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Abstract—Both stochastic geometry and discrete-time simu-
lations are useful ways to analyse otherwise unfeasible large-
scale LoRaWAN networks. Currently, very limited research has
been performed on assessing how the two methods compare in
terms of their results when modelling the same scenario. In
this study, such a comparison is performed by replicating via
discrete time simulations performed with NS-3 a common result
from stochastic analysis of a single gateway network. Results
of the comparison show how the two methods are for the most
part equivalent and thus they are both equally employable in
future research. However, attention needs to be paid to the subtle
differences that are characteristic of the two different methods
and can give rise to discrepancies in results.

Index Terms—IoT, LoRaWAN, NS3, Stochastic geometry

I. INTRODUCTION

The Internet of Things (IoT) has been hailed as a revolu-
tionary technology that will have an impact on a plethora of
activities by monitoring, controlling and reacting to data using
an internet-connected network of devices.

The applications of such technology span over multiple
industries, such as the agricultural [1], automotive [2] and oil
and gas [3]. Furthermore it finds applications in smart city
and smart home scenarios, from monitoring the occupancy of
parking lots or seats in a library, to scheduling street lights
dynamically based on traffic, or providing feedback about
the fullness of refuse bins, all the way to personal health
monitoring. While these application have different inputs and
outputs and some key differences, they all share the need for an
underlining communication technology capable of supporting
a massive concurrent number of connected devices that can
communicate over great distances and using as little energy
as possible [4], [5].

Established long-range protocols like satellite and cellular or
short-range ones such as Wi-Fi and Bluetooth are not entirely
suitable for IoT deployments. Long-range ones have too high
energy consumption for devices that are meant to be operated
with batteries and deployed in rural or hard to access regions,
with minimal maintenance required. Shorter range protocols
on the other hand, while being less taxing on a device battery
also do not have enough coverage to be fit for most IoT
applications.

One protocol that gathered traction in recent years is
LoRaWAN: a LPWAN (Low Power Wide Area Network)
protocol which satisfies the fundamental IoT requirements. Out
of various LPWAN that have been proposed in recent years,
LoRaWAN has been regarded as the best protocol for IoT due
to its range, power consumption and capital costs.

Because of the nature and the relative youth of the tech-
nology, very large scale networks have not yet been imple-
mented in real life. Theoretically, the limits of this technology
have been extensively studied, especially those concerning
its scalability [6]. To help analyse these specific scenarios,
both stochastic geometry and discrete-time simulations are
invaluable tools [7]–[9], as they do not require a real network
with thousands of devices to be physically implemented. As
both approaches are utilised in literature in different scenarios,
it is important to establish that the results stemming from the
two different analysis methods are comparable so that they can
used interchangeably depending on the ease of application in
the specific context.

Such a novel comparison is performed in this work by
recreating results originally obtained by stochastic models with
discrete time simulations performed with the NS-3 simulator.

The rest of this paper is structured as follows. In Sec. II
we give a brief overview of the LoRaWAN technology and
its limits regarding scalability. In Sec. III we analyse relevant
literature and in Sec. IV we introduce our NS-3 simulation
setup aimed at recreating a common result from stochastic
geometry models. The results of this comparison are then
discussed in Sec. V, before concluding remarks are given in
Sec. VI.

II. LORAWAN TECHNOLOGY

LoRaWAN is a protocol built upon the LoRa (Long Range)
modulation technique and operates on the licence-free ISM
(Industrial, Scientific and Medical) frequencies: 863-870 MHz
for the EU region [10].

The regulations on these frequencies limit the duty cycle
to 1%, meaning a device can only transmit 1% of the time,
before remaining “silent” for a time proportional to the ToA



of the latest packet and the duty cycle enforced according to
the following:

Tsilence = Tair(
1

dc
− 1), (1)

where
• Tsilence = Time-of-Silence required after transmission
• Tair = Time-on-Air (ToA) of a packet
• dc = duty cycle.
This restricts the maximum airtime per device to about

36 seconds per day. The gateways need to respect this same
duty cycle when transmitting, which means this technology is
focused much more on uplink than downlink. This limitation
makes LoRaWAN unsuitable for high data rate, time-critical,
low-latency applications.

