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Abstract—Advanced persistent threats (APTs) have novel
features such as multi-stage penetration, highly-tailored inten-
tion, and evasive tactics. APTs defense requires fusing multi-
dimensional Cyber threat intelligence data to identify attack
intentions and conducts efficient knowledge discovery strategies
by data-driven machine learning to recognize entity relationships.
However, data-driven machine learning lacks generalization abil-
ity on fresh or unknown samples, reducing the accuracy and
practicality of the defense model. Besides, the private deployment
of these APT defense models on heterogeneous environments and
various network devices requires significant investment in context
awareness (such as known attack entities, continuous network
states, and current security strategies). In this paper, we propose
a few-shot multi-domain knowledge rearming (FMKR) scheme
for context-aware defense against APTs. By completing multiple
small tasks that are generated from different network domains
with meta-learning, the FMKR firstly trains a model with good
discrimination and generalization ability for fresh and unknown
APT attacks. In each FMKR task, both threat intelligence and lo-
cal entities are fused into the support/query sets in meta-learning
to identify possible attack stages. Secondly, to rearm current
security strategies, an finetuning-based deployment mechanism
is proposed to transfer learned knowledge into the student model,
while minimizing the defense cost. Compared to multiple model
replacement strategies, the FMKR provides a faster response to
attack behaviors while consuming less scheduling cost. Based on
the feedback from multiple real users of the Industrial Internet of
Things (IIoT) over 2 months, we demonstrate that the proposed
scheme can improve the defense satisfaction rate.

Index Terms—Advanced persistent threats (APTs), Context-
aware defense, Few-shot knowledge rearming, Meta-learning,
Threat intelligence, Industrial internet of things.

I. INTRODUCTION

Advanced Persistent Threats (APTs) are sophisticated and
targeted cyber-attacks that are designed to gain unauthorized
access to a system or network and remain undetected for an
extended period. APTs typically involve a multi-stage attack
process, which may include reconnaissance, initial access,
escalation of privileges, lateral movement, data exfiltration,
and maintaining persistence in the targeted system or network.
Collecting and analyzing threat intelligence about known APT
groups, their tactics, techniques, and procedures (TTPs), and

Fig. 1. The workflow of context-aware APT defense based on DNNs.
Different from the traditional protection, detection, and response (PDR)
model, the context-aware APT defense model based on DNNs focuses on
precisely identifying attack stages and adaptively deploying DNNs in each
network domain.

their target sectors can help organizations identify poten-
tial threats and take proactive measures to mitigate them.
Meanwhile, deploying endpoint security solutions, such as
antivirus software, intrusion detection and prevention systems
(IDPSs), and endpoint detection and response (EDR) tools, can
help detect and prevent APTs from compromising endpoints.
Besides, providing a well-defined incident response plan in
place can help organizations quickly respond to and contain an
APT attack, minimize the damage caused, and restore normal
operations as soon as possible.

Context-aware APT defense refers to a type of advanced
threat defense system that utilizes contextual information to
detect and respond to APT attacks, as illustrated in Fig 1. It
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replaces traditional rule matching-based methods [1], [2] with
machine learning-based methods [3]–[5]. Context-aware APT
defense is a proactive method of threat detection and response
that can help organizations stay ahead of sophisticated APT
attacks [6]. This method analyzes network traffic, user behav-
ior, and other contextual information to detect work stages of
anomalies and suspicious activities that may indicate an APT
attack, relying on various machine learning-based behavioral
analytics [7]. Once an APT entity is detected, this system will
respond by isolating the affected system or network segment,
blocking malicious traffic, and alerting security personnel.

