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Abstract—Blockchain technology has been utilized in many
business cases due to its capability for the development of
trustless systems. There is a huge potential for building service
marketplaces on top of blockchain technology as decentralized
applications (dApps). In such dApps, the point is to exchange and
purchase assets and record these transactions on the blockchain
to improve the transparency and trust of the marketplace. This
work presents a software framework and describes the software
prototype implementation, which allows for the provisioning of
services on a dApp. The interactions between providers and
customers involved in the procurement of services traded on
the marketplace are recorded on a distributed ledger. In our
dApp, services are provisioned via a configurable auctioning
subsystem. Furthermore, after an auction for a service is finished,
a Service Level Agreement (SLA) is finalized between a provider
and customer. We include a decentralized witness monitoring
subsystem to detect Service Level Objective (SLO) violations on
this SLA, and witnesses participating in SLA monitoring earn
token rewards for their service. Finally, we demonstrate the
feasibility of our prototype using state-of-the-art smart contract
testing methods.

Index Terms—Blockchain, Decentralization, Service Market-
place, dApp

I. INTRODUCTION

Decentralized Applications (dApps) are applications that do
not interact with traditional centralized computing technolo-
gies but rather read data from and write data to a blockchain
[L], [2]. Due to the fact that blockchains are managed by
peer-to-peer networks, modifications to data on the blockchain
are typically considered more trusted and secure than in
traditional architectures[3]], [4]]. Blockchain-based dApps rely
on smart contracts, which are computer programs that run on
the blockchain and perform actions based on inputs without
intermediate processing. The marketplaces for cloud services
are of particular interest since cloud services are generally
provisioned by large providers on a single platform [5], [6],
[7]. Examples of this are Azure, AWS, and Google Cloud,
among others[8]. Because of this, when customers are pur-
chasing cloud resources to satisfy application requirements,
they are often limited to single vendors, especially if they
have already purchased resources from a particular vendor.
We address this issue by designing and developing a dApp
prototype for a marketplace in which services are provisioned
in a fair and transparent way via auctions[9].

When cloud resources are provisioned, they usually have
associated with them a Service Level Agreement (SLA) which
is a legal contract that specifies the conditions under which

that resource is delivered to the customer by the provider
[1Q]. SLAs are typically composed of Service Level Objectives
(SLOs), which are specific stipulations in SLAs. Research
has been done on implementing SLAs as smart contracts and
automating the payout process in case violations are detected.
However, these violations are often reported by a single trusted
third party (also known as an oracle). This goes against
the decentralized promise of dApps due to the single point
of failure vulnerability of oracles [11]. As such, the dApp
developed for this paper addresses this by allowing multiple
oracles to report violations and thus reach a consensus, and
earn rewards for this monitoring service.

In this paper, we present an integrated software framework
that can be deployed as a dApp for the provisioning and
monitoring of services on a decentralized marketplace. The
framework is purposefully generic and loosely coupled. This is
done so that it can be deployed for research purposes or can be
used by dApp developers to instantiate their own specialized
dApp marketplaces. This specialized dApp marketplace could
be a cloud service marketplace, a data marketplace, a software
development marketplace, or any other marketplace where
services are provisioned via auction and monitored according
to the aforementioned decentralized monitoring mechanism.
This framework includes both the smart contract logic run on
the blockchain and the software which allows for interaction
with the smart contract logic.

A. Problem Statement

In a centralized service marketplace, the interactions be-
tween users rely on a trusted third party (TPP) that operates
the platform. This causes several problems:

1) All participating parties must trust that the marketplace
will be efficient and fair. However, this TPP has its
own economic interests and, as such, may be unfair
when facilitating transactions between users in order to
maximize its own profits [12]. For example, the TPP
may operate as a market exchange intermediary and
charge users an unnecessary commission when they are
buying or selling services. This reduces the margin of
profit for market participants.

2) In a centralized marketplace, the TPP may unilaterally
enforce arbitrary rules on the platform participants at
any time. This may include blocking certain users from
participation or changing the rules which dictate how
services are bought and sold. Conversely, the rules of



decentralized marketplaces are dictated by immutable
smart contracts [[13]].

