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Abstract—Recently, the world has witnessed the most severe
pandemic (COVID-19) in this century. Studies on epidemic
prediction and simulation have received increasing attention.
However, the current methods suffer from three issues. First,
most of the current studies focus on epidemic prediction,
which can not provide adequate support for intervention policy
making. Second, most of the current interventions are based on
population groups rather than fine-grained individuals, which
can not make the measures towards the infected people and may
cause waste of medical resources. Third, current simulations are
not efficient and flexible enough for large-scale complex systems.

In this paper, we propose a new epidemic simulation
framework called HMES to address above three challenges.
The proposed framework covers a full pipeline of epidemic
simulation and enables comprehensive fine-grained control in
large scale. In addition, we conduct experiments on real COVID-
19 data. HMES demonstrates more accurate modeling of disease
transmission up to 300 million people and up to 3 times
acceleration compared to the state-of-the-art methods.

Index Terms—Simulation Systems, Epidemic Modeling

I. INTRODUCTION

The year 2020 has witnessed one of the most severe
worldwide pandemic, coronavirus (COVID-19) in this century,
which has caused more than 600 million confirmed cases1.
Recently, many researches [39], [1], [37], [7], [25] have been
conducted on various aspects of pandemic, including peak date
and height prediction, estimation of R0(reproduction number),
influence of factors like mobility, etc. These studies aim to
discover more about the pandemic (i.e., how it propagates,
how to prepare) before the pandemic happens.

In this paper, we would focus on simulation for epidemic
control, aiming at providing an environment for intervention
policy development and evaluation. This line of simulation
studies is significantly distinct from the line of works on
epidemic prediction [10], [39], [1], [37], [7], [25], where only
the final infected count or peak time is given. This is because
that current epidemic prediction studies cannot handle the
evaluation of intervention policies (e.g., vaccination, isolation),
and hence can not help to mitigate pandemic directly. In
addition, the epidemic prediction relies heavily on the data
distribution (determined by the collection location and time),
the generalization of these methods remains doubtful. In
contrast, introducing simulation methods can bring further
explainability and accuracy support.

Towards simulation for epidemic control, we are faced with
following challenges. First, building fine-grained intervention

Guanjie Zheng is the corresponding author
1Data accessed from https://coronavirus.jhu.edu/map.html on 08/28/2022

for a large-scale complex urban system is difficult. Note that,
a city may owns a population up to 20∼30 million, while
in previous works in epidemic intervention[39], [25], [32],
[7], [14], [15], cities are usually segmented into hundreds
of groups. Since simulating the epidemic progress and
intervention on individual level instead of groups involves
much higher time and space complexity, it remains unsolved
how to simulate the control pandemic among 20 million in-
dividuals. Still, individual-based simulation has the following
compelling strengths making worth the large computing cost.
(1) Compared with group-level epidemic control, individual-
level control exhibits better effectiveness in preventing disease
propagation. (2) Precise individual-level control would pre-
serve the freedom of people to the most extent and greatly
reduce cost on administrative and medical resources.

Second, generating the individual-level epidemic control
policy requires extensive computation over the enormous
individual contact tracing process. For a city with population
density q (can be as large as 20 million people over thousands
of tracts) and |F| infected people, tracing the contact of the
infected people can be as complex as O(|F|q), which is im-
practical for real use, not to mention if second or higher-order
contact tracing are needed. Therefore, it is highly desirable
that more scalable contact tracing methods are proposed and
finally make the individual-level precise control come true.

Therefore, in this paper, we propose a new modular
epidemic simulation system called HMES (Human Mobility
and Epidemic Simulation), which support fine-grained in-
tervention control. First, to overcome the complex modeling
process in epidemic simulation, we propose a flexible modular
pipeline that could incorporate variants for mobility, epidemic
modules and a customized intervention interface. Modules
can be replaced at need. In this paper, we demonstrate the
example implementation for modules in framework. Second,
we improve the scalabiltity to large scale by reducing memory
overhead and running time by two key insights. To begin
with, we adopt regularity-based human mobility [22], [12],
[34], [36], [38] to reduce the redundancy in human mobility
simulation. Moreover, we design a improved contact tracing
so that the redundant tracing is saved. We further provide
equivalence guarantee and algorithm design that conducts
minimum necessary tracing without extra time complexity.