While the context-aware APT defense technologies men-
tioned in above are effective in mitigating the risks of APT
attacks, they also have some drawbacks: 1) False positives:
Some APT defense methods, such as intrusion detection sys-
tems (IDSs) and security information and event management
(SIEM) platforms, may generate false positives, leading to
wasted time and resources investigating benign events; 2) Cost:
Implementing APT defense measures can be expensive, as it
often requires specialized hardware, software, and personnel;
3) Complexity: APT defense methods can be complex to
deploy, configure, and maintain, requiring significant expertise
and training; 4) False negatives: APT defense methods may
not detect all APT attacks, particularly those that use advanced
evasion techniques or zero-day vulnerabilities. Through obser-
vation, we find that the bane of these drawbacks lies in the
strong independence and poor coordination among different
defense methods.

To address these problems, we propose a novel few-
shot multi-domain knowledge rearming (FMKR) scheme for
context-aware defense against APTs. By completing multiple
small tasks that are generated from different network domains
with meta-learning, the FMKR firstly trains a model with
good discrimination and generalization ability for fresh and
unknown APT attacks. In each FMKR task, threat intelligence
and local entities are fused into the support/query sets in meta-
learning to identify possible attack stages. Secondly, to im-
prove defense efficiency, an adversarial on-demand distillation
(AOD) mechanism is proposed to transfer learned knowledge
into student models, which can be inexpensively deployed
in each network domain. Compared to the state-of-the-art
resource allocation-assisted defense deployment methods, the
FSKR provides a faster response to attack behaviors while
consuming less scheduling cost. Based on the feedback from
multiple real users of IIoT over 2 months, we demonstrate that
the proposed scheme can improve the defense satisfaction rate.

• A novel few-shot multi-domain knowledge rearming
(FMKR) scheme is proposed for context-aware defense
against advanced persistent threats. The FMKR formu-
lates context-ware APT defense as the meta-learning task,
including meta-training and meta-testing phases. With
the introduction of meta-learning, the FMKR converges
quickly even when the number of collected data samples
corresponding to each attack stage is few and their
distribution is imbalanced.

• To improve the reliability and adaptability of context-

aware APT defense on unknown attacks, we also present
a finetuning-based deployment mechanism, in which the
used fine-tuning data are sampled from the target network
domain in real time. Finetuned models can be deployed
on various devices without the constraints of boundary
security theory.

• Both simulations based on datasets and real observations
in IIoT scenarios demonstrate the feasibility of the pro-
posed methods.

The rest of this paper is structured as follows. In Section
II, we give a comprehensive overview of context-aware APT
detection and few-shot learning to highlight the necessity
of our work. And then, we introduce the framework of the
proposed FMKR scheme and its workflow in detail in Section
III. Subsequently, we introduce experimental evaluations and
real observations in Section IV. Finally, we give the concluding
remarks in Section V.

II. RELATED WORK

In the past few decades, cloud-based threat detection sys-
tems have made unprecedented progress. Moreover, many
machine learning-based security products such as FireEye
Helix, Palo Alto Networks Cortex XDR and Cisco Umbrella
have played a huge role in defending against network attacks.
However, as network attacks become increasingly intelligent,
profit-driven, and organized, traditional security boundaries
are gradually disappearing. Therefore, the adoption of zero-
trust, few-shot, and adaptive security policies has become an
inevitable trend in the development of the era. The purpose
of these policies is to enhance the reliability and flexibility of
network security, in order to better protect the network security
of enterprises and users.

A. Toward Context-aware Detection against APTs

The evolution of APT detection technology has been driven
by the increasing sophistication and complexity of APT at-
tacks, as well as the need to detect and respond to these
attacks in real time. The APT detection technology has gone
through several stages: 1) Signature-based detection: It in-
volved creating signatures, or patterns of known malicious
code, and using them to identify and block known APT attacks
[8]. 2) Behavior-based detection: It involves monitoring for
unusual or malicious behavior, such as lateral movement,
privilege escalation, and data exfiltration, that may indicate
an APT attack [9]. Therein, abnormal detection focuses on
identifying deviations from a baseline of normal activity by
correlating large volumes of data from multiple sources, such
as logs, network traffic, and endpoint behavior [10]. 3) Threat
intelligence: It involves collecting and analyzing information
about potential APT threats, such as indicators of compromise
and attack methods, and using this information to proactively
detect and respond to APT attacks [11].

