
ar
X

iv
:2

40
4.

16
13

4v
1

 [
ee

ss
.S

Y
]

 2
4

A
pr

 2
02

4

Power Failure Cascade Prediction using Graph

Neural Networks

Sathwik Chadaga, Xinyu Wu, and Eytan Modiano

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA

Abstract—We consider the problem of predicting power failure
cascades due to branch failures. We propose a flow-free model
based on graph neural networks that predicts grid states at every
generation of a cascade process given an initial contingency and
power injection values. We train the proposed model using a
cascade sequence data pool generated from simulations. We then
evaluate our model at various levels of granularity. We present
several error metrics that gauge the model’s ability to predict the
failure size, the final grid state, and the failure time steps of each
branch within the cascade. We benchmark the graph neural net-
work model against influence models. We show that, in addition
to being generic over randomly scaled power injection values,
the graph neural network model outperforms multiple influence
models that are built specifically for their corresponding loading
profiles. Finally, we show that the proposed model reduces the

computational time by almost two orders of magnitude.

Index Terms—Power failure cascade, contingency analysis,
graph neural networks.

I. INTRODUCTION

Modern power grids often experience unpredictable compo-

nent failures that are caused due to an exogenous event like a

tree branch falling, bad weather, failure of an aged device,

or an operator error. These random failures, if not treated

properly, can propagate rapidly through the grid, potentially

resulting in large scale blackouts. Hence, it is important to

study such failure cascades as part of the power contingency

analysis. Moreover, power grids have seen a recent surge

in outages [1] due to extreme weather conditions [2] and

power grid aging [3], causing significant losses to businesses,

industries, and healthcare sectors [4], [5], making the study of

power failures increasingly important.

There have been several studies performed on historical

failure cascade data [6], [7]. However, the scarce historical

records of cascading failures are not representative of all

the possibilities. Hence, numerical simulations and analysis

methods have been proposed, which solve the static power

flow problem step-by-step and determine the sequence of

quasi-static transmission link overflows [8]. However, the AC

power flow model is computationally expensive, while the

computationally tractable DC power flow model has been

shown to underestimate the failure sizes [9].

To overcome the high complexity of flow-based methods,

efforts have been devoted to constructing flow-free models of

failure cascades. Tools like branching process [6], the random

chemistry algorithm [10], and the expectation-maximization

algorithm [11] have been proposed to estimate blackout risks.

These flow-free models aspire to capture the cascade flow

dynamics from data, obtained either from simulations or

historic outage records. This data driven approach has led

researchers to investigate fast and accurate machine learning

models.

Machine learning has been used in power system analysis in

various settings [12]. For example, as power flow calculation

using Newton-Raphson is computationally expensive, more

efficient power flow calculation methods have been proposed

using deep [13] and convolutional [14] neural networks.

Moreover, in the area of cascade prediction, support vector

machines have been employed in blackout prediction [15],

cascade failure size estimation [16], and load loss estima-

tion [17]. Additionally, methods using Bayes networks have

been proposed for failure cascade prediction in [18]. Despite

being computationally efficient, these techniques fail to take

advantage of the power grid topology information leading us

to explore techniques that use graph neural networks.

Graph neural networks (GNNs) are a type of neural net-

works that operate on graph-structured data [19]. They process

input graphs by repetitively updating the information at each

node based on its neighbors, thereby leveraging the underlying

graph topology. There have been recent applications of GNNs

in the field of power networks. One such application is the

design of computationally efficient power flow solvers. In

[20]–[22], GNNs are trained in a supervised way to imitate

the Newton-Raphson power flow solver. Whereas [23], [24]

follow an unsupervised learning method that minimizes the

violation of Kirchoff’s laws.

Moreover, GNNs have seen recent applications in the field

of power failure cascades. GNNs have been used for real time

grid monitoring tasks during a cascade, like predictions of

optimal load shedding [25] and total load lost [26]. These

works involve a graph-level prediction task, i.e. they predict

a particular property of the grid as a whole. GNNs can also

be used for edge-level and node-level prediction tasks. For

example, in [27], a node-level vulnerability metric called the

Avalanche Centrality is predicted for all nodes of the grid using

GNNs. In [28], efficient failure cascade path search techniques

with GNNs have been proposed.

The existing works as discussed above are focused on char-

acterizing one or two aspects of failure cascades, like load loss,

failure size, or blackout possibility, lacking a comprehensive

evaluation of the cascade at finer levels of granularity. This

is addressed in [29], where an influence model is trained

to predict the power grid states within a cascade. However,

the influence model approach cannot generalize for variable

http://arxiv.org/abs/2404.16134v1

loading as it does not take as input the power injection values.

A flow-based GNN model has been proposed in [30] that

can generalize for variable power injections. However, this

model is centered around predicting the power flow values

in a step-by-step manner to obtain the sequence of branch

overflows. Hence, even though this technique speeds up the

cascade prediction process compared to traditional methods,

it still involves a high computational overhead in handling the

formation of islands during the cascade, such as identification

of islands and rebalancing the load and power generation

within islands.

