Our primary goal is to find minimum station capacity such
that the LoLP does not exceed a small value denoted by J. We
start our analysis by investigating the individual charger states.
As described in the previous section, a charger can have three
distinct states namely, “idle”, “charging”, or “overstay”’. From
electrical energy demand, a charger can have two states:

1) Charger is at “Off” state when no electricity is drawn.
The probability of being at the “Off” state is the sum
of probabilities of being at “idle” and “overstay” states,
that is P(Off) = P(idle) + P(overstay).

2) Charger is at “On” state when electrical power is drawn
to charge EVs. This time, the probability is written as
P(On) = P(charging)

To that end, P(Off) and IP(Off) can be computed by construct-
ing @ matrix from (3) and solving the balance equations given
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Fig. 4: Overview of station load profile and effective demand.

in (2). For a single charger case, the infinitesimal generator
matrix becomes

-2 A 0
Q= |ru —p qp 4
v 0 =

By inserting (4) in (2), the probability of being “Off” becomes

qu(l +X)
P(Off) = —————. ®)
(Off) Py + Ay + quA
Similarly, probability of being “On” becomes
A
P(On) = . (6)
(On) wy + A7+ quA

Let D;(s) denote the amount of electrical power drawn by the
charger at time s, then the probability distribution of D;(s) is

given by
Ci
D; = { 0,

From statistical capacity planning standpoint, the worst ap-
proach would be to allocate peak rate (C;) for each charger,

with probability IP(On) 7
with probability P(Off)

N
that is P=>_ C;. Due to statistical distribution of D; as shown

in (7), acltﬁél station capacity could be significantly lower
than peak rate. To that end, we are interested in computing
minimum station capacity P such that the probability of LoLP
does not exceed a small probability 4, that is

min P

P(3) = s.t. IP(

=

From (8), the “expected” demand can be re-written,

N
> E(D;) =Y Ci x P;i(On) < P, Vi, 9)

i=1

given 0 < P;(On) < 1. Even though the inequality given
in (9) is valid, it does not provide statistical guarantees to
provide charging service with maximum LoLP performance
() as given in (8). To that end, we introduce the concept of
“effective demand” which represents effective utilization of a
charger for a given LoLP target.
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A. Computation of Effective Demand

We are interested in computed effective demand D,y for
each charger such that aggregate demand exceeds total station
capacity P with a small probability denoted by §. An overview
of the system is presented in Fig. 4. In other words, we aim
to compute the fraction of time that total station demand is
higher than supporting transformer capacity (P) in the long
run. Let us define an indicator function as 1.y. Since charging
demand at each slot D;(s) are independently distributed, the
aggregate profile forms a stationary and ergodic process as
below

= N
lim — 1.~ =P D; > D . (10)
t—oo t = {;:1 Di(S)>DCf} {; }

Since all chargers are identical, effective demand can be

normalized as D.y = Nd, where d is the effective usage of a
single charger which can be computed by solving

N
IP{ZDde} <ed. (11)
i=1
Applying Chernoff’s bound (see [17]) to (11) yields to
N
P {Z D; > Nr} < e~ NAWd) (12)
i=1
where A(d) is the rate function and written as
A(d) = sup {0d—log(E{e?"})} (13)
0>0

The rate function A(d) is key to compute effective demand d
and has the following four properties. First, the rate function
A(d) is concave in 6 and convex in d. Proving concavity
requires examining the properties of the logarithmic expression
log(IE(+)). To confirm this property, the definition of convexity
can be applied and Holder’s Inequality (see [18]) can be
used to complete the proof. The second part is trivial as the
effective demand d has a linear relation with the rate function,
therefore, A(d) is convex is d. The second property is a
corollary to the first one. Due to the convexity assumption,
the supremum over 6 is guaranteed and can be found through
a search process. Third, without loss of generality, the effective
demand d is greater than or equal to the expected usage
as given in (9) and less than or equal to normalized state
capacity P/N. Fourth, the rate function takes positive values
for d > E(D) and A(IE(D)) = 0. This property can be proven
by taking the derivative of A(d) at the origin # = 0, that
is w lo=o = d— E{D}. The result will be positive since
d > E(D), hence A(d) > 0. For the second case, the rate
function will occur at the origin, since it is concave in 6.

We are further interested in the behavior of the resultant
probability bound. According to Cramer’s Theorem (used in
large deviation asymptotics, see [19]), the probabilistic bound
is quite tight for systems with large N (e.g. large parking lots),
while for stations with small number of chargers, the devised

method could lead to over-utilization of station resources.
Recall that the real world application of this study is to reduce
the cost of investments for supporting network elements (e.g.
transformers). Therefore, the infrastructure saving rate would

be the ratio of effective demand to the peak charger rate, that
o d
is &.
C

IV. RESULTS

A. Small-scale Fast Charging Station

In the first case study, we consider two small scale fast
charging stations equipped with N = 5 and N = 6 chargers.
We use the generic Markov chain model discussed in Section
II-B and explore how system parameters affect the station
performance metric, IP(LoLP) or the percentage of unsatisfied
demand. The numerical evaluation is carried out with the
following parameter setting. The unit time slot is assumed
to be 1 hour. The charger rate is set as y = 2, meaning
that on average it takes 30 minutes to charge an EV. Three
different arrival rate parameters are chosen (A = 3, 4, and 5)
EVs/hour. The rate of leaving the overstay state () is varied
from v = 1 to v = 12 to represent average overstay lengths
between 5 minutes to 60 minutes. Similarly, the percentage of
EVs who prefer to overstay are denoted by parameter, ¢ which
is varied between 10% and 90%. Note that since r + ¢ = 1,
the remaining population inherently represents the portion of
EVs who immediately leave the station after getting charged.