A. Scalability limits

One of the most important metrics that characterise the
quality of a network is its Packet Delivery Ratio (PDR). This
is an indication of the percentage of data that is successfully
transmitted and successfully decoded by any gateway in range
and is defined as:

PDR = 100× packetsReceived

packetsSent
(2)

This is directly correlated with the data rate of each node
and the Time-On-Air (ToA) of a packet. In turn, the ToA
is mostly influenced by the Spreading Factor (SF) of the
transmission, a LoRa parameter related to the number of chirps
that are used to modulate the signal, which can be varied from
7 to 12.

Lower SFs transmissions achieve a higher data rate and have
a much shorter ToA, but have also a shorter range as they need
to reach the receiver with a higher signal power to be correctly
decoded. Higher SFs achieve significantly longer coverage by
decreasing the threshold for successful decoding but at the
cost of an exponentially longer transmission time and greater
power consumption.

A packet must also survive the interference from external
sources and concurrent packets sent on the same frequency
and SF (and to a lesser extent different SF as well [11]).
Because of what is defined as the capture effect, if a packet
reaches the receiving gateway with a certain power difference
with respect to the stronger interferer than it can still be
successfully decoded, otherwise it is lost. The chance of
destructive interference between packets depends on the nodes
density, their location and their SF, the packet transmission
delay and the packet ToA.

Another reason for packet loss is the lack of available
receiver’s demodulation paths. Successfully receiving a packet
involves at first a gateway “locking on” a packet preamble
using one of the possible demodulating paths before checking
that the SNR (signal-to-noise) and SIR (signal-to-interference
ratio) levels are high enough for it to be properly decoded.
This process occupies one of the demodulating paths of the
gateway for an amount of time proportional to the ToA of the
packet. If all the available paths of a gateway are occupied,

the next packet arriving will not be received. The probability
of saturating a receiver’s paths depends on the packets ToA,
the nodes density and location, the transmission delay between
packets and the capacity of the gateways, which is usually 8
channels for commercially available ones.

Finally, as mentioned in Eq. 1 each device has to adhere to
the 1% duty cycle limitation at all times, remaining “silent” for
a time proportional to the ToA of the latest packet sent on each
sub-band. As the transmission delay is setup by the network
designer to be above this value, this is often overlooked as a
possible cause of packet loss. However, there may be cases,
such as with the use of an adaptive duty cycle algorithm, where
the SF a node transmits with changes, affecting the ToA of
subsequent transmissions. If this ends up being faster than the
Time-of-Silence imposed by the regulations, it would result
in “invisible” packet loss. The transmission would formally
not happen, hence the packet is technically never lost, but if
that data point is not queued up for later transmission then the
device will simply discard it, before reading and sending a new
data point when next allowed. This loss would not appear in
the PDR calculation using eq. (2), and for this reason is vital
that this loss cause is kept in mind by the network’s designer.

It is important to note how all these conditions need to be
true at all times as even a single one failing will make cause
a packet to be lost.

III. RELEVANT LITERATURE

Because of the complexity and the practical issues surround-
ing the deployment of a large-scale network, the pursuit of a
generalised network model to study such scenarios has been
a popular avenue in LoRaWAN research. The work done by
Georgiou et. al. in [7] is among the firsts to use stochastic
geometry to model the behaviour of a LoRaWAN network.
Here the authors present a model for a single gateway network,
with nodes distributed around it uniformly. The model assumes
perfect orthogonality between different SFs, thus ignoring the
impact of inter-SF interference. It also neglects the effects of
having a limited number of demodulator paths on the overall
outage probability and models uplink traffic only. The same
scenario with the same limitations is built upon to include
non-uniform nodes distributions in [12] as well as a second
gateway in [13].

The setup performed in [14] is similar, with a single
central gateway, though this work incorporates the effect of
quasi-orthogonality of the spreading factors, using an updated
collision matrix calculated by [11]. Once again the practical
limitation of having a finite number of parallel demodulation
paths at the receiver is ignored and so is downlink traffic.
One of the few studies to take this limit into account is
the one performed in [15]. This paper analyses a single
gateway network with 8 parallel demodulation paths, while
limiting the complexity in other ways, such as assuming
perfect orthogonality.