Emergence of ATT&CK and Kill Chain models has pro-
moted the development of context-aware APT defence, which
can help security teams better understand and assess the threat
of network attacks, and provide a structured approach to



collecting and analyzing threat intelligence. These models can
also help security teams make better security decisions and
enhance collaboration and information sharing among security
teams. Context-aware APT detection involves using artificial
intelligence algorithms to analyze large volumes of data in
real time, identify patterns and anomalies, and respond to
potential APT threats. Graph learning [9], semi-supervised
learning [10], federated learning [12], [13], and multi-modal
learning [14], [15] have been studied to discover features of
each APT attack stage. However, the low correlation and slow
time-varying characteristics of APT attacks make the detection
model have a high false alarm rate. Meanwhile, the imbalanced
distribution of collected threat intelligence and local entities
severely restricts the detection accuracy and generalization
ability. Besides, due to the lack of real-time information about
heterogeneous network environments that will be deployed,
many small and medium-sized enterprises are unable to afford
the cost of deploying complex APT defense strategies.

B. Few-shot Learning and Knowledge Transferring

Since most security agencies only can intercept a limited
number of APT attack samples, few-shot learning, and knowl-
edge transferring may become important enabling technologies
of context-aware APT detection. Authors in [16] firstly con-
structed a few-shot learning framework for SCADA systems
to detect malicious intrusions, which has low computing cost
so that can work on edge devices and endpoints. Literature
[17] specified that training an APT detection model on edge
devices and endpoints may suffer from an imbalanced data
distribution problem and designated a class balance loss to
improve the few-shot learning framework. But the robustness
of few-shot learning is still very weak. T. Ye, et al. [18]
proposed to use a Latent Dirichlet Allocation (LDA)-based
pseudo samples generation algorithm to generate more attack
samples to deal with the non-robustness. Nowadays, few-shot
intrusion detection [19] has achieved a high accuracy of up
to 99.62%, and few-shot unseen malware detection also has
obtained more than 90% accuracy [20]. However, we find
that most of existing few-shot learning methods have low
practicality because 1) heterogeneous network environments
can not run these few-shot learning models without software
upgrading; 2) Model training process does not consider the
current defense strategies so that detection results have a high
delay in associating with response measures; 3) it is very hard
to transfer the knowledge of APT detection model in one
network domain to another domain for complex correlation
of users and systems lacks self-similarity [21]–[23].

III. FEW-SHOT MULTI-DOMAIN KNOWLEDGE REARMING
FOR CONTEXT-AWARE APT DEFENCE

In this section, we first formulate the problems that we will
resolve in this article. And then, we introduce the framework
of few-shot multi-domain knowledge rearming (FMKR) for
context-aware APT defense in detail.

Fig. 2. The workflow of proposed FMKR. Both network traffic and syslog
records are sampled, paired, labeled, and split into multiple meta-learning
tasks. Each FMKR task contains support/query pairs, which are essential to
improve the model generalization ability to unknown attack samples. To adapt
to different network domain, the pre-trained model is fine-tuned with fresh
samples before being deployed on edge devices. With FMKR, we can obtain
a scalable, accurate, and adaptive threat detection model against multi-stage
APT attacks.

A. Proposed FMKR framework

In a common deep learning task, a basic objective is to find a
proper network parameter θ to correctly map given inputs into
the corresponding labels. To obtain such a model parameter,
we have to collect massive data samples and labels, being
denoted as D = {(x1, y1), (x2, y2), ..., (xi, yi), ..., (xN , yN )},
xi ∈ Rd, yi ∈ {0, 1} to estimate the θ. Usually, the model
parameter is updated using the stochastic gradient descent
(SGD) algorithm, following the equation of θt+1 ← θt −
η∇Lθ(xi, yi). With the supervised learning mode, the essence
of model training is to constantly adjust the classification
boundary to fit all the given data samples and labels. However,
if only training samples are considered but testing samples are
not considered, the obtained model parameters will be difficult
to have the human-like generalization ability, so the model fθ
will make mistakes on xi+δ, where δ is a perturbation on xi.