3) In centralized marketplaces, participants do not own
any of their data. Personal information, reviews, and
purchase history are owned by the reputable TPP. This
can cause issues; for example, if the user wishes to
migrate their operations to another platform, they may
not have the right to request the TPP to delete their data.
In a decentralized marketplace, each user controls their
own data, which facilitates trust in the system and eases
privacy concerns [14].

In a decentralized marketplace, the only parties are the buyer
and seller. At the same time, the market is simply a set of
program instructions that automates the transaction, thereby
removing the TPP [15]. Therefore, the focus of our software
framework is primarily on the user interactions related to
SLA instantiation and SLA monitoring on a dApp service
marketplace. This poses the following research question:

e RQ. How to design and implement a flexible soft-
ware framework for a decentralized service marketplace
that facilitates trustworthy business interactions between
users?

This main research question serves as an overall guide for
this paper, including how the software should be designed
to offer support for the interested parties and what the in-
teractions between those parties actually are. This research
question, therefore, invites the following sub-questions:

+ RQI. How to design and implement a software prototype
for a decentralized service marketplace?

e RQ2. How should we design user interfaces and smart
contract logic to provide services between customers and
providers on our decentralized marketplace via auctions?

e« RQ3. How should our decentralized marketplace and
user interfaces be designed and implemented in order to
facilitate trustworthy SLA monitoring?

o« RQ4. How to evaluate the success of the developed
software prototype?

B. Contributions

The main contributions of this paper can be summarized as
follows:

1) We present a design and implementation for a fully
integrated, loosely coupled software framework for a
decentralized service marketplace. This includes both
the on-chain smart contract logic and the off-chain
external application. This software framework can be
used and adapted by dApp developers as a starting point
for further research or industrial development.

2) The software framework includes a configurable auc-
tioning subsystem for service provisioning. As such,
the framework provides users with an effective and
trustworthy mechanism to achieve market exchange.

3) The software framework also includes a decentralized
SLA monitoring subsystem. This allows providers and
customers to configure the rules under which their SLA

is monitored, and allows SLA monitoring witnesses to
earn rewards for their monitoring service.

The rest of the paper is organized in the following way. In
Section [[I] we present the design of the decentralized service
marketplace which we developed. In Section [[TI] the implemen-
tation details of our solution are explained. In Section [[V] the
experimental research and its results are provided. Section [V]
surveys the related work. Finally, in Section we provide
our conclusions and future works.

II. FRAMEWORK OVERVIEW

In this section, we will explain the system overview. The
section is started with an analysis of the actors. Next, the
system architecture is described in detail.

A. Actor Analysis

Actors which interact with the system are human roles,
external systems, or devices that exchange information with
the dApp. With this in mind, we identify the following actors:

1) Service Customers: Service customers use the dApp
to find providers that can offer them services. They should
be able to make requests on the platform for services they
require and enter an SLA with a service provider. They pay
for these services but can receive compensation in case of SLA
violations.

2) Service Providers: Service providers use the dApp to list
their available services on the platform and bid on customer-
initiated service requests. They earn monetary rewards for
these services from customers but may be penalized in case
of SLA violations.

3) SLA Monitoring Witnesses: Witnesses can use the dApp
to monitor an SLA and receive monetary compensation or
punishments when reporting violations correctly or incorrectly.

4) dApp Developers and Operators: Developers can use
and modify the developed dApp framework for specific busi-
ness use cases. They can also perform auxiliary operational
tasks.

B. System Architecture

We can now define the architecture of the system we are
developing. We present our architecture from two viewpoints.
The first is an enterprise viewpoint for managers and stake-
holders, while the second is a computational viewpoint for
developers.

