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Abstract—Power systems must maintain the frequency within 
acceptable limits when subjected to a disturbance. To ensure this, the 
most significant credible disturbance in the system is normally used as 
a benchmark to allocate the Primary Frequency Response (PFR) 
resources. However, the overall reduction of system inertia due to 
increased integration of Converter Interfaced Generation (CIG) 
implies that systems with high penetration of CIG require more 
frequency control services —which are either costly or unavailable. In 
extreme cases of cost and scarcity, regulating the most significant 
disturbance magnitude can offer an efficient solution to this problem. 
This paper proposes a Machine Learning (ML) based technique to 
regulate the disturbance magnitude of the power system to comply with 
the frequency stability requirements i.e., Rate of Change of Frequency 
(RoCoF) and frequency nadir. Unlike traditional approaches which 
limit the disturbance magnitude by using the Centre Of Inertia (COI) 
because the locational frequency responses of the network are 
analytically hard to derive, the proposed method is able to capture such 
complexities using data-driven techniques. The method does not rely 
on the computationally intensive RMS-Time Domain Simulations 
(TDS), once trained offline. Consequently, by considering the 
locational frequency dynamics of the system, operators can identify 
operating conditions (OC) that fulfil frequency requirements at every 
monitored bus in the network, without the allocation of additional 
frequency control services such as inertia. The effectiveness of the 
proposed method is demonstrated on the modified IEEE 39 Bus 
network. 

Index Terms—Converter Interfaced Generation (CIG) Integration, 
Frequency Stability, Machine Learning, Power Systems Dynamics, 
Smart Grid. 

I. INTRODUCTION 

As the race to net-zero continues, the integration of more 

Converter Interfaced Generation (CIG) into the power system 

is forthcoming. This leads to the reduction of inertia due to the 

disconnection of Synchronous Generation (SG). In the Primary 

Frequency Response (PFR) phase, the frequency response of 

the network is determined by the available system inertia and 

the disturbance magnitude. The reduction of system inertia in 

the smart grid reduces the available immediate energy that 

resists the rapid frequency deterioration of the 
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network following a disturbance [1]. In addition, it is reported 

that in some real networks with high integration of CIG, the 

frequency response dynamics have been observed as a local 

phenomenon rather than a global phenomenon [1]–[3]. 

Consequently, in a high-CIG-integrated smart grid, system 

operators are faced with two main challenges, i.e., i) large 

volumes of frequency control resources, such as inertia, are 

required to maintain the PFR of the system within acceptable 

margins, and ii) the need to consider the locational aspects of 

the changing system frequency dynamics instead of relying on 

the traditional Centre Of Inertia (COI), which poses the risk of 

unforeseen local protective relay activation. 

To ensure the safe and reliable operation of power systems 

including those with high CIG penetration, [4], introduced a 

sequential optimisation-simulation model for optimising an 

operating condition (OC) with nadir considerations. In this 

iterative process, the method determines the minimum reserve 

requirement by each SG in order to adhere to frequency nadir 

requirements at every bus in the network. Based on the initial 

active power set point of the SGs, a step response is performed 

on every SG iteratively to accurately determine the ramp rates 

of the SG. The system’s dynamic response is then assessed 

through RMS-Time Domain Simulations (TDS) within the 

loop. If the OC is unstable, the generator(s) dispatch is adjusted 

in minor increments until the minimum required ramp rate is 

achieved. In this work, it was effectively demonstrated that by 

considering the unique governor response of each SG, the 

approach can be economically efficient as compared to the 

allocation of resources based on the global minimum inertia. 

However, incorporating TDS within the loop can make the 

process computationally intensive, especially for large-scale 

power systems. In [5], a system optimisation model includes a 

set of hyperplanes describing the system frequency response 

requirements, i.e., nadir and Rate of Change of Frequency 

(RoCoF), as a function of system inertia and maximum 

contingency magnitude. The optimisation model is constrained 

using a linearised equation of the system frequency. Although 

this work enables the identification of OCs which, based on the 

system-wide response, do not violate frequency requirements 

without additional inertia, it cannot capture the locational 

frequency dynamics —which are increasing due to high 

penetration of CIG. Moreover, from an economic perspective, 

using the aggregated system frequency inertia without 

considering the location aspect on the network, may lead to 

higher costs as demonstrated by [3], [4]. 