Moreover, in a real network environment, the distribution of
training data is always imbalanced. For example, “NT” stands
for “normal traffic”, “RN” is “Reconnaissance”, “EF” denotes
“Establish Foothold”, “LM” represents “Lateral Movement”,
and “DE” is “Data Exfiltration”. The number of “DE” samples
is very small (≤ 10), while the number of “NT” samples
is very large (≥ 30000). When we collect these samples to
train the M-classification model, the obtained M-classification
model f can achieve high accuracy on “NT” samples, but low
accuracy on “DE” samples. Therefore, when the network is
attacked by unknown threats (only some stages are known),
f cannot identify whether the attack is successful because it
only learns a little knowledge about “DE”.

To address the above few-shot, unreliability, and data im-
balance problems, We have taken three important steps: 1)
Traffic and Syslog fusion, 2) Meta learning-based knowledge
extraction (MKE), and 3) Finetuning-based deployment. The
traffic and syslog fusion is implemented using timestamp
alignment, thus the dataset D is expanded to D̂ = {(xt

1 :
xs
1, y1), (x

t
2 : xs

2, y2), ..., (x
t
N : xs

N , yN )}. The MKR no longer
focuses on optimizing a single task but serves to transfer



knowledge extracted from given tasks to a new task. In meta-
learning, each task is isomorphic (that means they are all k-
classification problems), but the number of training samples
used for each task can be very different. Samples consisting
of “NT, RN, EF”, “NT, RN, LM”, “NT, EF, LM” and “RN,
EF, LM” are added to the support set, while the others are
added to the query set. In this case, the “DE” and its unknown
variants can be detected. The finetuning-based deployment
is proposed to improve the adaptability of the trained meta-
learning model to local samples, which modifies some neural
network layers on users’ demands and retrain the neural
networks with additional information about network states.
Fig. 2 shows the entire framework of FMKR.

1) Traffic and Syslog Fusion for Dataset Construction: To
integrate and analyze the syslog records and traffic files, we
use the timestamp to align the data flow with syslog records.
The limited time window is 2s, which means if the timestamp
difference between specific data flow and syslog record is
within 2s, they are remarked as the same label. After the
above alignment processing, there are 642 syslog samples left,
of which there are only two types of abnormal samples and a
total of 17 samples. For APT attacks, completely relying on
the timestamp to implement label fusion is inefficient for many
attack behaviors are hidden and latent in the IIoT network.
Therefore, all pre-processed samples is packed into a query
set and a support set. We denote the network traffic as xt and
the syslog data as xs. Therefore, the paired sample can be
denoted as X = {xt

n;x
s
n}, X ∈ Rn×d, where n represents

the batch size, d denotes the dimension of the sample vector.
The label set of paired samples is denoted as Y , which are
generated according to attack stages. Support/query sets are
generated according to Algorithm 1.

2) Meta learning-based Knowledge Extraction: To guaran-
tee the generalization ability, we first use meta-learning as the
fundamental model to achieve context-aware APT detection.
And then, to deal with data imbalance, we introduce a class
equilibrium loss, that is, configuring different costs on the
normal and abnormal categories so that the calculation process
of the loss function pays more attention to the categories with
higher costs. The cost of each class is the ratio of the maximum
number of samples in all classes to the number of samples in
this class: λc = mmax

mc
, where λc denotes the cost of c class,

c ∈ [0, C]; mmax represents the maximum number of samples
in all categories; mc represents the number of samples in c
category, and n =

∑C
c mc. Therefore, the class balance loss

is defined as follows:

LD =

C∑
c

λcLc = −
C∑
c

λclog
exp(xc, yc)∑C
c=1 exp(xc, yc)

(1)

where Lc denotes the cross entropy loss on class c, and LD

denotes the total loss on a dataset D.
In the classical meta learning algorithm [24], each training

round contains an outer loop and an inner loop. Combined
with Eq. (1), the loss function in the inner loop that can deal

Algorithm 1: Support&query sets generating via fused
data

1: Input: Sampled network traffic xt; Sampled syslog
records xs; Initialize meta task T0; Label set Y .