In most cases, because of the layers of complexity of a
rigorously accurate scenario, papers dealing with stochastic
models of LoRaWAN networks limit the scope of the analysis



to simplified albeit less realistic configurations. This is usually
done by reducing the number of variables present in the
network itself.

On the other hand, discrete time simulations are more easily
set up, requiring no knowledge of stochastic geometry and
performed using existing libraries and software, although they
lack the flexibility to “zoom in” and isolate each moving part
of the LoRaWAN behaviour.

A popular simulator is LoRaSIM, developed in [16] by Bor
et. al. with insight from their experimental results. Among
the papers using this simulator are [17], [18] and the research
performed by Cuomo et. al. in [8], [19], [20]. This is carried
out using a modified version of the LoRaSIM simulator and
is focused on the characterisation of different algorithms to
allocate SFs in a network to increase the overall quality of
service. The simulator works well in this scenario as all that
is required to perform the characterisation is the PDR of the
network and not more granular variables, such as the effect of
each loss on the same PDR.

Another popular way to perform discrete-time simulations
of networks is using NS-3, a network simulator built in C++.

[21] and [9] were among the first published works to use
this simulator, with the development of LoRaWAN specific
modules to be integrated with the existing simulator core.
Both authors focused on scalability analysis and the release
of the code developed by Magrin et. al. in [9] allowed
others to modify the LoRaWAN specific modules and reuse
them. Other than studying scalability, NS-3 has been used
extensively ever since to perform all kind of analysis regarding
LoRaWAN, from comparison with other protocols [22] to
energy consumption assessments [23].

While both techniques have been used in literature to
provide answers regarding the performance of LoRaWAN,
they have rarely been compared and used together, with the
only attempt found in a preprint paper by Magrin et.al. [24].
In this study, the authors use stochastic geometry to first
model a single gateway network, including all known cases of
packet loss and both uplink and downlink. Then they validate
the results using a modified version of their own LoRaWAN
modules for NS-3.

IV. NS-3 SIMULATION SETUP

The LoRaWAN modules for NS-3 developed in [9] went
through additional changes to replicate at the best of our pos-
sibilities the assumptions and setup of the stochastic analysis
performed in [12]. As mentioned in Section III, stochastic
models usually “downgrade” some aspects of LoRaWAN’s
behaviour to keep the complexity of the mathematical analysis
low. Some of these downgrades performed in [12] in respect
to a realistic scenario are:

• The use of a single frequency channel at 868.1MHz
in contrast to the mandatory three default channels for
LoRaWAN in EU (868.1, 868.3 and 868.5MHz), or the
eight used by commercially available hardware (868.1,
868.3 and 868.5, 867.1, 867.3, 867.5, 867.7, 867.9MHz)

• The lack of a limit to the amount of packets that can be
received concurrently due to the available number of par-
allel demodulators on commercially available gateways.

• The use of a custom rejection matrix to deal with interfer-
ence that specifies a 1dB power difference for the capture
effect to occur and also assumes perfect orthogonality
between different SFs.

The number of nodes in the simulation is set to the average
result of the Poisson Point Process (PPP) using the intensity
of 3 devices per km2 described and are positioned uniformly
within a radius of 10755 meters. The SFs for the nodes are
assigned following the common method of simply using the
lowest possible SF per node that will give a strong enough
link to survive the drop in power caused by the path loss.
The standard Friis propagation model implemented in NS-
3 was also slightly modified to match that described. This
allowed the boundaries between SFs to be consistent (3259,
4209, 5436, 7021, 8690 and 10755 meters), and together with
the SF allocation policy gave rise to the network topology
shown in Fig. 1.