Machine Learning (ML) models are capable of establishing 

complex relationships and have been used to solve different 

problems in power systems with a high degree of accuracy [6]–
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[11]. Unlike model-driven methods, ML models are datadriven 

approaches that do not rely on solving the Differential 

Algebraic Equations (DAE) of the power system to make an 

estimation. Consequently, ML models can make fast 

estimations at a very low computational budget, which arrays 

them as ideal candidates for real-time applications even in 

largescale systems, where RMS-TDS would be 

computationally slow [12].‘ 

This paper proposes an ML-based approach to address the 

two aforementioned key challenges. The proposed method 

identifies OCs that do not violate frequency requirement limits 

at every monitored bus in the network, without the allocation of 

additional inertial response. This is achieved by employing two 

ML models; the first model captures the locational frequency 

dynamics of the system, while the second model captures the 

unique SG governor dynamic response following a disturbance. 

While it is analytically hard to derive the power system’s 

locational frequency dynamics, the proposed method 

establishes these complex relationships using data-driven 

techniques. Consequently, once trained offline, the proposed 

approach can accurately, and with low computational burden, 

capture the hard-to-model frequency dynamics of the network, 

thereby reducing the risks associated with COI-based methods 

of unforeseen local relay activation. 

II. METHODOLOGY 

This section presents the methodology of applying the 

proposed ML-based technique to regulate the maximum 

disturbance magnitude in a power system in order to meet the 

conditions for locational frequency stability. With the proposed 

approach, operators can identify OCs that meet the frequency 

stability requirements without the allocation of additional 

inertial response. The approach can capture the locational 

frequency response dynamics, elusive to COI-based methods, 

without the use of RMS-TDS (after offline training). This leads 

to fast decision-making which renders it ideal for real-time or 

close to real-time frequency stability monitoring even for large-

scale power systems. 

A. Proposed Method Overview 

The outline of the proposed three-staged methodology for 

ensuring conditions of locational frequency stability being met 

using ML-based disturbance magnitude regulation is presented 

in Fig. 1. Firstly, in the Initialisation Stage, the most economic 

OC is generated by the standard system optimisation model, 

such as Optimal Power Flow (OPF) —without the disturbance 

magnitude regulating constraints. This is then passed to the first 

ML model which predicts the locational frequency stability 

metrics of the system by estimating the nadir and RoCoF 

following a given disturbance. Given the fulfilment of the 

 

Fig. 1. A three-stage methodology for the ML-based regulation of the maximum 
disturbance magnitude for locational frequency stability 

frequency requirements, the process is terminated, otherwise, 

the OC is passed to the second stage. In this stage, the second 

ML model predicts the unique SG governor response following 

the disturbance and time to nadir, i.e. governor ramp rate 

(prr,i) and (tNadir,i) respectively. The data from the first and 

second stages is then passed to the third stage which 

numerically estimates the maximum disturbance magnitude to 

ensure that there is no frequency requirement violation at any 

of the monitored locations in the network. This information is 

used to limit the disturbance magnitude in the optimisation 

problem by generating an updated OC. The process can be 

terminated after this stage, however for validation purposes, the 

first ML model which predicts frequency stability metrics can 

be re-engaged to ensure that there is no violation. 

B. System Frequency Response Dynamics 

The power system frequency is expected to always be within 

the required limits following a disturbance. The rotating inertia 

of a power system —mainly offered by SG is the available 

immediate energy, Ei, that is injected into the power system 

before the activation of reserves [1]. For any given SG i in the 

system, this is stored in the rotor and can be expressed as; 

  (1) 

where; Ji is the moment of inertia of the shaft in kg.m2.s and ωi 

is the rotational speed in rad/s. The total amount of kinetic 
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energy, Esys, available at any particular moment in a power 

system is the sum of total rotational energy available in all the 

N online SG i.e., 

  (2) 

To operate at a stable frequency, the power system is 

expected to maintain a balance between generation and demand. 

The power system dynamics of the system following a 

disturbance can be represented as a swing equation as follows; 

  (3) 

where Pe represents the electric power in the system, Pm 

represents the generator’s mechanical power and MH is the 

inertia coefficient. 