1) Enterprise Architecture: Let us examine the architecture
from an enterprise viewpoint. Namely, we want to provide
an overview of the system from a managerial perspective. In
this way, we show stakeholders, key subsystems, and their
interactions to provide a holistic outline of the system. This
architecture diagram can be viewed in Figure

The two subsystems stakeholders interact with are the
auction subsystem and the decentralized witness SLA mon-
itoring subsystem. Understanding these two dApp subsystems
is critical to understanding the dApp functionality and how
stakeholders use the dApp, so let us examine them more
closely:
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2) Computational Architecture: We can also draft our ar-
chitecture from a computational and data viewpoint. The goal
of this architecture is to visualize how system components
are coupled as well as visualize how data flows between
components. Our computational architecture diagram can be

viewed in Figure 2] Let us examine the design of the system.
__Enters . dgh <M Enters It can most clearly be decomposed into three modules: the
/ @ I_b. graphical user interface module, the communication module,

and the smart contracts module.

Provider Customer

o Graphical User Interface (GUI): The GUI consists of
three submodules, which are GUIs for providers, cus-
tomers, and monitoring witnesses. From the diagram, we
see that the provider and customer Uls can use the GUI
to send and receive auction data, and the witnesses can
send and receive monitoring data. Conceptually, this can
be grouped into user input and output (I0) data. It should

| Auction subsystem be noted that the user IO data also includes authentication

| [Manages auction functionality]

data so that the communication module can correctly send
and receive data to and from the appropriate users.

o Communication Module: The communication module
is primarily responsible for GUI to smart contract com-
munication. Once the communication module receives
the user IO data, it first checks the authentication data
sent by the user. An identity management submodule

Fig. 1. An enterprise architecture diagram of the developed dApp framework.

o Auction Subsystem: This subsystem manages the auction
functionalities in the dApp. As such, service providers
and customers can use it to post both auctions and bids
(as we implement both forward and reverse auctions). The
data posted is recorded on the blockchain by invoking
the smart contracts on the auctioning subsystem. After u_ Interface
this, the auction ends, and a winner is declared according ion Monitoring”
to the rules specified by the auction initializer. Then,
the winning bidder and auction initializer enter an SLA.
It should be noted that there are hundreds of auction
models that exist and can be easily implemented using
smart contracts. In this paper, we choose to implement
four of the most common auction models (i.e., English,
Dutch, first-price sealed-bid, and second-price sealed-
bid auctions.) and their reverse variants. This subsystem
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maps the authentication data sent by the user to the off-
chain identity data storage, where it checks if the user
is registered on the dApp. If this check is successful,
then the GUI communication submodule can send user
IO data to the GUI, or alternatively, the smart contract
communication submodule can send user 10 data to the
smart contract module. We should also mention the time-
critical submodule, which regularly checks the smart
contracts to determine if any deadlines have passed (such
as an auction or SLA ending).

o Smart Contracts: This module contains the smart con-
tract logic of the dApp, which is hosted on the peer-
to-peer networked blockchain. The smart contract logic
handles the auction data processing and SLA monitoring
processing. Furthermore, it handles events like payouts
and submits the appropriate funds to the users’ account
balance data. These account balance changes can be a
result of the auction and SLA monitoring smart contracts
or sent directly by the user in case of deposits and
withdrawals to the users’ account balance. As such, the
smart contracts module handles data exchange between
the communication module and the data stored on the
blockchain.

III. IMPLEMENTATION AND DEMONSTRATION

This section describes how we implemented the dApp
prototype based on the design in Section |lI} The link to our
Github repository can be found hereﬂ

A. Design Choices

When discussing the choice of technologies, it is best to
refer to the technology which allows us to implement each
module in the design, namely the blockchain, smart contracts,
communication module, and GUI. These technologies then
contribute to the overall implementation of the architecture
according to our design.