Compared with previous, HMES is different in three
aspects.

• We build a simulation framework that supports flexible
modular design. HMES can not only provide interface
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Figure 1. Complete framework of HMES, consist of three consecutive
modules

where the modules could be replaced by substitutions, but
also support intervention strategies with user-customized
operations (both individual-level and group-level). Among
these, we propose minimum necessary location tracing
without extra computational complexity.

• We demonstrate accurate simulation of the disease trans-
mission, which achieves better performance than previous
epidemic prediction and simulation baselines.

• We deploy an efficient framework by efficient contact
tracing with up to 0.3 billion population and 3 times faster
in runtime, by consideration on mobility regularity and
reduction on bipartite contact tracing tree.

We provide Python package with easy-following use cases
as well as our original C implementation2. We hope this
work would boost further research in epidemic modeling
with more complex, effective, and humanistic intervention
policies to mitigate the pandemic.

II. RELATED WORK

A. Simulation for Epidemic Propagation
Current epidemic simulations could be categorized as two

types: microscopic and macroscopic, where the former build
the mobility for each individual and simulate the epidemic
propagation when people contact with each other, and the latter
simulate pandemic propagation in sub-population groups.

Microscopic Approaches could be divided into location-
based and social-network based. Location-based methods are
widely-adopted methods to build people-location bipartite
graphs in urban simulations. Episims [17] first proposes dy-
namic bipartite graphs to model the physical contact patterns
that result from movements of individuals between specific
locationsFurther, EpiSimdemics [6] proposes a interaction-
based simulation. Currently, FRED [23] is the most recent
model that supports epidemic simulation for every state in
the US taking health behavior patterns and mixing pattern
of population into account. EpidemicSim [28] builds the
mobility pattern as individuals walking on a defined space, and
implements the epidemic simulation by statistical models. but
only support simulation of small scale.[24] recently proposed
COVIAgentSim, an agent-based compartmental simulator. [7]
further adopts it to propose proactive contact tracing to predict
an individual’s infectiousness (risk of infecting others) based
on their contact history and other information. However, these

2https://github.com/hygeng/humanflow

methods are based on small-size groups, which is incapable
of supporting city-wise simulation and applications upon it.

For another approach, social-network-based simulation
traces historical contacted people in social networks. Epi-
Fast [9] is classical method that builds the social contact
network for epidemic simulation. However, without the
bipartite graph between people and locations, Epifast fails to
support additional functions like tracing contacts. FastSIR [2]
is the most recent method which proposes an efficient
recursive method for calculating the probability distribution of
the number of infected nodes. Average case running time are
reduced compared to the naive SIR model in FastSIR method.
STAND [40] builds the diffusion of contagions in networks
in a general view with a probalistic spatial-temporal process.

Macroscopic Approaches often analyze statistical features
for epidemic modeling. The epidemic spread on arbitrary
complex networks is well studied in SIR (susceptible, Infected,
Recovered) model [27]. Later, several variations of the
SIR models are proposed, including SEIR [11], SIRS [5].
Most simulators build their epidemic propagation with these
methods and their variants mentioned above. [14] is a recent
work on mobility and epidemic simulation on the mapping
of subpopulation groups to POI on a large scale, and studies
the intervention policies of specific POIs. However, without
individual-based study on intervention, it only provides
overall statistical estimates without fine-grained suggestions
to individuals. There are also some recent papers that build
simulations for COVID-19 [15], [25].