1) RoCoF Formulation: The frequency evolution in a 

network with high penetration of CIG at bus i, in a network with 

N buses, following a disturbance can be stated as [2], [3]; 

  (4) 

where; fCOI is the average frequency response from N online SG, 

while Aiωi represents the oscillations or deviations, at the ith bus, 

from the COI frequency response due to distinct SG generator 

response in the system. In [2], it was demonstrated that it is 

analytically impossible to analytically derive such oscillations 

at every location. In this study, the ML model that predicts 

locational frequency stability metrics, i.e., The Locational 

Frequency Stability Metrics Prediction Model, effectively 

captures the frequency oscillations, Aωi, at every location. This 

factor is dependent on the system operating condition variables 

including; damping, inertia distribution, locational CIG levels, 

generator dispatch, etc. By neglecting these oscillations while 

using the COI during frequency control resource allocation, 

unforeseen local frequency violations may occur as 

demonstrated in [1], [3]. Reformulating (4) to estimate 

individual SG responses, can be stated as; 

  (5) 

where Hi and Sni are the ith SG inertia constant and base power in 

MVA respectively, while fn is the nominal system frequency. 

∆Pi is the power imbalance at the generator bus i following the 

disturbance. The ∆Pi of the ith SG is determined by the governor 

ramp rate (prr,i) and time to nadir, tNadir, derived from the Post-

disturbance SG Governor Response Prediction Model. This 

power injected by the SG directly determines the rotor response 

of the generator following the disturbance. The prr,i and tNadir are 

calculated as follows; 

(6) 

(7) 

where P0,i is the generator output power immediately before the 

disturbance. PNadir,i is the power output of SG i at tNadir,i. t0 is the 

disturbance time (which is universal), tD,i is the governor dead-

band time. The more the SGs connected, the higher the prr. By 

monitoring and regulating ∆Pi, the ith SG response can be 

limited to observe the required minimum RoCoF, RoCoFlimit, as 

estimated below. 

 

The ψmin,i is the minimum power reducing the ith SG’s 

imbalance ∆Pi to observe the frequency requirements. This is 

the power that is redistributed to other SG in the system by the 

system optimisation model following a reduction of the 

maximum disturbance magnitude. 

2) Nadir Formulation: The frequency nadir at the ith bus while 

incorporating the SG unique governor response can be 

expressed as follows; 

(9) 

where f0 is the frequency before the disturbance, while ∆Pi is the 

imbalance experienced by the ith SG. By using 

(6),(7),(10), the minimum nadir, fNadir,i
limit , at bus i can be 

attained by observing the maximum imbalance, ∆Pi
max = ∆Pi − 

ψmin,i, as follows; 

 

The maximum power imbalance, ∆Pi
max, is estimated by; 

 

This enables the frequency nadir of the system (even at a 

locational level) to improve from the previous value i.e., 

fNadir,i
Old , to a value that is equal to or greater than the required 

threshold i.e., fNadir,ilimit . 

C. Dynamic Simulations and Dataset Generation 

ML models are trained and tested using a dataset of results 

generated from the RMS-TDS simulations. Frequency nadir, 

RoCoF, time to nadir (7) and SG governor response (6) 

following the disturbance, are recorded as regression targets of 

the respective ML models. System OCs are generated by 

varying the number of SG units committed, CIG generation and 

the system demand. The CIG is connected to one bus and each 

of the SG is an equivalent generator comprising four equal-

sized units. Consequently, each SG is displaced by CIGs in four 

stages. The rating of SGMV Anew is based on the number of 



Regulation of disturbance regulation magnitude for locational frequency stability using machine learning 

4 

remaining units, u, where u ∈ [1,..., 4] and is then rated to SGMV 

Aold as represented by (13). Similarly, the penetration of CIG is 

therefore scaled inversely as represented in (14) [13]. 

 

Consequently, the penetration level is up to 40% of the 

overall system generation. The system loading ranges from 0.6 

to 1.025 p.u. in steps of 0.25 p.u. The CIGs are all set to operate 

at fixed maximum active power dispatch. All the SGs 

maintained the default active and reactive power output limits 

of 0.2 to 0.85 p.u. and -0.3 to 0.7 p.u. respectively, as per rating. 

The initialisation of OCs was achieved by the Newton-Raphson 

method in DIgSILENT PowerFactory. 