In Fig. 5, the results are presented by solving (2). It can
be observed that the duration of overstay when most EVs
prefer to park extra time in the charging station significantly
impacts the station performance. For instance, for an average
overstay length of 30 minutes, that is v = 2, the percentage of
unsatisfied demand for ¢ = 0.9 is fourfold higher than for the
case with ¢ = 0.1 (or 10% of Overstay EVs). Moreover, as
the overstay length gets shorter, the differences in performance
metric diminishes. This is mainly because the station stays in
the bottom row of Fig. 3 and limited vertical transitions occur.

In Fig. 6, the same case study is carried out for a station with
N = 6 chargers. It can be seen that, increasing the charger
number significantly contributes to improving the station per-
formance. For instance, for traffic intensity of A\ = 4, the
LoLP performance goes below 5% for all overstay rates when
the average overstay length is 20 minutes. To that end, these
results could be used to support capacity planning of such
stations. Another key observation can be made by comparing
the amount of LoLP reduction caused by overstay % of EVs
determined by parameter ¢ and the number of chargers N. For
instance, assume that the station operates under medium traffic
load (figures (b)) and average overstay duration is 30 minutes.
If the ratio of overstay EVs could be reduced from 90% to 30%
via pricing policies for the charging station with 5 chargers,
then, similar station performance (e.g. 4%) would be achieved
with a station with 6 chargers. Therefore, admission control
policies could be instrumental in reducing infrastructure cost,
and we leave this as a future study. Overall, the presented
results could be used to determine the number of chargers,
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Fig. 5: Performance evaluation of a small scale charging station with N=5 chargers with different traffic intensity (EVs/hour)
(@) A =2; (b) A =3; (c) A = 4. Y-axis represents the station performance (% of unsatisfied demand or P(LoLP)).
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hence, the capacity of supporting network equipments for a
given LoLP target, peak traffic demand, and overstay statistics.

B. Capacity Planning at Large-scale Charging Stations

Next, we present a case study to compute the effective
demand and capacity for large-scale charging stations. Let
us assume that there are N = 100 identical level-2 chargers
(C; =7.2 kW for i = {1,...,100}) deployed at a parking lot.
It is assumed that, on average, 20 cars arrive to the station
in one hour. Using the superposition property of (or thinning)
Poisson process, arrival rate per charger becomes A = 0.2.
Similarly, on average EVs stay 4 hours, that is ;¢ = 0.25 and
average overstay length is 1 hour, that is v = 1. The number
of EVs who prefer to overstay is 50%, hence ¢ is set to 0.5.
Using equations (6) and (5), the probability of being “On” and
“Off” are found as P(On) = 0.4211 and P(Off) = 0.5789.
We aim to compute effective demand for IP(LoLP)=0.005 (or
0.5% unsatisfied demand), therefore, from (12), J is found
as 5.29. Next, using the concavity of the rate function, the
optimal # that maximizes the rate function is calculated as

of(6,r) . 1 dxP(Off)
—_ =—L _— . 14
0 c Og(IP(On)(C—d) (14
Then, the rate function becomes

=0—40

L d dx P(Off) dx P(Off)
A(d)= aL g<IP(On)(Cd)> —Log <P(OH)+%

— N
—A(d)
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Fig. 7: Effective demand calculation.

Now, using the equation 6 = N x A(d), we can compute
the effective demand d as 5.78 kW. Therefore, for the given
parameter setting, instead of allocating 100 x 7.2 = 720 kW
infrastructure, 5.78 x 100 = 578 kW capacity will suffice
and nearly 20% of the station capacity would be saved. The
computation is illustrated in Fig. 7.

Next, we consider a charging lot with NV = 200 chargers
and investigate the impacts of the percentage of overstay EVs
(determined by parameter r) and overstay length (determined
by parameter ). Using the arguments above, the station
parameters are set as y 0.25, A = 0.6, and average
overstay duration is one hour (y = 1). Then, the parameter
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Fig. 8: Effective demand calculation for fixed overstay length
and varying 7.

¢ is varied to provide % of unsatisfied demand from 0.1% to
0.9%. For five different ¢ = 1 — r values (from 0.9 to 0.5),
the station capacity is computed and presented in Fig. 8. From
the results, two important observations can be made. First, as
more EVs stay parked after charging service, more capacity is
needed to provide quality of service because the utilization of
chargers serving non-overstay EVs becomes higher. Second,
as the LoLP target becomes tighter (e.g. 0.01%), more station
resources are needed.

As a second evaluation, parameter ¢ is fixed to 0.5 and
average overstay length is varied from 1 hour to 3 hours.
As shown in Fig. 9, station capacity increases as the average
charging duration increases due to the same reason discussed
above. It is noteworthy that if the peak demand is allocated
for each charger, then, 200 x 7.2 = 1440 kW would be
required. With the proposed effective demand approach, the
station capacity is reduced by more than 30% for the cases
discussed above by sacrificing to decline a small percentage
of customers.

V. CONCLUSION

In this paper, we presented a Markov chain model for
EV charging stations with overstay customers. We discussed
how to solve the steady state probability distributions for
small scale charging stations. For large scale charging stations,
we expanded the initial model and presented a stochastic
capacity planning model that computes station capacity with
respect to probability of loss of load (main quality of service
metric). The model assigns a deterministic capacity to each
charger that depends on overstay lengths and rates. The case
studies showed that as the overstay periods increase, the station
operators need to increase the station capacity to provide
charging service within quality of service targets. As a future
work, we will develop pricing mechanisms to induce human
behavior and reduce overstay lengths and examine the trade-
off between charging tariffs and charging operational profit.
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