In this paper, we build a flow-free GNN model that does

cascade sequence prediction without requiring power flow

calculation at every generation of the cascade. We summarize

our contributions below.

1) We propose a flow-free model based on a GNN that

predicts grid states at every generation of a cascade,

providing a way to comprehensively evaluate cascades

at various levels of granularity. The proposed model

takes as input the node power injection values, the initial

contingency, and the grid topology. We use the cascading

failure simulator oracle from [10] to generate a cascade

sequence dataset to train our model.

2) We evaluate the performance of our model at various

levels of granularity including prediction of the failure

size, the final grid state, and the generations at which

each branch fails within a cascade. We benchmark our

model against the influence model [29] and show that in

addition to being generic over randomly scaled loading

values, the GNN model outperforms different load-

specific influence models under every metric.

3) We perform a runtime analysis and show that the GNN

model reduces the prediction time by almost two orders

of magnitude compared to the DC power flow calcula-

tion based simulators.

The rest of the paper is organized as follows. We formulate

the problem of failure cascade prediction and describe the

proposed graph neural network model in Section II. We discuss

the cascading failure simulator oracle in Section III. We

present the model performance results in Section IV.

II. PROBLEM FORMULATION AND THE GNN MODEL

We consider the power failure cascade process due to branch

failures. In this setting, a failure cascade begins with an initial

failure of one or more branches in the grid. The initial branch

failures perturb the power flow in the grid, leading other

branches to overload and trip. The new failures further cause

additional branches to trip and so on, consequently triggering

a cascade process. The cascade process can be grouped into

generations in time [6], which we refer to as time steps.

We represent the power grid by a directed graph G =
(V,E), where the nodes V represent buses and the directed

edges E represent branches (or edges). For a branch e ∈ E
at time t, we choose the branch state se[t] to be its binary

operational state, which can either be 0 (failed) or 1 (active).

We define the network state at time t as s[t] := (se[t])e∈E .

Given the initial contingency s[0] (the network state at t =
0), our goal is to predict the cascade sequence s := (s[t])T−1

t=0 ,

where T is the cascade length. However, we assume that once

a branch fails, it stays in the failed state for the rest of the

cascade. This allows us to define the failure step of a branch

e, the time step at which its state changes from 1 to 0, as

fe :=
∑T−1

t=0 se[t]. From this failure step fe, we can fully

recover the branch states se[t], and hence s, by setting se[t] =
1 for 0 ≤ t < fe and se[t] = 0 for fe ≤ t < T for all e ∈ E.

Hence, instead of predicting s directly, we design a model that

predicts the branch failure steps f := (fe)e∈E . We propose a

GNN model to do this as explained below.

The proposed model takes as input the topology of the grid

G = (V,E), the initial contingency s[0] ∈ {0, 1}|E|, and

the power injection values Pv ∈ R at each node v ∈ V . In

this model, we process the input data in multiple stages as

explained in the following paragraphs. Fig. 1 shows a block

diagram that summarizes the model.

1) Initial Stage: We start by removing the edges corre-

sponding to failed branches in the initial contingency and get

the new set of edges E′ = {e ∈ E : se[0] = 1}. Then, we pass

the node power injection values Pv through a neural network

to obtain the transformed node features P̃v ∈ R
L as follows.

∀v ∈ V, P̃v = Hinitial(Pv) (1)

where, the mapping Hinitial : R → R
L represents a dense

neural network whose weights will be learned through back

propagation during the training phase. Note that the same

neural network is being used on all the nodes. Further, we

use these values P̃v to initiate the edge hidden features h0
e as

∀e = (u, v) ∈ E′, h0
e = h0

(u,v) = P̃u − P̃v (2)

where, a directed edge e ∈ E′ is represented as e = (u, v) with

u, v ∈ V being its source and destination nodes respectively.

2) Attention Stage: For an edge e = (u, v) ∈ E′, we define

the set of adjacent edges as Ne = N(u,v) = {(u,w) : w ∈
V, (u,w) ∈ E′} ∪ {(w, v) : w ∈ V, (w, v) ∈ E′}. Now, we

generate two types of attention coefficients: edge-to-edge aed
for every two neighboring edges e ∈ E′, d ∈ Ne; and node-to-

edge (beu, bev) for all edges e = (u, v) ∈ E′ and their nodes

u, v. We generate these coefficients by passing the given initial

contingency s[0] through two dense neural networks as

a = Hattn
edge-edge(s[0]), b = Hattn

node-edge(s[0]) (3)

where, the mappings Hattn
edge-edge : R

|E| → R

∑
e∈E′ (|Ne|−1)

and Hattn
node-edge : R|E| → R

2|E| represent two dense neural

networks whose weights will be learned through back prop-

agation during training, a is the collection of edge-to-edge

coefficients a = (aed){e,d∈E′:d∈Ne,d 6=e}, and b is the collection

of node-to-edge coefficients b = (beu, bev)e=(u,v)∈E′ .