D. Machine Learning Model For Capturing Frequency 

Dynamics 

1) Data Pre-processing and Model Training: In this study, 

two ML models have been used to 1) predict the locational 

frequency dynamics of the system i.e., RoCoFn and Nadirn, and 

2) the SG governor dynamic response i.e., ramp rate (prr,i) and 

time to nadir (tNadir,i). From the generated dataset, a 7030% 

train-test split was adopted. The number of features, M, used by 

the two ML models include the physical and steadystate 

characteristic variables of the network. At the time t−1 prior to 

the disturbance, the input vector x of size (M × 1) is utilised by 

a model pˆ to estimate the RoCoF, 
Rˆ

, and nadir, 
Nˆ

, of the N 

buses of the network as shown below; 

 Rˆn,Nˆn = pˆ(lt−1,gt−1,dt−1,ot−1),∀n = 1,...,N (15) 

where; l is system loading, g is CIG output, d is SG dispatch, 

and o are generator ratings. Assessment of model performance 

was conducted using Cross − V alidation (5-fold) which 

randomly splits the training set into k − fold, whereby each k − 

1 set is used for training, with the remaining set used for testing 

[14]. The sklearn − GridSearchCV function [14], is used to 

optimise the performance of each ML algorithm. 

Standardisation of the dataset is achieved by using the Standard 

− Scaler function which scales every variable to unit variance. 

The stored mean and standard deviation, through Inverse-

Transform, are used to re-scale the data, for testing and 

evaluation. The scaling process is represented as; 

  (16) 

where; zi is the standard score, xi is the value, µi is the mean, σi 

is the standard deviation and si is the scaling factor of the ith 

feature or regression target. M represents the total number of 

dataset features and targets. 

2) Multilayer Perceptron (MLP): The proposed method 

utilises two MLP neural networks to capture locational 

frequency dynamics and unique SG governor response. This 

data is used to determine the maximum disturbance magnitude 

of the system to satisfy the conditions for locational frequency 

stability. MLP is a feed-forward Artificial Neural Network 

(ANN) that contains a minimum of three layers; the input layer, 

the hidden layer with σv neurons each, and the output layer. For 

an MLP model with hidden layers, v, feature vector x, weights 

matrix Wv of size (σv ×σv+1) and bias vector bv of size (σv × 1), it 

can be represented by (17-19). 

 z  (17) 

 ˆz  (18) 

The Rectified Linear Unit (ReLU) activation function, Θ, 

which easily overcomes numerical problems associated with the 

sigmoid is chosen. ReLU is expressed as Θ(ˆzv) = max(0,ˆzv),∀v 

= 1,..,V −1. The predicted frequency stability metrics (N,
ˆ 

R
ˆ
) 

vector, y (1 × 2N), is therefore given as; 

 y = WT
V +1zV + bV +1,y = [R

ˆ
n,N

ˆ
n],∀n = 1,...,N (19) 

The first step in MLP is to propagate the features up to the 

output layer, a step known as forward propagation. Thereafter, 

based on the output, an error, E, is calculated whereby the 

weights in the hidden layer(s) are adjusted to minimise the same 

(back-propagation) [14]. This is achieved through the 

calculation of the error derivative of each weight at a specified 

learning rate, η, in (20). 

 wi ← wi − η∇E (20) 

Finally, these steps are repeated several times over epochs to 

establish the best model parameters with two outputs, i.e., 

RoCoF and nadir. In the study, the fully connected MLP 

architecture used had three hidden layers with 100 neurons 

each, 0.001 alpha, 0.01 learningrate and a maximum iteration 

of 2000 which was determined during sklearn − GridSearchCV 

hyperparameter tuning. 

E. Model Accuracy Evaluation 

The performance of the two ML models is evaluated using 

the Root Mean Squared Error (RMSE) metric. For J OCs in 

the testing dataset, the RMSE between the actual variable (y) 

and the predicted variable (yˆ) is given by (21). 