2: Output: Support set DS ; Query set DQ.
3: Set i = 0, j = 0, i ≥ j;
4: for each network traffic xt

i ∈ xt do
5: Identify the timestamp T t

i of xt
i;

6: for each syslog record xs
j ∈ xs do

7: Identify the timestamp T s
j of xs

j ;
8: if T s

j ≤ T t
i + θ&T s

j ≥ T t
i − θ then

9: Fuse Xf = xt
i and xs

j as xt
i : x

s
j ;

10: else
11: Zero Padding Xf = xt

i : 0;
12: end if
13: end for
14: end for
15: Fuse the Y t and Y s as Y f

16: for Each label y ∈ Y f do
17: if y == “DE” then
18: Put the corresponding sample into DQ

19: else
20: Put the corresponding sample into DS

21: end if
22: end for
23: Return DS and DQ

with imbalanced data samples is formulated as follows:

LD
τk
S
(θt)← 1

|Dτk
S |

∑
(xc,yc)∈D

τk
S

Lc(fθt(xc), yc) (2)

θt ← θt − α∇LD
τi
S
(θt) (3)

where T = {τk}, k ∈ [1,K] denotes a batch of meta tasks.
With the inner loop, we can obtain a pre-trained model that
can learn a good initial weight to achieve fast adaptation on
new tasks.

The outer loop utilizes the model pre-trained in the inner
loop to compute the query loss and gradients. With query
gradients, we can update model parameters again to improve
the model reliability on new tasks.

LDt
Q
(θt)← 1

|Dt
Q|

∑
(x′

q,y
′
q)∈Dt

Q

L(fθt(x′
q), y

′
q) (4)

θt ← θt − β∇LDt
Q
(θt) (5)

In the MKR task, the final output vector of the neural
network is the probability that the sample corresponds to
each type of label (attack stage). To make the output of the
neural network as close to the true label as possible, the mean
square error (MSE) loss can generally be used to calculate the
distance between the output vector and the true label. However,
in most meta learning tasks, only the category with the highest
probability is generally taken as the final prediction result, and



Algorithm 2: Training via MKR
1: Input: Dataset for Task slices D = {DS ,DQ};

Hyper-parameter α and β; Initialize model parameters
θ0; The total training round T .

2: Output: Model parameter θT .
3: Obtain the initialized θ0, α, β.
4: for each training round t ∈ T do
5: On the cloud:
6: Parsing the received messages from distributed

endpoints.
7: if S == True then
8: Execute model replacement.
9: end if

10: Randomly pick a batch of tasks;
11: for each task τi ∈ T do
12: Compute

LD
τk
S
(θt)← 1

|Dτk
S |

∑
(x,y)∈D

τk
S

ℓ(fθt(x), y);
13: Update the model with centralized support set:

θt ← θt − α∇LD
τk
S
(θt);

14: end for
15: On the edge/endpoint:
16: LDt

Q
(θt)← 1

|Dt
Q|

∑
(x′,y′)∈Dt

Q
ℓ(fθt(x′), y′);

17: Update the model again via distributed query set:
θt ← θt − β∇LDt

Q
(θt)

18: Send a message to the cloud for requesting model
replacement.

19: end for
20: Output the model parameter θT .

the output vector does not need to be exactly equal to the true
label. Different from the MSE loss, the cross entropy loss
only focuses on the probability corresponding to the correct
classification result and can establish a classification boundary
with a strong generalization ability in practice. However, in the
field of threat detection, the goal of model training is not only
to pursue high accuracy but also to prevent false positives and
false negatives.