These attention coefficients will be used in the next averag-

ing stages, where we repetitively update edge hidden features

by weighted-averages of neighboring edge and node hidden

features. The attention coefficients will act as weights for this

purpose. They represent how much weight, or attention, needs

Averaging Stage 1

(averaging adjacent

edges and branches)

Averaging Stage K

(averaging adjacent

edges and branches)

Attention Stage

Initial Stage

Averaging Stage Final Stage

Fig. 1: Block diagram of the GNN model.

to be given on adjacent edges and nodes while updating an

edge’s hidden features.

3) Averaging Stage: In this stage, we pass the outputs of

the initial stage h0
e through a sequence of K averaging steps.

In each step k = 1, ...,K , we calculate the weighted average

of neighboring edge and node features and pass them through

a neural network to obtain the new edge features as follows.

∀k = 1, ...,K, ∀e = (u, v) ∈ E′,

hk
e =

hk−1
e

|Ne|
+Hk

edge-edge

 ∑

d∈Ne,d 6=e

aed√
|Ne|

√
|Nd|

hk−1
d

+Hk
node-edge

(
beuP̃u + bevP̃v

2

)
(4)

where, K is the total number of averaging steps, hk
e is the

edge hidden feature of edge e at k-th averaging step, and Ne

is the set of edges that are adjacent to and including e. The

coefficients aed and bue are the edge-to-edge and node-to-edge

attention coefficients respectively obtained in the attention

stage. Finally, the functions Hk
edge-edge, H

k
node-edge : RL →

R
L for k = 1, ...,K represent dense neural networks, whose

weights will be learned through back propagation during the

training phase. Note that these neural networks are the same

for all edges.

4) Final Stage: In the final stage, we predict the failure

step probability values p̂e := [p̂e,0, ..., p̂e,T−1] for all branches

e ∈ E′, where each entry p̂e,t is the predicted probability that

branch e fails at time t. We do this by passing the output of

last averaging step hK
e through a dense neural network as

∀e ∈ E′, p̂e = Hfinal(h
K
e) ∈ [0, 1]T (5)

where, the function Hfinal : RL → R
T represents a dense

neural network, whose weights will be learned during the

training phase. This neural network has a softmax layer, so

that its outputs represent valid probability values. Finally, the

failure steps of edges is predicted by picking the index with

the highest predicted probability value,

∀e ∈ E′, f̂e = arg max
t=0,...,T−1

p̂e,t. (6)

Having defined the model architecture, we explain methods

to generate data for training and testing in the next section.

III. DATA SYNTHESIS

We generate cascade data using the cascading failure simu-

lator (CFS) oracle proposed in [10]. Data generated from other

oracles or historic data obtained from utility records can also

be used on our model without any changes to its architecture.

Algorithm 1 Simulating failure cascade using the CFS oracle.

Input: Grid topology G = (V,E), initial contingency s[0],
capacity values (ce)e∈E , and power injection (Pv)v∈V .

Output: The branch failure steps in the cascade (fe)e∈E .

initialize t← 0; overloaded ← true.

while overloaded do

1) E ← {e ∈ E : se[t] = 1}.
2) Detect the formed islands (disconnected sub-graphs).

for each island do

a) Specify a bus as the slack bus of the island.

b) Rebalance the power injection within the island.

c) Recompute the power flows ge within the island.

end for

3) s[t+ 1]← s[t]; ∀e ∈ E : ge > ce, se[t+ 1]← 0.

4) if s[t+ 1] = s[t] then overloaded ← false end if

5) t← t+ 1.

end while

return f =
∑

t s[t].

As summarized in Algorithm 1, the CFS oracle simulates

the cascade process for a given initial contingency s[0] and

power injection values (Pv)v∈V , and outputs the failure steps

f := (fe)e∈E . The CFS oracle treats branch failures deter-

ministically, a branch e is treated to be failed whenever the

power flow ge through it crosses its given capacity value ce.

We implement the CFS oracle in MATLAB, where we use the

MATPOWER toolbox [31] to get the graph topology, default

power injection values, and branch capacity values. We use its

DC power flow solver to calculate the branch power flows.

Furthermore, using this CFS oracle, we generate a data pool

D of size M as summarized in Algorithm 2. Each sample

in the data pool D is a tuple (s[0], (Pv)v∈V , (fe)e∈E) con-

taining a random initial contingency, randomly scaled power

injection values, and the corresponding cascade failure steps

respectively. Specifically, in each sample, we first generate

random |E| − 2 initial contingencies s[0] by selecting two

branches randomly, say e1, e2, and setting their states to failed

se1 [0] = se2 [0] = 0. Then, we scale the default power injection

values obtained from the MATPOWER toolbox uniformly

across all nodes by a random scaling value α ∼ Unif[1, 2].
We then use the CFS oracle described in Algorithm 1 to get

the cascade failure steps (fe)e∈E for each sample.

Algorithm 2 Generating the failure cascade data pool.

Input: Grid topology G = (V,E), default node power

injection values (P 0
v)v∈V , and required data pool size M .