However, the macroscopic models lack mobility with
individual granularity, which constrain their further improve-
ments. Current social-network-based simulation takes pre-
defined social network for each person which saves mobility
generation, while the running time of pair-wise epidemic
propagation is exponentially slow, making it fail in expanding
to large scale. In this work, we adopt the microscopic method
to build a dynamic bipartite graph to support individual-
level intervention strategies. We take location-based approach
and propose algorithms to speed up the whole process to
support urban simulation of mobility, epidemic propagation,
and interventions on large scale.
B. Prediction for Epidemic Propagation and Intervention

There also exists a rich body of literature on epidemic
modeling and investigation of various intervention strategies
since the outbreak of COVID-19 pandemic. A paucity of
research works has been conducted to analyze the properties
and characteristics of epidemic transmission for COVID-19
in medical and biostatistical views [13], [20], [31]. Some
previous works have investigated the influence of intervention
strategies towards propagation of COVID-19 through econo-
metric methods and micro-simulation [26], [35], [19], [7].
Some researches start by analyzing real-world mobility data
and connect these observations towards the propagation of
COVID-19 [29], [16], [33]. Plenty of works have investigated
the estimated outcomes with respect to different intervention
strategies [4], [3], [21] in a coarse granularity through
prediction and estimation. However, most of the above are

https://github.com/hygeng/humanflow


Table I
NOTATIONS.

Variable Notation

Day index d, ranges from 1 to
D

Hour index h, ranges from 1
to H

Simulation step index t(t = (d − 1) ×
H + h)

Temporal/spatial randomness1 r
People set, Location set and index(in bracket)2 M(m), L(l)
Trajectory of person m at step t (location l) Jt

m = l
People set that visited location l at step t Vt

l
Infection rate between two people, in location
l

p, pl

Infected, susceptible, recovered and newly
infected people set at location l at step t Itl , St

l , Rt
l , Ft

l

Intervention strategy at day d3 λ(d)

Population density q

1 Randomness is probability that individual deviate routine in temporal
or spatial view;

2 | · | represents the size of a set. σ(|L|) represents the time complexity
for generating a random integer within range [0, |L|);

3 Letters with upper script t means the quantity for time step t, e.g.,
It. When necessary, we will change the superscript t to (d) (with
bracket) to represent the quantity for day d, e.g., λ(d).

empirical analysis and specific case investigations. They may
fit well with specific areas and periods, but can not provide
support for intervention policy evaluation and development.

We also have to note that the goal of prediction tasks is
orthogonal to us as they focus on harnessing existing data
to fit the epidemic model and analyzing the intervention out-
comes through estimation rather than building the real-world
simulation. Although there is analysis for various intervention
strategies, most of them are based on coarse-grained computa-
tion and parameterized estimation rather than individual-based
simulation. In addition, our simulation framework is able
to incorporate and support these epidemic and intervention
variants as components in our modular design and the specific
epidemic and intervention models are not our focus.

III. OVERVIEW
A. Problem Definition

The epidemic simulation problem can be defined as follows.
Used key notations are summarized in Table III.

Problem 1: Assume a city with location set L, people set
M, and period of time to simulate D. Human mobility are
constrained according to strategy λ. The simulation aims to
do the following three steps. (1) Generate mobility trajectory
Jt
m for each person m at time step t. (2) Generate newly

infected people set Ft for each time step t. (3) Provide daily
intervention strategy λ(d) = f(F(d),Jt

m).
Note that, the temporal granularity of the simulation is

a short time interval (e.g., 1 hour), while the intervention
strategy are usually made on a daily basis due to the
delay of gathering the infection information and conducting
intervention in the real world.

B. Framework
Our simulation system (as in Figure 1) consists of three

modules (Mobility Generation, Epidemic Progression, and

Intervention). In general, our simulation pipeline is described
in Alg. 1, where the system simulates Mobility Generation
and Epidemic Progression in every time step t and conducts
Intervention every day d. Note that as we are proposing a
framework whose modules could be substituted by counter-
parts(including recent and future modules), we will introduce
one example implementation of each module.

Algorithm 1: Pipeline of HMES
Input: People set M, Location set L; Initial infected

people set I0, initial intervention strategy λ(0);
1 for d = 0→ D − 1 do
2 for h = 0→ H − 1 do
3 t = (d, h)
4 J,V←

MOBILITYGENERATION(M,L, λ(d), t)
5 Ft ← EPIDEMICPROGRESSION(M,L,V, t)
6 Update I,S,R for each location

7 Update F(d) with Ft

8 λ(d+1) ← INTERVENTION(F(d),J,V, t)

IV. EPIDEMIC SIMULATION

The disease transmission happens when people contact with
each other. Hence, in this section, we introduce how to simu-
late human mobility and afterwards epidemic propagation.