Fig. 1: Network topology featuring a single, central gateway
and uniformly distributed nodes with SF allocation based on
their distance to the gateway

Due to the nature of the discrete time simulator, or the
complexity of matching them by modifying the underlining
core functionality of NS-3, the specific, shorter packets ToA
and the random time delay between packets illustrated in
Section III of [12] were not implemented in this work. Instead,
each node transmits 12 bytes of payload (plus 13 of necessary
header for LoRaWAN) at a fixed speed that is dependent
on the node’s SF and the ToA of each packet. Each node
hence transmits as often as it can while remaining under the
duty cycle limitation of 1%. This gives transmission delays of
6.138, 11.286, 20.394, 40.788, 81.576 and 146.817 seconds
for SFs from 7 to 12, respectively.



V. RESULTS & ANALYSIS

The particular result that was recreated is the peculiar shape
of graph of the probability of packet loss as a function of the
distance of nodes to a single, central gateway. This result is
found in a number of papers such as [12], [7] and [14].

While the details and setups of the models in these works
are not the same, the resulting graphs are comparable. The
calculated, theoretical PDR (or the probability that a packet
survives all outage conditions) has in all cases a distinctive
“sawtooth” shape, as shown in Fig. 2.

Fig. 2: The success probability of a packet against the distance
from a gateway of the node sending it, reproduced from
[12]. In blue the overall success probability, in orange the
complementary to the probability of collision and in red the
complementary to the probability of the packet being under
sensitivity

Visual analysis of this result raises a few important points.
As expected, the overall probability of a packet being received
and decoded correctly drops considerably the further from a
gateway the transmitting node is. The distinctive “sawtooth”
shape of the red and blue curves in Fig. 2, which are the
probability that a packet survives the under sensitivity outage
condition and the overall success probability of a packet
respectively, is due to the fact that once a certain distance
is reached the nodes switch to the next SF, thus lowering the
threshold in receive power that the gateway needs to decode
their packets correctly. The increase in both probabilities
happens at the edge between SF boundaries.

As a first step these results were recreated using the discrete
time simulation offered by NS-3, after matching inputs to the
best of possibilities as per described in Section IV.

While the under sensitivity and the PDR curves look
satisfactory, given the inherently different methods used to
recreate them, the interfered (orange) curve was very different,
dropping at each SF boundary but steadily increasing the
further away from a gateway. After consideration, it was noted
how the two losses are treated independently in stochastic

Fig. 3: Initial result for the PDR (blue) and the complementary
to the outage probabilities as a function of a node’s distance
from a gateway

models and calculated regardless of one another. In reality
and in the NS-3 simulation, this is not the case.

A packet needs first of all to be locked on by a gateway by
having a high enough power, hence surviving the sensitivity
check. Only then it can collide (fail because of interference
with others). Therefore, while not all packets are checked for
collision (in case they already failed the sensitivity check),
their power always adds up to the interference on that SF.

While this discrepancy was not easily fixed because of
the way the NS-3 simulator works, a good compromise
was reached by simply acknowledging that the number of
packets that collide is not a percentage of all packets sent
but a percentage of the number of packets that have already
successfully passed the sensitivity check. By modifying the
plot accordingly, Fig. 4 is reached, which this time is very
similar in all three curves.

The final small discrepancy is the performance at SF12. De-
spite the network is shown to perform roughly 5-10% better in
simulation than in the model while using the highest possible
SF, we believe this error is tolerable when comparing the two
different methods. This is especially the case considering that
some assumptions of the stochastic setup, such as the shorter
ToA and the random time interval between packets were not
perfectly replicable in NS-3.

VI. CONCLUSION

Although both have their strengths and weaknesses, this
study shows that stochastic geometry models and discrete-
time simulations are equivalent tools when analysing the
performance of a LoRaWAN network. This is provided that
some key differences between the two methods regarding inter-
dependency of aspects of the protocol behaviour are clearly
understood and accounted for.

In future research, this same analysis will be carried out,
but reverting the NS-3 LoRaWAN modules to perform as



Fig. 4: PDR (blue) and complementary to the outage prob-
abilities as a function of a node’s distance from a gateway
by taking into account timing discrepancies between the two
analysis methods.

they would in a more realistic scenario, instead of matching
the existing stochastic model results, which are generally
operating under simplified behavioural assumptions.
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