Output: The failure cascade data pool D.

initialize D ← {}.
while |D| < M do

1) s[0]← Random |E| − 2 initial contingency.

2) α← Unif[1, 2]; ∀v ∈ V, Pv ← αP 0
v .

3) (fe)e∈E ← CFS oracle’s output for (s[0], (Pv)v∈V , G).

4) D ← D appended with (s[0], (Pv)v∈V , (fe)e∈E).
end while

return D.

In the next section, we discuss the details of model training

with this data and present their performance results.

IV. RESULTS

We generate two data pools, one for IEEE89 system and

another for IEEE118 system, each containing 200,000 cascade

sequence samples simulated on random initial contingencies

and random uniform scaling values. We get the required graph

topology, default power injection values, and branch capacities

(we set the unavailable capacities to twice the default power

flows through the branches) from the MATPOWER toolbox.

In both cases, we split the dataset D into train Dtrain (90%)

and test Dtest (10%) sets. We then train two instances of our

proposed model, one for IEEE89 and another for IEEE118

systems1. We build the instances in Python using the PyTorch

library [32]. We train the models with an Adam optimizer and

try to minimize the cross entropy loss between predicted and

true failure steps averaged on all branches and batch samples.

We use the performance of the influence model [29] as a

benchmark since this model can evaluate metrics in almost

the same granularity level as the GNN model. Note, however,

that the influence model does not take node power injection

values into consideration, making it specific to a single loading

profile. Hence, it is impossible to generalize a single influence

model over all load scaling values. Thus, for a given IEEE

system, we build multiple influence model instances, each

1See implementations at https://github.com/sathwikchadaga/failure-cascade.

trained on a unique load scaling value, and compare our

single generalized GNN model against them. The metrics we

investigate can be categorized into two types: graph-level and

branch-level metrics.

1) Graph Level Metrics: Here, we present several metrics,

in increasing order of prediction granularity, that capture the

graph-level prediction performance of the trained model.

a) Failure Size Error Rate: The cascade failure size is

defined as the number of branches in the failed state at the

end of a cascade. Let Dα
test ⊂ Dtest be the set of test samples

whose injection load scaling is α. For a sample d ∈ Dα
test

(with a random |E| − 2 initial contingency), if Ed
failed ⊂ E

is the set of edges that have truly failed and Êd
failed ⊂ E is

the set of edges predicted to have failed, then the graph-level

failure size error rate lαsize at a load scaling value α is defined

as lαsize =
1

|Dα
test|

∑
d∈Dα

test
||Ed

failed| − |Ê
d
failed||/|E

d
failed|.

1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

Load scaling

F
ai

lu
re

si
ze

er
ro

r
(%

)

GNN (bin average)

Influence models

1 1.2 1.4 1.6 1.8 2

1

1.5

2

2.5

3

3.5

Load scaling

GNN (bin average)

Influence models

Fig. 2: Failure size error rates lαsize of various models for

IEEE89 (left) and IEEE118 (right) against scaling values α.

Fig. 2 shows the failure size error rates of two instances

of the GNN model trained and tested on IEEE89 (left) and

IEEE118 (right) cases respectively, along with the error rates

of multiple influence model instances specific to the corre-

sponding scaling value (recall the influence model’s inability

to generalize over variable load profiles). As can be seen, even

though we are comparing the same generic GNN model to

multiple load-specific influence models, the GNN model has

lower error rates at all loading values.

b) Final State Error Rate: If the true final state of a

cascade sample d ∈ Dα
test is sd[T] = (sde [T])e∈E , and its pre-

dicted final state is ŝd[T] = (ŝde [T])e∈E , then the graph-level

final state error rate lαstate at a load scaling value α is defined

as lαstate =
1

|Dα
test|

∑
d∈Dα

test

1
|E|

∑
e∈E

∣∣sde [T]− ŝde[T]
∣∣.

1 1.2 1.4 1.6 1.8 2

2

4

6

Load scaling

F
in

al
st

at
e

er
ro

r
(%

)

GNN (bin average)

Influence models

1 1.2 1.4 1.6 1.8 2

1

2

3

Load scaling

GNN (bin average)

Influence models

Fig. 3: Final state error rates lαstate of various models for

IEEE89 (left) and IEEE118 (right) against scaling values α.

Fig. 3 shows the final state error rates of two instances

of the GNN model for IEEE89 (left) and IEEE118 (right)

systems respectively, along with the error rates of different

load-specific influence models. As can be seen, the GNN

model is better by around 2% (nearly a factor of 2) than all

the load-specific influence models.

c) Failure Step Error Rate: In a cascade sample d ∈
Dα

test, if the true failure steps are fd = (fd
e)e∈E and the

predicted failure steps are f̂d = (f̂d
e)e∈E , then the graph-level

failure step error lαfailure−step at a load scaling α is defined

as lαfailure−step = 1
|Dα

test|

∑
d∈Dα

test

1
|E|

∑
e∈E |f

d
e − f̂d

e |.
Fig. 4 shows the failure step error rates for two instances of

the GNN models for IEEE89 (left) and IEEE118 (right) sys-

tems respectively, along with the error rates of different load-

specific influence models. For both buses, the generic GNN

model outperforms all the load-specific influence models.