1) Blockchain: The technology we have opted for to build
the blockchain infrastructure is Hyperledger Fabric (HLFﬂ
It makes use of peer nodes that maintain the ledger and
execute smart contract code, orderer nodes that maintain the
consistency of the ledger world state, and membership service
providers which use cryptographic methods to authenticate
users. In terms of technical considerations from the literature
study, we found that HLF is the best platform for the de-
velopment of dApps due to its best performance for success
rate, average latency, throughput, and resource consumption
KPIs. This is primarily because it is designed for business
use cases that require permissioned blockchains. To store the
world state of the ledger CouchDB is used. HLF provides us
with SDKs for communication with the smart contracts, and
in this case, the Node.js SDK is used. Finally, HLF allows us
to write smart contracts in Javascript, which is a very common
general-purpose programming language. Because of the high

Uhttps://github.com/venoivankovic/awesome_repo
Zhttps://hyperledger-fabric.readthedocs.io/en/latest/

performance and large tooling available this technology was
chosen.

2) Communication module: The communication module is
implemented in Express.jﬂ which is a framework for Node.js
web applications. Express.js is one of the most popular web
development frameworks as it is both minimal and flexible. It
serves as the middle point of contact between the blockchain
and the GUI and as such, acts as an API server. The API
server functions as a RESTful server that follows the HTTP
protocol. This technology was primarily chosen because of
its scalability (Node.js can handle 15000 requests per second)
and ease of implementation. Another motivation for using this
technology is that since the smart contracts are written in
Javascript, it is also beneficial to write the communication
module code in Javascript, as this allows us to use the
Hyperledger Fabric Node SDK for communication with the
smart contracts. Finally, since the GUI is implemented as a
web app JSON data is sent to the communication module,
which can be easily parsed by the API server.

3) GUI: The user interface is implemented as a web app,
meaning that the languages used to program the web pages are
HTMLYS, CSS, and Javascript. An Express.js server is used to
serve the web pages. Implementing the GUI as a web app was
chosen as web apps are very accessible and can be used on
almost all devices with a web browser. To make API requests
on each web page, axiosﬂ and Vue.jsE] are used, in which axios
is used to send and receive HTTP requests and responses, and
Vue.js to easily parse and dynamically render the JSON data
which was received.

B. Smart Contracts

HLF keeps track of data as assets, meaning that we can
keep track of which assets have been posted onto the system
and make modifications to those assets. In our case, assets are
auctions, SLAs, and user data such as account balance. A lot
of our functionalities depend on timed events; however, it is
not possible to call certain functions from within the smart
contract. Therefore, we instead keep track of timed events as
deadline data, and this data is queried periodically by the API
server. It is also possible to determine from within a smart
contract which user invoked a certain smart contract function.
This allows us to return the data specific to the permission that
the user should have. For example, when querying an SLA
as a witness, users cannot see which other witnesses have
already submitted violation votes. The smart contracts were
implemented in Javascript. The main smart contract functions
are listed in Table[} Next, let us examine the smart contract for
the three submodules in Figure [2, namely user data, auctions,
and SLAs.

1) User Data: The blockchain stores account balance user
data account as a simple integer value representing tokens.
There are two ways this account balance can be changed,
namely by the owner of the account or from within the

3https://expressjs.com/
4https://axios-http.com/docs/intro
Shttps://vuejs.org/
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TABLE I
SMART CONTRACT FUNCTIONS OF THE DAPP PROTOTYPE.

Function Name Function Description

Register User Registers a user onto the dApp.

When queried, return users’ information (e.g., their

Query User Data identity and account balance).

Submit Auction Submits an auction object onto the ledger.

Submits a bid object onto the ledger for a certain
auction.

Submit Bid

Returns to the user auctions for which they are

Query Auctions eligible as a bidder.

Returns to the user auctions which they have pre-

Query My Auctions viously submitted.

It can only be invoked with the credentials of the

End Aucti R
nd Auction auction initializer or by the API server.

Return to the user SLAs where they are either a

Query SLAs d .
provider, customer, or witness.

Submit Vote Submits an SLO violation vote onto the dApp.

Ends an SLA. This can only be invoked by the API

End SLA after the SLA duration has passed.

Withdraw Funds Withdraws funds from a user’s account balance.