A. Mobility Generation
The goal of this module is to generate human mobility

trajectories. Existing epidemic simulations assume people
move randomly among pre-selected locations [6], [28], [10],
[8]. However, this kind of mobility generation ignores the
mobility regularity and will induce unnecessary repetitive
computations, and we resolve this by utilizing the mobility
regularity to improve the mobility generation algorithm.
Before that, we first show some evidence about human
mobility regularity.

Observation: Human Moves Regularly. Studies have
shown that people tend to visit a few locations frequently and
keep similar schedules every day [38], [12], [34], [36]. This
kind of regularity can be further illustrated in a case study.
Let us categorize locations as three major types: residential,
working, and commercial areas. As shown in Figure 2, a
typical individual may frequently visit one residential location,
one working location, and several commercial locations nearby.
Assume that people’s activities are majorly between 7am and
9pm. During weekdays, one individual may leave home for
work at time t1, go to mall after work at t2, and return home
at t3. As illustrated in Figure 2, t1, t2 and t3 will usually not
vary significantly among different weekdays.

We further observe how much time people spend in total at
their top favorite locations of GeoLife dataset3 in Figure 3(a).
For instance, the left-most bar means that 50% of the popula-
tion has spent more than 90% time at their top-3 favorite sites.

3Data accessed from www.microsoft.com/en-us/research/project/geolife-
building-social-networks-using-human-location-history/



mall A mall B mall C

day 1-5

day 4day1,2,5 day 3

A

B

B

C

A

home work mall

home work

Mon.
Tues.
Wed.
Thur.
Fri.

7AM 11AM 7PM 9PM

routine homehome home

Figure 2. Mobility pattern in spatial & temporal view

The bar chart shows that a high proportion of people follow
strong mobility regularity in their daily pattern. Figure 3(b)
shows the real trajectories of 182 anonymous individuals in
multiple days. Darker color means this individual has followed
this route more frequently. We observe that people tend to
keep visiting their favorite locations.
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Regularity-based Mobility Generation The aforemen-
tioned analysis have shown that the modeling of human
mobility pattern by regular routines and occasional exceptions
are reasonable. Based on this intuition, we propose our
mobility generation module to reduce the computation cost.

We use an incrementally-updated bipartite graph of people
and locations to store the mobility trajectory, where each
edge indicates a visit of one individual to a location. As
demonstrated in Figure 2, different from previous methods
which generate and store each edge separately, we construct a
template one-day trajectory (consisting of H steps) for each
individual and only conduct further generation and storage
when this individual deviates from his/her template trajectory.
The probability that people deviate from routine trajectory is
set as hyper-parameter r.

For each time step, if the person follows the routine
trajectory, which counts for most circumstances, extra efforts
to trace human mobility is saved. Otherwise, this individual
will be assigned a random location. The time complexity
of algorithm is |M|[r(σ(|L|) + O(1)) + (1 − r)O(1)]. The
mobility interface is also available for more variants. The
detailed algorithms and complexity analysis are available in
Appendix.

B. Epidemic Progression
The epidemic progression model consists of two parts,

within-host progression and between-host progression. Com-
bined with the mobility model, this model will simulate
how the disease can spread among different people and
locations. Likewise, epidemic component could be replaced
with counterparts easily and we give example implementation.

Within-host Progression This part describes how the
disease evolves with respect to one individual. Similar to

previous studies [11], the health status of individuals are
represented as four categories: susceptible, pre-symptomatic,
symptomatic, and recovered. Note that pre-symptomatic and
symptomatic people are infectious in different stages and
the pre-symptomatic cannot be discovered directly because
they do not exhibit observable symptoms. Susceptible people
have a certain chance of being infected when having contact
with infectious people. Once an individual is infected, his/her
health status transfers from susceptible to pre-symptomatic,
and then to symptomatic after an incubation period. People
who get infected cannot recover without medical treatment by
intervention of hospitalization. Once recovered, they become
immune to the disease for long. Note these settings (e.g.,
incubation period, immunity) can be easily revised as needed.