1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

Load scaling

F
ai

lu
re

ti
m

e
st

ep
er

ro
r

(g
en

er
at

io
n

s) GNN (bin average)

Influence models

1 1.2 1.4 1.6 1.8 2

5 · 10−2

0.1

0.15

0.2

Load scaling

GNN (bin average)

Influence models

Fig. 4: Failure step error rates lαfailure-step of various models

for IEEE89 (left) and IEEE118 (right) against load scaling α.

2) Branch Level Metrics: In this subsection, we present

several branch metrics that depict the model’s accuracy in

prediction of branch features. But first, we define the branch

failure frequency lfreq,e for any branch e ∈ E. Let De
failed ⊂

Dtrain be the set of train samples where the branch has

eventually failed in the cascade but not as part of the initial

contingency, then we define lfreq,e = |De
failed|/|Dtrain|.

This value captures the prediction difficulty of branches. For

example, predicting the features of a branch that rarely fails

is easier than a branch that fails half the time.

a) Branch Final State Error Rate: Let De
wrong ⊂ Dtest

be the set of test samples in which the model wrongly

predicted the final state of edge e ∈ E. Further, let De
initial ⊂

De
wrong be the samples in which branch e failed as part of the

initial contingency. We do not count such samples as predict-

ing their states is trivial, hence we define the branch final state

error as the ratio lstate,e = |De
wrong|/(|Dtest| − |De

initial|).
Fig. 5 shows the final state error rate for two instances of the

GNN model trained and tested on IEEE89 (left) and IEEE118

(right) datasets respectively. The error rates are averaged over

all test samples containing random initial contingencies and

random load scaling values. As can be seen, the branch final

state prediction error rate by the GNN model is below 6%

and 2.5% at all branches for IEEE89 and IEEE118 systems

respectively.

Further, the error plot in Fig. 5 is generated by averaging

over random scaling values in [1, 2], which demonstrates that

0 0.2 0.4 0.6 0.8 1

0

2

4

6

Branch failure frequency

F
in

al
st

at
e

er
ro

r
(%

)

Generalized GNN

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

Branch failure frequency

Generalized GNN

Fig. 5: Branch final state prediction error rate lstate,e for

IEEE89 (left) and IEEE118 (right) averaged over all load

scaling values [1, 2] against branch failure frequencies lfreq,e.

the GNN model can be generalized over variable load profiles.

However, note that the plot does not contain the performance

of a reference influence model, again because of the influence

model’s inability to generalize over variable load profiles.

Hence, in order to benchmark the performance, Fig. 6 plots the

final state error rates of the same GNN model, tested on three

example load scaling values of 1.40, 1.50, and 1.90, against

different instances of the influence model built specifically for

those load scaling values of 1.40, 1.50, and 1.90.

As seen from these plots, the generic GNN model outper-

forms the load-specific instances of the influence model at

almost all branches, beating the influence model by almost

10% in some cases. However, the influence model performs

better than the GNN model at some branches with failure

frequencies close to 0.5.

b) Branch Failure Step Error Rate: Let De
failed ⊂ Dtest

be the set of test samples where the branch e ∈ E has

eventually failed in the cascade but not as part of the initial

contingency. Say, the true failure step of the branch e in sample

d ∈ De
failed is fd

e and the predicted state is f̂d
e , then we

define the branch failure step error rate as lfailure−step,e =
1

|De
failed

|

∑
d∈De

failed
|f̂d

e − fd
e |.

Fig. 7 shows the branch failure step error rate lfailure−step,e

averaged across random initial contingencies and random load

scaling values. As seen in the plot, the failure step error

rate is in the order of 0.01 time steps. The significantly low

error performance when averaged over random scaling values

demonstrates the GNN’s generalization capability.

The average plot in Fig. 7 does not contain the performance

of a reference influence model because of its inability to

generalize over variable load profiles. Hence, to benchmark the

performance of our model, Fig. 8 plots the branch failure step

error rates of the same GNN model, tested on three example

load scaling values of 1.40, 1.50, and 1.90, and compares it to

different influence model instances built specifically for those

scaling values of 1.40, 1.50, and 1.90.

As seen from the plots, the branch failure step prediction

performance of the generic GNN model is significantly bet-

ter than the load-specific influence model instances. In the

influence model, when doing state prediction in a step-by-

step manner, the errors that occur in initial steps propagate to

later steps, thereby accumulating to a large final error. This

is completely avoided by the GNN model since it predicts

0 0.2 0.4 0.6 0.8 1

0

5

10

15

Branch failure frequency

F
in

al
st

at
e

er
ro

r
(%

)

Generalized GNN

Influence model (1.40)

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

Branch failure frequency

Generalized GNN

Influence model (1.40)

(a) Load scaling = 1.40 for IEEE89 (left) and IEEE118 (right).