Add funds Adds funds to a user’s account balance.

smart contract. We allow users to deposit and withdraw funds
from their accounts as this is both realistic and helpful for
debugging. Importantly, users can only add or withdraw funds
from their accounts, not from other accounts. Furthermore, in
case of on-chain events such as an auction ending or SLA
violations occurring, smart contract functions can access the
appropriate user data and add or take away funds to and
from their account. This serves to automate payments and
simulate a realistic payout scenario, which is useful when
developing a marketplace. We have decided to name the
tokens used to represent account balance zCoins. In the current
implementation, this simulated account balance token exists
for our experimental purposes. HLF is designed to be a highly
modular blockchain platform, so an encrypted cryptocurrency
component can be easily added to the original platform.

2) Auctions: The smart contract also allows auctioning
functionality. More specifically, customers and providers can
initialize auctions on the dApp and allow the bidding party
to view them and bid on them. We store the data, not the
metadata, on the blockchain. This is primarily due to the
permissioned blockchain used and the fact that the data is not
too large. Furthermore, it allows us to process the data on the
blockchain directly with the functions of the smart contract
and as such enhance trustworthiness. When auctions end, the
smart contract functions generate an SLA according to the
specific auction rules without any user interference, as well as
awarding the service fee to the provider immediately.

3) SLAs: Finally, the smart contract supports SLA moni-
toring. The SLA customer and provider can query the SLA
and view its data, as can the witnesses selected for the SLA
monitoring, but other users cannot, to maintain privacy. When
the auction is ended a smart contract function instantiates
the SLA and selects the witnesses to monitor the SLA in an

unbiased way [16]. Those witnesses can submit votes to the
SLA for which they were selected. Since the SLA monitoring
contains many timed event transactions (such as votes and
SLA deadlines), timestamps are stored on the blockchain data.
This data is then periodically queried by the API server to
determine if functions such as ending the SLA should be
invoked. When the SLA is ended, the smart contract processes
its data and invokes the appropriate payouts to the users’
account balance.

C. Express.js API Server

When the API server receives incoming requests, it first
checks if the request contains a JSON Web Token (JWT).
If no token is given, it checks if the requests contain data
that signifies that the user is registered on the dApp. If this
is the case, a new JWT is generated for the user and sent
back to the web app. This allows users to log in to the web
app and browse the dApp. Once the user is authenticated the
API server can perform smart contract invocations on their
behalf via the cryptographic wallets stored in the API server
file system. This allows the communication module to relay
user 1O data between the smart contracts and the GUL

The API server also stores the admin ID and uses this
identity to call certain functions on behalf of the dApp, such as
checking if an SLA deadline has passed and ending the SLA
if this is true, or doing the same for auctions. These types of
auxiliary functionalities are done asynchronously to prevent
high loads on the server.

D. Web App

The GUI is used by service providers, customers, and
witnesses. The GUI point of entry is a login page. If the user
has already been registered, they can then login and the API
server sends back their authentication token. Each user type
User Interface (UI) consists of web pages where users can
perform their specific user tasks. Let us examine the GUISs in
more detail. We first describe the Provider and Customer GUI
and then the Witness GUI.

1) Provider and Customer UI: The provider and customer
Uls are relatively similar and symmetrical, given that both user
types can act as auction initializers and bidders. As such, we
have grouped their Uls when discussing them. Both Uls are
web apps and consist of web pages where users can fulfill their
requirements. Let us describe each of the pages to demonstrate
how they allow users to perform tasks on the dApp.

« Homepage. Once users log in to the web app with their
identity, their landing point is a homepage. Here users are
greeted with a welcome card that gives them important
information about how to use the dApp. Furthermore,
users can also use this web page to view their user-
specific data, namely their account balance. We also
include interactivity on this page; namely, from here,
users can deposit or withdraw funds from their account
balance, leveraging the add and withdraw functions from
the smart contract. When a user makes a deposit, the
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Fig. 3. The web app demonstration of the framework.

deposit amount is then added to their account balance
and the result is displayed on the homepage.

o Post Auction. The next page we will examine is the post
auction page. Here, the user defines the service properties,
the SLOs, the monitoring rules, and the auction rules.
This information is filled out using common HTML
forms, which become JSON data when submitted. The
page where auctions are posted is the page with the most
user inputs, as it is here that the possible configurations
are defined. In Figure [3a] we can see how the auction is
configured. There is a button at the bottom of the post
auction page which allows users to post auction objects
onto the dApp for bidding.