Between-host Progression The disease transmission
among different individuals happens when people gather
at one location. For each location, first determine the sub-
population count of the susceptible, the infected and recovered.
Then the probability pl that one susceptible person get infected
at location l can be determined as a function of the above
counts. Afterwards, calculate the number of newly infected
count |Ft

l | and randomly select these many people from the
susceptible people set. Here, p is the infection rate through
two men from the infected to the susceptible. This progress
can be described in detail by Alg.3 in Appendix.

V. INTERVENTION STRATEGIES

To mitigate the epidemic progression, people have proposed
various strategies, e.g., vaccination and separation. In this
paper, we mainly discuss the separation strategy implemented
upon mobility and epidemic propagation, the main strategy
usually in the early stage of a pandemic outbreak.

The key of separation strategy is to find the people that
may become an infection source. Previously-discussed group-
based intervention strategies [39], [1], [37] aim to find the
location/subpopulation with the highest risk and constrain
the mobility of this whole group (or part of it). Conversely,
HMES adopt individual-level separation strategies: Not only
individual-level policies are more flexible than group-level
policies, it realizes fine-grained epidemic control that reduces
the negative impact of the intervention to a minimal scale.
We propose a fast contact tracing paradigm to accelerate the
process of finding minimum set of risky people.

Fast Contact Tracing Query Support The basic contact
tracing algorithm conducts a two-hop query: (1) find out the
places that a concerned person (whose contact needs to be
traced) has visited; (2) find out the group of people that have
been in the same location with the concerned person. The
algorithm is elaborated in the Appendix as Alg. 4.

However, this algorithm has unnecessary repeated computa-
tion, as shown in Figure 4 (a)). Apparently, the tracing person
m1 and m2 will lead to the same location l2 and then lead
to repetitive checking if simply following aforementioned
algorithm. Same thing happen when checking one individual
for multiple times as in Figure 4 (c). The key to accelerate is
to ensure checking each individual or location only once. Thus,
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Algorithm 2: Fast Contact Tracing: Bipartite-Check-
Tree

Input: Daily infected people set F(d), people’s
trajectories J, visiting people set of locations
V, current step t

Output: Intervention strategy for next day λ(d+1)

1 Parameters: Tracking steps τ , maximum tracing
order maxOrder, intervention type β

2 Initialize potential infection source people set
B← F(d)

3 for order = 1→ maxOrder do
/* Update risky locations */

4 Initialize the concerned time-location pair set
CL ← {}

5 for m ∈ B do
6 for t′ = t− τ → t do
7 l = Jt′

m

8 CL ← CL + (t′, l)

9 Reset B← {}
/* Find minimal location tracing

set C?
L */

10 for t′ = t− τ → t do
11 C?

L,t′ = Hungarian(CL,t′ )

/* Update risky people */
12 for (t′, l) ∈ C?

L do
13 for m ∈ Vt′

l do
14 B← B+m;

15 for m ∈ B do
16 Impose intervention strategy λ(d+1)[m]← β

we propose the Bipartite-Check-Tree algorithm as Alg. 2.
Suppose we want to trace the contacts up to maxOrder-th
hop of the current infected people. The whole contact tracing
process can be regarded as a loop of tracing risky individuals
(Figure 4(b)) and tracing risky locations (Figure 4(d)). There-
fore, the whole tracing process of each infected individual
will form a tree with risky individuals in odd layers and risky
locations in even layers. Thus, to avoid repetitive checking,
we will conduct layer-wise checking and merge the node of
risky locations and individuals before entering the next layer.
This way, we will achieve minimum times of checking and
greatly improve the efficiency of contact tracing.

Towards minimal location tracing The detailed fast

contact tracing algorithm is shown in Alg. 2. We provide an
equivalence guarantee on the fast contact tracing algorithm:

Proposition 5.1: Alg. 2 is capable of grasping the minimal
necessary set of locations for contact tracing with reduced time
complexity compared with the full contact tracing algorithm.
where Hungarian algorithm [30] is adopted to achieve this
goal, which avoid redundant location tracing for those do not
contain infected people. The time complexity of that in Alg. 2
is O(|B| · τ + |CL| · q). The proof is available in Appendix.