3) Finetuning-based Deployment: Although the meta learn-
ing can significantly improve the generalization ability and
the class balance loss can accurate the convergence speed, we
still need to enhance the accuracy of the proposed FMKR on
new tasks. Thus, we propose an finetuning-based deployment
mechanism, which can be implemented with three different
modes: 1) remove and replace the classification layer; 2) re-
initialize N layers and replace the classification layer; 3)
extend with N more layers and replace the classification layer.
In order to fix the knowledge of the pre-trained model, we
adopt the third fine-tuning mode to implement on-demand
model fine-tuning. Firstly, we freeze M layers’ model weights
in the pre-trained model and then extend N new layers.
Secondly, we train the extended N layers with local data
samples. Thirdly, the classification layer is also removed and
replaced according to the number of attack stages. During the
fine-tuning process, we use new samples that are collected

Fig. 3. Deploying the proposed FMKR in 5G/6G-enabled IIoT, where no
existing security boundaries are assumed.

from the local network in real-time to query and update the
pre-trained model.

It can be seen that meta-learning and fine-tuning have been
used in many machine vision algorithms, thus what is the nov-
elty of the proposed FMKR framework? Firstly, the training
process of the proposed FMKR is cloud-edge synergistic. In
the cloud data center, there are sufficient data samples that
can act as the support set of FMKR to train a better model
initialization parameter. In the edge/endpoint, an FMKR agent
is responsible to fine-tune the model via distributed query
sets on demand. To this end, the FMKR is the first work to
integrate fine-tuning with meta-learning. Secondly, we use a
model replacement trick to share the knowledge to enhance the
model adaptability to unknown attacks, which further improves
the model generalization ability.

IV. EXPERIMENT

A. Experimental Setup

Industrial Internet of Things (IIoT) can provide massive
data for accurate mapping between virtual space and physical
entities [25], [26]. However, according to extensive investi-
gations, IIoT also brings many emerging security challenges
into traditional industrial control networks. On one hand, more
remote control functions and frequent data exchanges are
supported in IIoT so that new system vulnerabilities may be
exploited by attackers. Furthermore, more convert intrusion
paths may be discovered [27], [28]; On the other hand, due to
the diversity and heterogeneity of IIoT devices, the methods
of identifying unknown security threats must be upgraded to
support artificial intelligence, which can rapidly extract the
high-dimensional features of sampled networks traffic data and
syslog files [9], [29], [30]. Our methods are implemented on
a real IIoT platform.

1) Datasets and Model Configuration: Methods for sam-
pling network traffic and syslog data vary with the target
objects. The network traffic in the experiment is demonstrated
with the pcap data and the csv data files, while the syslog
data is mainly sampled from audit.log files contained in
each ...log/audit folder. As mentioned above, there are three
sub-datasets after data pre-processing, one is a dataset of
86, 691 samples containing only traffic data, and the other is



Fig. 4. The performance of ResNet-based FMKR method. It can be seen that fusing syslog and network traffic can achieve compromised performances,
which is essential to aggregate knowledge to discover unknown attacks.

a syslog dataset containing only 642 samples after timestamp
alignment, the last one is an extended dataset that assigns the
missing syslog data to 0, which contains 87732 samples. In
the following experiment, the first dataset is used to train a
model only with traffic data, the second dataset is used to
train another clean model only with syslog data, and the third
dataset is used to train an FMKR model.