« Browse Auctions. According to our design, users of the
customer type can view and bid on provider-initiated auc-
tions and vice versa. Essentially, on this page, customers
can see a list of provider-initiated forward auctions, and
providers can see a list of customer-initiated reverse
auctions. As such, after a provider submits the auction a
customer can view this auction on their Browse Auctions
page, as well as any other auctions which have already
been posted, as shown in Figure For each auction,
the customer can see the auction type, the service type,
the auction initializer, the auction deadline, the service
properties, and the SLOs. Each auction also has a bid
button that, when clicked, leads the user to the auction
card page for bidding.

o My Auctions. Auction initializers can view auctions they
posted onto the auction. The layout is very similar to the
Browse Auctions page, but they can also see the highest
bid currently submitted to the auction. Clicking on the
view button leads auction initializers to the auction card
page.

o Auction Card. Each auction card gives users all the
required information about that auction. If they are the
auction initializer, they may have the option to end the
auction at this point or allow it to end automatically if
they added an auction deadline. If they are the bidder,
they can use this page to submit a bid for the service
being auctioned.

o My SLAs. Once an auction ends, either from an auction
initializer input or from the auction ending due to a

deadline, then providers and customers can view the SLA
on their My SLAs page, as shown in Figure This
layout is similar to the Browse Auctions and My Auctions
pages, except that the items displayed are SLAs.

2) Witness Ul: To facilitate proper SLA monitoring, we
require a Ul for witness monitoring.

o My Monitoring Jobs. Similar to the provider and cus-
tomer, witnesses can also log in to view their user
data, including the monitoring task and account balance.
Furthermore, if they select the “My Monitoring Jobs™ tab,
they can see active SLAs for which they were randomly
selected to monitor for SLA violations. This tab is similar
in layout to the My Auctions, Browse Auctions, and My
SLAs tabs. Each monitoring job leads to a Monitoring
card.

e Monitoring Card. Once a monitoring job has been
selected, the witnesses can submit SLO violations. In
Figure [3dl we can see the monitoring card. This shows
an SLO for which a witness can submit violations if they
detect any. The dApp does not allow witnesses to report
an SLO violation more than once within a time window
specified by the auction initializer when defining the SLA
monitoring rules.

IV. EVALUATION AND VALIDATION

In this section, we are concerned with performance and
quantitative measurements we can make for the smart con-
tracts to test the scalability of the dApp. Because business
transactions such as submitting auctions, bids, and violation
reports are submitted via smart contracts onto the blockchain,
to demonstrate the feasibility of the smart contracts, it is
necessary to benchmark and test their performance. We use
Hyperledger Calipelﬂ a tool for testing Hyperledger Fabric
smart contracts.

A. Experimental Setup

It must be stated that our smart contracts can be subdivided
into three operational types, all of which we must test. Namely,
some functions are create operations, some functions are read
operations, and some functions are update operations. To

Shttps:/hyperledger.github.io/caliper/
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further clarify this, assets are stored on the blockchain in an
append-only structure as well as in a CouchDB database to
keep track of the current world state. These CouchDB assets
are stored in key-value pairs. Create operations place key-value
pairs onto the CouchDB database. Read operations use a key to
retrieve the value associated with that key. Update operations
use a key to retrieve the value associated with a key, make
changes to that value and then write the new key-value pair
onto the CouchDB database and blockchain.

During our experimental runtime, we manipulated the num-
ber of workers, meaning the number of concurrent processes
performing the Caliper test. We also manipulated the rate at
which transactions are submitted. It should be noted that dur-
ing experimentation, the configured rate control may deviate
from the actual rate at which transactions are submitted due
to computational factors. The KPIs which we measure are
throughput, meaning the rate at which valid transactions are
committed, and transaction latency, meaning the amount of
time for the effect of a transaction to be acknowledged by
other network nodes.