0 0.2 0.4 0.6 0.8 1

0

5

10

15

Branch failure frequency

F
in

al
st

at
e

er
ro

r
(%

)

Generalized GNN

Influence model (1.50)

0 0.2 0.4 0.6 0.8 1

0

5

10

Branch failure frequency

Generalized GNN

Influence model (1.50)

(b) Load scaling = 1.50 for IEEE89 (left) and IEEE118 (right).

0 0.2 0.4 0.6 0.8 1

0

5

10

Branch failure frequency

F
in

al
st

at
e

er
ro

r
(%

)

Generalized GNN

Influence model (1.90)

0 0.2 0.4 0.6 0.8 1

0

5

10

15

Branch failure frequency

Generalized GNN

Influence model (1.90)

(c) Load scaling = 1.90 for IEEE89 (left) and IEEE118 (right)s.

Fig. 6: Branch final state prediction error rate lstate,e for

IEEE89 (left) and IEEE118 (right) for various load scaling

plotted against branch failure frequencies lfreq,e.

0 0.2 0.4 0.6 0.8 1

0

2

4

6

·10−2

Branch failure frequency

F
ai

lu
re

ti
m

e
st

ep
er

ro
r

(g
en

er
at

io
n

s) Generalized GNN

0 0.2 0.4 0.6 0.8 1

1

2

3

·10−2

Branch failure frequency

Generalized GNN

Fig. 7: Branch failure steps prediction error lfailure−step,e for

IEEE89 (left) and IEEE118 (right) averaged over all scaling

[1, 2] against failure frequencies lfreq,e.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Branch failure frequency

F
ai

lu
re

ti
m

e
st

ep
er

ro
r

(g
en

er
at

io
n

s) Generalized GNN

Influence model (1.40)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

Branch failure frequency

Generalized GNN

Influence model (1.40)

(a) Load scaling = 1.40 for IEEE89 (left) and IEEE118 (right).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

Branch failure frequency

F
ai

lu
re

ti
m

e
st

ep
er

ro
r

(g
en

er
at

io
n

s) Generalized GNN

Influence model (1.50)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

Branch failure frequency

Generalized GNN

Influence model (1.50)

(b) Load scaling = 1.50 for IEEE89 (left) and IEEE118 (right).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

Branch failure frequency

F
ai

lu
re

ti
m

e
st

ep
er

ro
r

(g
en

er
at

io
n

s) Generalized GNN

Influence model (1.90)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

Branch failure frequency

Generalized GNN

Influence model (1.90)

(c) Load scaling = 1.90 for IEEE89 (left) and IEEE118 (right).

Fig. 8: Branch failure steps prediction error rate lfailure−step,e

for IEEE89 (left) and IEEE118 (right) for various load scaling

plotted against branch failure frequencies lfreq,e.

the failure steps directly. We believe this causes the GNN to

outperform the influence models in this metric.

3) Runtime Analysis: We perform a runtime analysis to

demonstrate how the GNN model can harvest the power of

GPUs to predict cascade sequences much faster than the

flow-based simulation methods. We run cascade predictions

on 11,000 test samples with the CFS oracle, the influence

model, and the GNN model. Table I summarizes the runtime

results. The CFS oracle cannot be run on a GPU, hence it was

tested in MATLAB 2019a on an Intel(R) Core(TM) i9-7920X

CPU@2.90GHz processor with 128GB of installed memory.

Further, influence and GNN models were tested on an NVIDIA

GeForce RTX 2080 Ti GPU with 11GB of total memory.

TABLE I: Prediction time in seconds per 1000 samples.

CFS oracle Influence model GNN model

IEEE89 24.18 2.35 0.53
IEEE118 62.54 1.86 0.28

It can be seen that the time taken by the influence and

GNN models are significantly lower than the CFS oracle.

In the influence model, the matrix multiplications can be

sped up using a GPU. However, because of its step-by-step

prediction nature, each cascade prediction lasts for a variable

number of steps. Hence, we cannot run multiple predictions

simultaneously with the influence model unlike the fully

parallel GNN model. Hence, the GNN model is almost four

times faster than the influence model.

V. CONCLUSION

We considered the problem of predicting the failure cascade

sequence due to branch failures given the initial contingency,

power injection values, and grid topology. We proposed a flow-

free graph neural network model that predicts the gird states

at every generation of a cascade, without requiring power flow

calculations. We showed that the model, in addition to being

generic over randomly scaled loading values, outperforms

the influence models that were built specifically for their

corresponding loading profiles. Finally, we presented a runtime

analysis to show that the model is faster by almost two orders

of magnitude than the flow-based cascading failure simulator.

ACKNOWLEDGMENT

This work was supported by NSF grants CNS-1735463 and

CNS-2106268, and by a research award from the C3.ai Digital

Transformation Institute.

REFERENCES

[1] J. Kim, “Increasing Power Outages Don’t Hit Ev-
eryone Equally,” 2023. Scientific American. Available:
https://www.scientificamerican.com/article/increasing-power-outages-
dont-hit-everyone-equally (accessed: 8-Aug-2023).