VI. EXPERIMENTS
We first evaluate the effectiveness of HMES with accurate

simulation in Sec. VI-B, and then demonstrate efficiency in
Sec. VI-C, the effects of different intervention strategies in
Sec. VI-D, and our interface with case study in Sec. VI-E.
A. Experiment Setup and Protocols

By default, each simulation runs for 30 simulation days
(D), with each day containing 14 hours of activity (H) (the
hours during which most people are inactive (9pm - 7am) are
omitted). The initial infected count is set to be 10. For network-
based methods, we ensure equivalent number of contacts per
person to build the network. More on experimental settings
are available in Appendix.

For simplicity, when describing population size and the
number of locations, we will use ‘K’ and ‘M’ to represent
thousands and millions respectively. All experiments are
conducted on Intel Xeon (R) Gold 5118 @ 2.30GHz CPU.
For efficiency comparison, we have ensured that different
algorithms use the same number of cores.

Compared Methods We compare HMES with following
state-of-the-art methods in epidemic prediction and control:
• EpiSimdemics [6] simulates large-scale epidemic progres-

sion, which computes infection by generating people’s
mobility and finding their shared trajectories.

• FRED [23] (A Framework for Reconstructing Epidemic
Dynamics) is an epidemic modeling system that captures
the demographic and geographic heterogeneities of the
population and conducts pair-wise infection computation.

• EpiFast [9] computes pair-wise infection based on the
stochastic disease propagation in the contact network.

• FastSIR [2] is a state of the art method for network-based
epidemic simulation that captures all infection transfers
without epidemic dynamics in time.

• Epi-Simulator [25] builds epidemic simulator to estimate
the efficacy of different mobility controls.

• COVI-AgentSim [7] builds simulations and predict an
individual’s infectiousness based on contact history.



Table II
PERFORMANCE OF SIMULATING INFECTION COUNTS OF 15 VARIED-SIZE CITIES (1-5 INDICATES CITY INDEX) IN TERMS OF ABSOLUTE ERROR (NUMBER OF

INFECTED CASES) AND RELATIVE ERROR (IN BRACKET). THE LOWER THE BETTER.

Methods Small City Index Medium City Index Large City Index
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

HMES 4 3 15 30 31 104 513 166 958 47 52 16 2 247 583
(2.9%) (3.0%) (13.6)% (36.6%) (44.9%) (5.7%) (22.5%) (8.5%) (66.5%) (3.2%) (5.2%) (91.6%) (0.2%) (19.8% ) (30.1%)

EpiSimdemics 22 27 33 56 60 1,004 535 299 1,041 956 80 186 889 298 802
(15.8%) (26.7%) (30.0%) (68.3%) (87.0%) (54.6%) (23.5%) (36.4%) (72.3%) (65.0%) (8.1%) (18.1%) (92.7%) (23.9%) (41.5%)

FRED 28 35 58 4 41 1,660 1,133 291 2,920 1,039 829 121 51 354 1,743
(20.1%) (34.7%) (52.7%) (4.9%) (59.4%) (90.3%) (49.8%) (14.9%) (202.8%) (70.6%) (83.7%) (11.8%) (5.3%) (28.3%) (90.1%)

Epifast 15 114 26 6 33 1,415 648 31 2,438 278 898 62 38 515 1,505
(10.8%) (112.9%) (23.6%) (7.3%) (47.8%) (77.0%) (28.5%) (1.6%) (169.3%) (18.9%) (90.6%) (6.0%) (4.0%) (41.2%) (77.8%)

FastSIR 9 118 40 105 85 1,575 1,529 703 2,361 2,932 895 359 257 177 583
(6.5%) (116.8%) (36.4%) (128.0%) (123.2%) (85.7%) (67.2%) (189.3%) (164.0%) (199.3%) (90.3%) (34.9%) (26.8%) (14.2%) (30.1%)
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Figure 5. Infection curve for different methods for 4 example areas with various sizes in Table II. HMES perform more accurate simulation not only on final
count but also during the simulation process.