B. Experimental Results

1) Create Operations: For the create operations, we will
use the Submit Auction smart contract function. The results in
Figure 42 show that the throughput increases as the send rate
increases. We can also observe that fewer workers generally
lead to higher throughputs. The throughput is quite high, al-
lowing for over 60 transactions per second in all experimental
runs at some point. Furthermore, this is without any failed
transactions. The average latency increases in accordance with
the send rate, and the number of workers does not appear to
affect this.

2) Read Operations: For the read operations, we will use
the Query Auction smart contract function. The results in
Figure [b] indicate that the throughput is higher if there are
fewer workers. However, the high throughput which allows for
over 150 TPS in all experimental runs indicates the system
is scalable. The throughput tends to increase until the send
rate is about 200 TPS, at which point it tends to stagnate
or decrease. Regarding the average latency, we noticed an
interesting result, namely, it tends to increase as the send rate
increases. However, sometimes, the latency begins to decrease
at very high send rates. This behavior does not correlate
to the number of workers, so this may be simply a glitch.
Comparing the results of the read operations to that of the
create operations, we observe a significantly higher throughput
and significantly lower latency.

3) Update Operations: For the update operations, we use
the Submit Bid smart contract function. From the results in
Figure we can see that the throughput tends to increase
with the send rate, although if more workers are used it begins
to decrease at higher send rates. In terms of the throughput,
the high possible number of transactions per second, which
approaches 60 TPS, indicates that the system is scalable. The
latency results indicate that it increases in accordance with the
send rate, similarly to create operations.
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Fig. 4. The performance of the dApp smart contracts.

V. RELATED WORK

Current related research is in multiple directions. Decen-
tralized auctions on the blockchain have been proposed to
have wide potential [17)]. Prasad et al. [18] developed a
decentralized marketplace on the Ethereum blockchain. Their
motivation for this is that centralized platforms can block
merchants from participating at will, the fees paid to the
platform when listing and selling a product, and the lack of



privacy of user data. Pop et al. [19] designed an Ethereum-
based implementation of English, Dutch and first-price sealed-
bid auctions. They conclude that their solution offers a more
secure alternative to traditional online auctioning systems by
providing a stand-alone platform that does not require separate
payment systems. Dolenc et al. [20] provide an overview of
contemporary dApp blockchain development frameworks. The
authors surveyed several blockchain platforms, e.g., Ethereum,
Hyperledger, Hashgraph, EOS, Corda, IOTA, and Multichain.
They compare the major properties of blockchain technologies,
such as ledger type, consensus mechanisms, network types,
and others. Furthermore, they compare the performance of
blockchain systems by examining their throughput and latency.
In our previous work [9]], we introduced a framework called
AWESOME to build a decentralized cloud marketplace and to
address the challenges, e.g., service provider selection and ser-
vice quality assurance. However, the proposed model is still in
the conceptual design stage and lacks usability enhancements
for user interaction. To the best of our knowledge, this paper is
the first model that provides a customizable and flexible GUI
module for users in a decentralized service marketplace.

VI. CONCLUSION

This paper proposes a customizable dApp framework for
user interactions in decentralized service marketplaces. Al-
though the intention was to develop this framework for cloud
marketplaces specifically, the software produced is agnostic
enough that it can be used for other kinds of marketplaces,
such as data marketplaces. This is because any asset or service
can be defined within the framework. Furthermore, although
a commercial product was not developed, decentralized mar-
ketplaces are of growing interest in academia and industry.
Because the software is an open-source project, researchers
and software developers can use the project for their academic
or industrial purposes to develop their own decentralized
marketplaces.

For our future work, more blockchain technologies (e.g.,
Quorum, Multichain, Corda) and auction models (e.g., VCG
auction, double auction) can be considered to integrate with
the current framework. In addition, advanced algorithms can
be designed to optimize the witness module further.
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