2) Model Settings for Experiments: The FMKR includes
multiple uni-modal models, as mentioned previously, both
MLP and ResNet are used to train the multi-modal learning
model. For the MLP network of PCAP files, the input layer has
80 neurons; the two hidden layers contain 64 hidden neurons
and 32 hidden neurons, respectively. The activation function
layer behind each hidden layer adopts the ReLU function.
For the MLP network of log files, the input layer has 14
neurons, each of the hidden layers contains 20 neurons, and
the activation layer also has 12 neurons. For the ResNet model
of PCAP files, there is a 1 ∗ 3 two-dimensional convolution
layer with 1 input channel and 2 output channels, a batch
normalization (BN) layer, a 1∗3 global aggregation layer, and
then 4 ResBlock layers. Therein, each ResBlock is composed
of 2 residual modules, the first residual module uses a 1 ∗ 1
convolution layer to directly add the input into the output.
Moreover, the number of output channels of the next three
ResBlocks is twice the number of input channels, and the
output shape is half of the input shape. After that, it goes
through a 1 ∗ 3 global aggregation layer, then uses a flattened
layer to reduce the dimension into a one-dimensional vector,
and finally passes through 3 fully-connected layers. For the
ResNet of log files, there are only two residual blocks.

B. Evaluation Matrix

Our experiment analyzes the performance of each model
from the following four indicators: model accuracy, model
precision, recall rate, and F1-score. Model accuracy is a com-
mon and intuitive indicator to measure model performance.
However, problems may also arise in the case of imbalanced
sample distribution. For example, a testing set contains 95%
of the positive class and the model predicts all inputs as
positive classes with 95% accuracy. Such a model has a
very low generalization ability. The model precision is the
correct ratio of the classifier on the positive samples, which

focuses on whether the classifier is accurate enough on the
positive samples. The recall rate is the ratio of the samples of
the positive class judged by the classifier to all the samples
of the positive class, this indicator focuses on whether the
classifier can find more positive samples. The F1 score is the
harmonic average of model precision and recall rate, which
comprehensively measures the classification performance. In
our experimental settings, all abnormal samples is labeled as
“positive”. The formulas for calculating these indicators are
shown as follows:

Acc =
TP + TN

TP + TN + FP + FN
(6)

Prec =
TP

TP + TN
(7)

RR =
TP

TP + FN
(8)

F1 =
2 ∗ Prec ∗RR

Prec+RR
(9)

Therein, TP represents the number of samples that are cor-
rectly predicted to be abnormal categories. This experimental
scene includes the number of correctly-predicted abnormal
categories. TN represents the number of samples that are
correctly predicted to be normal categories. FP is the number
of samples that are incorrectly predicted to be abnormal
categories, that is, the number of samples that are actually
predicted to be abnormal categories from normal categories,
and FN is the number of samples that are incorrectly pre-
dicted to be normal categories.

C. Results and Discussion

In this section, we will introduce experimental results and
discuss the performance of the proposed FMKR. Each exper-
iment records the change of the loss function over the 200
epochs and the accuracy of the training and testing sets.

1) Baseline Results: Firstly, we train three models, 1) The
traffic-only model with PCAP files, 2) the syslog-only model
with csv files; 3) the traffic and syslog-fused model. The
results of traffic-only model, syslog-only model, and traffic
and syslog-fused model are evaluated using the ResNet. The



details are illustrated in Fig. 4. The recall of traffic and syslog-
fused models increases rapidly, while the recall of traffic-only
models increases slowly. The accuracy of a syslog-only model
soared before 150 epochs and then begins to oscillate violently
due to a very small number of training samples. Based on these
observations, we can find that fusing syslog and network traffic
will achieve compromised performances, which is essential to
aggregate knowledge to discover unknown attacks. Therefore,
we further evaluate the detection ability of the proposed
FMKR scheme against SOTA methods.

TABLE I
COMPARISON RESULTS OF DIFFERENT FEW-SHOT THREAT DETECTION

METHODS AGAINST APT ATTACKS

Attack FC-Net FMKR Fine-tuned FMKR
stages ACC F1 ACC F1 ACC F1

NT 97.99 96.05 97.55 95.22 97.82 95.73
RN 96.10 92.49 95.49 91.37 96.20 92.31
EF 95.32 91.06 94.46 89.50 96.11 92.51
LM 70.04 53.87 93.12 87.16 93.98 88.64
DE 16.67 9.09 83.54 71.73 100.0 100.0