[2] Climatecentral.org, “Surging Weather-related Power Outages,”
2022. Online. Available: https://www.climatecentral.org/climate-
matters/surging-weather-related-power-outages (accessed: 8-Aug-2023).

[3] C. Clifford, “Why america’s outdated energy grid is a climate prob-
lem,” 2023. CNBC. Available: https://www.cnbc.com/2023/02/17/why-
americas-outdated-energy-grid-is-a-climate-problem.html (accessed: 8-
Aug-2023).

[4] K. H. LaCommare, J. H. Eto, L. N. Dunn, and M. D. Sohn, “Improving
the estimated cost of sustained power interruptions to electricity cus-
tomers,” Energy, vol. 153. Elsevier BV, pp. 1038–1047, Jun. 2018. doi:
10.1016/j.energy.2018.04.082.

[5] B. Stone Jr. et al., “How Blackouts during Heat Waves Amplify Mor-
tality and Morbidity Risk,” Environmental Science & Technology,
vol. 57, no. 22. American Chemical Society (ACS), pp. 8245–8255, May
23, 2023. doi: 10.1021/acs.est.2c09588.

[6] H. Ren and I. Dobson, “Using Transmission Line Outage Data to
Estimate Cascading Failure Propagation in an Electric Power System,”
in IEEE Transactions on Circuits and Systems II: Express Briefs, vol.
55, no. 9, pp. 927-931, Sept. 2008, doi: 10.1109/TCSII.2008.924365.

[7] P. D. H. Hines, I. Dobson and P. Rezaei, “Cascading Power Outages
Propagate Locally in an Influence Graph That is Not the Actual Grid
Topology,” in IEEE Transactions on Power Systems, vol. 32, no. 2, pp.
958-967, March 2017, doi: 10.1109/TPWRS.2016.2578259.

[8] S. Soltan, D. Mazauric and G. Zussman, “Analysis of Failures in Power
Grids,” in IEEE Transactions on Control of Network Systems, vol. 4,
no. 2, pp. 288-300, June 2017, doi: 10.1109/TCNS.2015.2498464.

[9] H. Cetinay, S. Soltan, F. A. Kuipers, G. Zussman and P. Van Mieghem,
“Comparing the Effects of Failures in Power Grids Under the AC and
DC Power Flow Models,” in IEEE Transactions on Network Science
and Engineering, vol. 5, no. 4, pp. 301-312, 1 Oct.-Dec. 2018, doi:
10.1109/TNSE.2017.2763746.

[10] M. J. Eppstein and P. D. H. Hines, “A “Random Chemistry” Algorithm
for Identifying Collections of Multiple Contingencies That Initiate
Cascading Failure,” in IEEE Transactions on Power Systems, vol. 27,
no. 3, pp. 1698-1705, Aug. 2012, doi: 10.1109/TPWRS.2012.2183624.

[11] J. Qi, J. Wang and K. Sun, “Efficient Estimation of Component In-
teractions for Cascading Failure Analysis by EM Algorithm,” in IEEE
Transactions on Power Systems, vol. 33, no. 3, pp. 3153-3161, May
2018, doi: 10.1109/TPWRS.2017.2764041.

[12] J. Xie, I. Alvarez-Fernandez and W. Sun, “A Review of Machine
Learning Applications in Power System Resilience,” 2020 IEEE Power
& Energy Society General Meeting (PESGM), Montreal, QC, Canada,
2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9282137.

[13] Y. Yang, Z. Yang, J. Yu, B. Zhang, Y. Zhang, and H. Yu, “Fast
Calculation of Probabilistic Power Flow: A Model-Based Deep Learning
Approach,” IEEE Transactions on Smart Grid, vol. 11, no. 3. Institute of
Electrical and Electronics Engineers (IEEE), pp. 2235–2244, May 2020.
doi: 10.1109/tsg.2019.2950115.

[14] Y. Du, F. Li, J. Li and T. Zheng, “Achieving 100x Acceleration for
N-1 Contingency Screening With Uncertain Scenarios Using Deep
Convolutional Neural Network,” in IEEE Transactions on Power Sys-
tems, vol. 34, no. 4, pp. 3303-3305, July 2019, doi: 10.1109/TP-
WRS.2019.2914860.

[15] S. Gupta, R. Kambli, S. Wagh and F. Kazi, “Support-Vector-Machine-
Based Proactive Cascade Prediction in Smart Grid Using Probabilistic
Framework,” in IEEE Transactions on Industrial Electronics, vol. 62, no.
4, pp. 2478-2486, April 2015, doi: 10.1109/TIE.2014.2361493.

[16] R. A. Shuvro, P. Das, M. M. Hayat and M. Talukder, “Predicting
Cascading Failures in Power Grids using Machine Learning Algorithms,”
2019 North American Power Symposium (NAPS), Wichita, KS, USA,
2019, pp. 1-6, doi: 10.1109/NAPS46351.2019.9000379.