  (21) 

Where; J is the total number of OCs in the dataset and i is the 

regression target. Errors in critical cases, i.e., those close to the 

stability boundary, impact key decisions, such as ancillary 

service procurement. An overestimate of RoCoF and/or nadir 

may result in the operator over-procuring costly ancillary 

services. Conversely, an underestimate may result in the 

operator procuring insufficient ancillary services, leaving the 

system potentially vulnerable. 
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III. RESULTS 

A. Case Study 

AC OPF was implemented in MATPOWER (using MIPS 

algorithm) and RMS-TDS were conducted in DIgSILENT on a 

modified IEEE 39-bus network as a test bed [13]. The 

penetration of CIG is achieved through the connection at bus 16 

in the highlighted Area 2 of Fig.2. The Western Electricity 

Coordinating Council (WECC) Type 4 Wind Turbine Generator 

control model [7] is used to connect the CIG to the grid through 

a full converter interface. 

Each of the SG [4, 5, 6, 7] is displaced by the CIG in four 

levels as shown by (13) and (14). The instantaneous penetration 

of CIG ranges from 100 MW to 1000 MW, representing close 

to 40% of the system generation. The generator outage event is 

SG 5 which makes a significant generation contribution in the 

region of up to 25%. The thresholds for RoCoF protection and 

protective Under Frequency Load Shedding (UFLS) are 

considered to be -0.5 Hz/s and 59.6 Hz respectively [15]. All 

simulations were carried out on an 11th Gen Intel (R) Core 

(TM) i7-11700 @ 2.50 GHz with 16 GB installed RAM, which 

took close to 6.5 hours to execute 2,200 simulations and 

generate the database, extract key features and targets for the 

training and testing of the two ML models. The Python 

programming language was used for data preprocessing, 

extracting useful features of interest, training the ML 

algorithms, and data analysis. 

 

Fig. 2. The modified IEEE 39-Bus Network highlighting the region with the 
CIG location at Bus 16 

B. Accuracy of the ML Models in Predicting Frequency 

Dynamics 

The RMSE is used to evaluate the accuracy of the two ML 

models in predicting the locational frequency metrics of the 

system i.e., RoCoF and Nadir and the SG governor dynamic 

response i.e., governor RampRate and TimeToNadir. Accurate 

prediction of the locational frequency stability metrics ensures 

the correct estimation of the network disturbance/imbalance 

propagation, ∆Pi. This information is essential to determine the 

permissible maximum disturbance that ensures no locational 

frequency limit violations. In Table I it 

TABLE I 

RMSE PREDICTION RESULTS OF THE FREQUENCY DYNAMICS AND 

GOVERNOR RESPONSE PREDICTION MODELS 

Bus RoCoF(Hz/s) Nadir(Hz) Nadir time(s) Ramping(MW/s) 
30 0.0009 0.0078 0.2636 0.0480 
31 0.0008 0.0084 0.2714 0.3196 
32 0.0009 0.0078 0.2788 0.1547 
33 0.0014 0.0083 0.2817 0.0305 
34 0.0012 0.0078 0.2372 0.4817 
35 0.0013 0.0078 0.2798 1.2844 
36 0.0014 0.0077 0.2751 0.1364 
37 0.0009 0.0082 0.2738 0.0761 
38 0.0011 0.0077 0.3037 0.0389 
39 0.0006 0.0078 0.2602 0.0000 

is observed that the Locational Frequency Stability Metrics 

Prediction Model has the maximum RoCoF RMSE of 0.0014 

Hz/s at Bus 33 and 36. In addition, the maximum RMSE for the 

frequency nadir metric is 0.0084 Hz observed at Bus 31, thus, 

demonstrating a high degree of accuracy by this model. 

On the other hand, the Post-disturbance SG Governor 

Response Prediction Model, which predicts TimeToNadir and 

SG RampRate, portrays a slightly lower accuracy. Over a 

simulation window of 60 seconds, the model has the maximum 

TimeToNadir RMSE of 0.3037 seconds at Bus 38, representing 

0.5062% error. Similarly, the maximum RampRate RMSE is 

1.2844 MW/s at Bus 35 whose SG is rated 800 MV A, 

representing 0.1606% error. The accuracy of this model directly 

affects the accuracy of the estimated maximum disturbance 

magnitude. This accuracy can be improved in several ways 

including; utilising separate models in predicting RampRate and 

TimeToNadir, and using separate models at each location as it 

was done in [13] for transient stability. 

Concerning the computational performance for online 

application in frequency stability metrics prediction, a sample 

of 500 OCs is used. It is found that 300 seconds is required by 

the RMS-TDS while 0.0090 seconds is required by the ANN. 