Total 96.66 93.54 96.15 92.59 97.33 94.8

2) Comparisons to SOTA Methods: Few-shot threat detec-
tion is a relatively emerging topic so there are only a few
related studies available for comparisons. Therefore, to further
verify the superiority of the proposed FMKR, we modified
the FC-Net settings in [19] to complete the threat detection
task based on DAPT 2020 dataset. The detection results are
compared in Table I. It can be seen that the FMKR performs
better F1 score than existing methods on the samples of
the “DE” stage. Therein, “NT” stands for “normal traffic”
in the dataset, “RN” is the “Reconnaissance” stage, “EF”
denotes “Establish Foothold”, “LM” represents for “Lateral
Movement”, and “DE” is the “Data Exfiltration”.

D. Ablation Experiments of Proposed FMKR

1) Reasonable batch size is important for the FMKR con-
vergence.: The suitable hyper-parameters for different ResNet-
based FMKR models are not consistent, and the actual training
should also depend on the specific situation. To present the
impact factors to the performance of proposed FMKR scheme,
we evaluate the FMKR under different batch sizes: 128, 64,
and 32, respectively. The FMKR model is more suitable for
the hyper-parameters with a batch size of 128, as illustrated
in Fig. 5. The accuracy of the ResNet-based FMKR model
fluctuates violently when the batch size is 32 or 128. When
the batch size is 64, the accuracy changes smoothly and other
performance indicators are also better, indicating that the batch
size of 64 is the most suitable for ResNet-based FMKR.

2) The defense satisfaction rate is sensitive to the number
of fresh samples for model fine-tuning.: As introduced in
prevision, the FMKR is cloud-edge synergistic. Before being
deployed on endpoints, the FMKR models should be fine-
tuned with fresh samples. Model fine-tuning can be initiated
through endpoint requests or periodically updated through the

Fig. 5. The FMKR performance under different batch sizes.

cloud. To maximize available knowledge of multiple network
domains, cloud data center can collect model parameters from
distributed endpoints and aggregate them as a global model.
After aggregating, endpoints can fine-tune the global model.
In our experiments, we consider four different strategies:

• Highest accuracy first, the operator monitors all fine-
tuned FMKR models on edges/endpoints, and select the
model with highest accuracy as the fine-tuned model in
the next training round.

• Fine-tune after aggregation, introducing the aggregation
algorithm of federated learning to achieve a unified model
at cloud data center, and distribute the aggregated model
to each endpoint for fine-tuning.

• Random fine-tuning, randomly select a model from the
endpoints as the fine-tuned model in the next training
round.

• Fine-tuning itself. Take itself as the model to fine-tune in
the next training round.

Fig. 6. Observations results under different model deployment strategies.
Each strategy works 15 days.

Fig. 6 shows the model accuracy on unknown attack samples
and computing cost of proposed FMKR under different model
deployment strategies. Since both “highest accuracy first” and
“fine-tune after aggregation” strategies require to retrieve all
edges/endpoints, the computing cost will increase with the
number of participants. In our observations, the number of



participants is configured as “10”, thus their computing costs
are about 10 times of “random replacement” and “fine-tuning
itself”.

V. CONCLUSION

In this paper, a few-shot multi-domain knowledge rearming
(FMKR) scehme is proposed for context-aware APT detection.
By completing multiple small tasks that are generated from
different network domains with meta-learning, the FMKR
firstly trains a model with good discrimination and generaliza-
tion ability for fresh and unknown APT attacks. In each FMKR
task, both threat intelligence and local entities are fused into
the support/query sets in the meta-learning task to identify
possible attack stages. Secondly, to rearm current security
strategies, an finetuning-based deployment mechanism is also
proposed to transfer learned knowledge into the local model,
while minimizing the defense cost. Compared to multiple
model replacement strategies, the FMKR provides a faster
response to attack behaviors while consuming less computing
cost. Based on the feedback from multiple real IIoT users
over 2 months, we demonstrate that the proposed scheme can
improve the defense satisfaction rate.
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