[17] H. Zhang, T. Ding, J. Qi, W. Wei, J. P. S. Catalão and M. Shahidehpour,
“Model and Data Driven Machine Learning Approach for Analyzing
the Vulnerability to Cascading Outages With Random Initial States
in Power Systems,” in IEEE Transactions on Automation Science and
Engineering, 2022, doi: 10.1109/TASE.2022.3204273.

[18] R. Pi, Y. Cai, Y. Li and Y. Cao, “Machine Learning Based on Bayes Net-
works to Predict the Cascading Failure Propagation,” in IEEE Access,
vol. 6, pp. 44815-44823, 2018, doi: 10.1109/ACCESS.2018.2858838.

[19] T. N. Kipf and M. Welling, “Semi-Supervised Classification
with Graph Convolutional Networks.” arXiv, 2016. doi:
10.48550/ARXIV.1609.02907.

[20] B. Donon, B. Donnot, I. Guyon, and A. Marot, “Graph Neural Solver
for Power Systems,” 2019 International Joint Conference on Neural
Networks (IJCNN). IEEE, Jul. 2019. doi: 10.1109/ijcnn.2019.8851855.

[21] D. Wang, K. Zheng, Q. Chen, G. Luo, and X. Zhang, “Probabilistic
Power Flow Solution with Graph Convolutional Network,” 2020 IEEE
PES Innovative Smart Grid Technologies Europe (ISGT-Europe). IEEE,
Oct. 26, 2020. doi: 10.1109/isgt-europe47291.2020.9248786.

[22] J. B. Hansen, S. N. Anfinsen, and F. M. Bianchi, “Power Flow Bal-
ancing with Decentralized Graph Neural Networks,” arXiv, 2021, doi:
10.48550/ARXIV.2111.02169.

[23] B. Donon, R. Clément, B. Donnot, A. Marot, I. Guyon, and M.
Schoenauer, “Neural networks for power flow: Graph neural solver,”
Electric Power Systems Research, vol. 189. Elsevier BV, p. 106547,
Dec. 2020. doi: 10.1016/j.epsr.2020.106547.

[24] A. B. Jeddi and A. Shafieezadeh, “A Physics-Informed Graph Attention-
based Approach for Power Flow Analysis,” 2021 20th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE,
Dec. 2021. doi: 10.1109/icmla52953.2021.00261.

[25] C. Kim, K. Kim, P. Balaprakash, and M. Anitescu, “Graph Convolutional
Neural Networks for Optimal Load Shedding under Line Contingency,”
2019 IEEE Power & Energy Society General Meeting (PESGM). IEEE,
Aug. 2019. doi: 10.1109/pesgm40551.2019.8973468.

[26] Y. Zhu, Y. Zhou, W. Wei, and L. Zhang, “Real-Time Cascading Failure
Risk Evaluation With High Penetration of Renewable Energy Based on
a Graph Convolutional Network,” IEEE Transactions on Power Systems.
Institute of Electrical and Electronics Engineers (IEEE), pp. 1–12, 2022.
doi: 10.1109/tpwrs.2022.3213800.

[27] B. Jhun, H. Choi, Y. Lee, J. Lee, C. H. Kim, and B. Kahng, “Prediction
and mitigation of nonlocal cascading failures using graph neural net-
works,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.
33, no. 1. AIP Publishing, p. 013115, Jan. 2023. doi: 10.1063/5.0107420.

[28] A. Dwivedi and A. Tajer, “GRNN-Based Real-Time Fault Chain Pre-
diction,” IEEE Transactions on Power Systems. Institute of Electrical
and Electronics Engineers (IEEE), pp. 1–13, 2023. doi: 10.1109/tp-
wrs.2023.3258740.

[29] X. Wu, D. Wu and E. Modiano, “Predicting Failure Cascades in Large
Scale Power Systems via the Influence Model Framework,” in IEEE

Transactions on Power Systems, vol. 36, no. 5, pp. 4778-4790, Sept.
2021, doi: 10.1109/TPWRS.2021.3068409.

[30] Y. Zhu, Y. Zhou, W. Wei, and N. Wang, “Cascading Failure Analysis
Based on a Physics-Informed Graph Neural Network,” IEEE Transac-
tions on Power Systems. Institute of Electrical and Electronics Engineers
(IEEE), pp. 1–10, 2022. doi: 10.1109/tpwrs.2022.3205043.

[31] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “Mat-
power: Steady-State Operations, Planning and Analysis Tools for Power
Systems Research and Education,” Power Systems, IEEE Transac-
tions on, vol. 26, no. 1, pp. 12–19, Feb. 2011. doi: 10.1109/TP-
WRS.2010.2051168.

[32] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep
Learning Library.” arXiv, 2019. doi: 10.48550/ARXIV.1912.01703.

	Introduction
	Problem Formulation and the GNN Model
	Initial Stage
	Attention Stage
	Averaging Stage
	Final Stage

	Data Synthesis
	Results
	Graph Level Metrics
	Branch Level Metrics
	Runtime Analysis

	Conclusion
	References