As a data-driven technique, the ANN does not need to solve the 

DAEs of the network to make an estimation. Consequently, it is 

fast at making estimations even at low computation budget, 

hence, a good candidate for online applications. 

C. Regulation of the Maximum Disturbance Magnitude for 

Frequency Stability 

RMS-TDS are conducted to evaluate the performance of the 

proposed method outlined in Fig. 1. OCs with frequency 

violation are sampled from the test dataset and used to evaluate 

the dynamic response of the system following the adjusted 

maximum disturbance. By implementing the proposed method, 

i.e., the Regulated Model, results from the OPF are exported to 

DIgSILENT for validation. It can be observed in Table II that 

the model without disturbance magnitude regulation, i.e., the 

Unregulated Model, has a minimum nadir of 59.37 Hz and 

maximum nadir of 59.49 Hz —representing 100% of frequency 

requirement violations. These violations have the potential to 

activate the UFLS relays and lead to large-scale blackouts. 
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Contrariwise, after implementing the Regulated Model, better 

results are achieved with an accuracy improving 
TABLE II 

ACCURACY OF THE PROPOSED REGULATED SYSTEM OPTIMISATION 
MODEL 

 Assessment Criteria Value 
Nadir Boundary (Hz) 59.60 

Regulated Model Minimum Nadir (Hz) 59.59 
Unregulated Model Minimum Nadir (Hz) 59.37 

Regulated Model Maximum Nadir (Hz) 59.77 
Unregulated Model Maximum Nadir (Hz) 59.49 
Maximum RoCoF estimation Error (Hz/s) 0.05 
Minimum RoCoF estimation Error (Hz/s) 1.12×10−4 

Regulated Model Accuracy (%) 98.77 

 

Fig. 3. Comparison of locational frequency response (No disturbance 
magnitude regulation (left), With disturbance regulation (right)) following an 
outage of SG 05 with CIG generation of 617 MW at 0.8 system loading 

from 0% up to 98.77%. Out of the 1.23% that caused a violation, 

the minimum nadir is 59.59 Hz, which is 0.01 Hz within the 

stability limits. The errors portrayed by the Regulated Model 

are attributed to the combined predictive error of the two ML 

models. This error can be improved by slightly overestimating 

the threshold as done by [3] and [7] for locational frequency and 

transient stability problems respectively. An example of the 

performance of the two models is given in Fig. 2. It is observed 

that the Regulated Model fulfils conditions for locational 

frequency stability, unlike the Unregulated Model. This 

demonstrates that the former can effectively identify a feasible 

OC without the allocation of additional frequency control 

resources such as inertia. 

IV. CONCLUSION 

In a system with high penetration of CIG, the requirements of 

Primary Frequency Response (PFR) —which are costly and/or 

scarce, can be very significant. In this study, we propose an ML 

technique-based method to identify stable operating conditions 

(OCs), concerning frequency stability, without the allocation of 

additional inertia response. The method can fulfil the conditions 

for locational frequency stability by capturing the locational 

frequency dynamics. This approach captures and considers the 

detailed frequency dynamics of the network in the estimation of 

the maximum disturbance magnitude, which is overlooked by 

COI-based methods, thereby bearing the risk of unforeseen 

local relay activation. Two separate Artificial Neural Networks 

(ANN) are used to predict the locational frequency stability 

metrics, i.e., RoCoFn and Nadirn, as well as the governor 

response of online SG, i.e. RampRatei and TimeToNadiri. By 

monitoring and regulating the maximum power imbalance at 

each bus bar connected to SG i, the maximum magnitude of the 

disturbance necessary to observe the frequency requirements at 

the locational level is determined. Thereafter, the system 

optimisation model (with disturbance regulation, i.e., Regulated 

Model) is used to re-dispatch the generators. The proposed 

method does not rely on RMSTDS after offline training of the 

ML models. This makes it faster and ideal for real-time and/or 

near real-time analysis of even large-scale power systems. 

Using the modified IEEE 39 bus network, results show that the 

method can effectively identify stable OCs without the need to 

allocate more inertia resources. Nevertheless, an interesting 

area for future research work would be the application of the 

proposed method on realworld power networks which are larger 

and more complex. 
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