Note that these methods are designed without intervention
module originally. For a comprehensive comparison, we
implement basic contact tracing algorithm as Alg. 4 (in
Appendix) for all baselines. Among these, Epi-Simulator
and COVI-AgentSim are compared in small scale as Figure 7
as the long running time on large scale data makes them
unpractical. We also note some recent works to predict and
control the pedanmic falls into the categories for the baselines
above[18], [15], [14], and we merge them in experiments for
simplicity.
B. Epidemic Progression Effectiveness

To validate the simulation accuracy for the infection
process, we conduct simulation on 15 cities with different
sizes (divided by population) for 30 days. The population
data and location data are collected from public census
data5.Some key statistics about the census data of various
city sizes: five small cities of around 10K people and 25
tracts with average population density 3300, five medium
cities of population ranging from 32K to 62K, with 90 tracts
in average, and five large cities of over 1M or 2M people
with around 300 tracts. Note that we fit one set of parameters
for infection within cities of the same scale, afterwards adapt
and generalize to others directly.

The simulation error on the 30th day is shown in Table II,
where HMES simulate the infection with lower error for
majority of cases (12 out of 15). More importantly, the
infection curve in Figure 5 of HMES model lies much closer
to the real data curve than others. This is due to the real-like
mobility pattern and intervention strategies.
C. Results on Efficiency

In this section, we compare the running time of different
simulations. To make the comparison fair, the initial and final
infected cases are set comparable for each method.

General comparison. We compare the running time of
different methods under 10M people and 10K locations setting.

Table III
RUNTIME COMPARISON (IN SECOND) FOR 10M POPULATION

Method Mobility
Generation

Epidemic
Propagation Intervention Total time

HMES 596.63 709.62 6.15 1312.41
Epi-

Simdemics [6] 1057.16 794.88 1649.68 3502.87

FRED [23] 1058.23 1023.28 1632.83 3715.36
Epifast [9] 1486.81 2020.56 2425.21 5932.96
FastSIR [2] 1501.52 1351.54 2642.36 5496.14

This has reached the similar scale of most metropolitan cities
(Shanghai (20M), New York (8M)). The results are shown in
Table III. In general, HMES runs much faster in terms of the
total time and time for all three modules. The biggest accel-
eration comes from the intervention module. The proposed
fast contact tracing speeds up the intervention significantly.
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Figure 6. Runtime for intervention. ‘Fast’, ‘Slow’ for Alg.2, for Alg. 4

Then we test the running time of all compared methods
under different parameters, including different intervention
strategies, and more for population size, population density
and infection rate elaborated in Appendix.

Intervention Strategy. We conduct experiments to test
the acceleration of our fast contact tracing under different
intervention strategies in a 1M-population and 1K=location
city. The default intervention strategy is to hospitalize infected
people and isolate their contacts. We perform first-order and
second-order tracing using Alg. 2(in main paper) (denoted as
‘fast’) and basic contact tracing (denoted as ‘slow’). The total
running time and running time for the intervention module are



shown in Figure 6(a) and Figure 6(b) respectively. As is shown,
HMES accelerates around 300 times and 50 times for 1st-order
and 2nd-order, respectively. Note that the total time (as shown
in Figure 6(a)) is smaller in second-order because isolating
second-order contacts decreases the number of people who
can move freely, hence reduces the running time.
D. Effects of Different Intervention Strategies

We evaluate the effectiveness and necessity of individual-
level intervention compared to the previous coarse-grained
group-level intervention[15], [14], [18]. As a simple case, the
experiment setting is on 10K people and 100 locations with
infection rate 0.05. The incubation step is 56 (four days), and
the mobility randomness is 0.5. The intervention strategy is
to isolate the given people group for 5 days.

Individual-level intervention v.s. group-level interven-
tion We first compare individual-level interventions with
group-level ones on a scenario with 100 locations and 10K
population. Concretely, we compare intervention results of
the following three categories of methods, (1) No intervention
(Free); (2) Group-level control (Group); and (3) Individual-
level control (Infected, Risk Embedding(shown in Appendix),
Contact Tracing), where ”Infected” is to isolate all infected
people. All the methods are given the same quota of
intervention resources (i.e., the number of isolated people)
except the contact tracing method. The results are shown
in Figure 7(a). We can observe that individual-level policies
generally perform better than group-level policies and no
intervention. In addition, only constraining the confirmed cases
will not stop the pandemic, due to the existence of incubation
periods. Contact tracing method can mitigate the pandemic to
the most extent although it requires more medical resources.

Intervention Intensity To verify the effectiveness of differ-
ent intervention intensities (free, confine, isolate, hospitalize),
we implement these strategies on a scenario with 100 locations
and 10K population. For confine and isolate, we set restrictions
on both the infected and their contacts. For the hybrid strategy,
we hospitalize the infected while isolate their contacts. As
shown in Figure 7(b), the ‘free’, ‘confine’ and ‘isolate’ strategy
all lead to linear curve in the log scale. Equivalently, we have
the following observation. Without any restriction (‘free’),
the infected count increases exponentially with time. Using
‘confine’ and ‘isolate’ strategy helps slow down the increasing
trend, but the curve is still exponential. When the ‘hybrid’
strategy is applied, the curve flattens in several days.

Multi-order Tracing Furthermore, we test the influence
of 1st- and 2nd-order contact tracing by showing the infected
count in Figure 7(c). As expected, the latter further suppresses
the spread of epidemic compared to the former.
E. Demonstrations and Case Studys

Python Interfaces Upon implementation of C language, an
interface is provided for mobility, infection and intervention
simulations in Python package. The package provide basic
function calls where users could customize any simulation. It
has also been used by Prescriptive Analytics for the Physical
World (PAPW) 4 Challenge for pandemic mobile intervention

4https://prescriptive-analytics.github.io/

competition.

Figure 8. Simulated Epidemic Situation 180 Days after Outbreak
Case Study on Country-wise Progression To evaluate on

large-scale data, we use the US Census data 5 to conduct a
simulation of the whole United States (Alaska and Hawaii are
not included) for 180 days. As shown in Figure 8, the epidemic
spread across country, with several densely populated states
having more than 100K people infected. The infected count
in HMES after 180 days is 3,887,528 compared to 3,957,593
in real data with the relative error 1.77%. Details of Python
interface and specific settings here are shown in Appendix.

VII. CONCLUSION
In this paper, we propose a scalable simulation framework

HMES for epidemic simulation and control. Compared to
previous ones, we provide a large-scale simulation platform
supporting flexible intervention interfaces on individual and
group basis. We conduct extensive experiments on evaluation
of accuracy, efficiency and flexibility. We hope HMES could
boost future researches in human mobility analysis, and help
develop tools for more complex, effective and humanized
policies to mitigate pandemics in real world.
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APPENDIX

A. Epidemic Propogation

We provide the detailed epidemic progression as in Alg.3.

Algorithm 3: Epidemic Progression
Input: Current step t, people set M, location set L,

people set that visited locations V
Output: Newly infected people Ft for step t

1 for l ∈ L do
2 Update people set Itl , S

t
l , R

t
l of for location l at

time t
3 Calculate infection rate pl = p · |Itl |

|St
l |+|I

t
l |+|R

t
l |

4 Infer newly infected count |Ft
l | = pl · |St

l—
5 Randomly select kl people from St

l to form the
newly infected Ft

l

B. Intevention

1) Basic Contact Tracing: We demonstrate the basic
contact tracing as in Alg. 4. Concretely, the separation for
each individual has four levels, free (no restriction), confine
(restricted at residential area), isolate (can not get in touch
with anyone), and hospitalize. This individual-level separation
strategy support would enable further researches on more
effective and complex intervention policies.

2) Improved Contact Tracing with bipartite check-tree:
Complexity Analysis We compare the time complexity of
first order contact tracing, where that for higher order is similar.
Note that the time for initialization and imposing intervention
β is omitted because they are neglectable with that of contact
tracing. Since the original contact tracing algorithm loops
over potential infectious people set B, tracing steps τ , and
people co-locate with each queried person in each time step,
the average time complexity should be O(|B| · τ · q). The
time complexity of that in Alg.2(in main paper)is O(|B| · τ +
|CL| · q). Due to wide existence of people’s co-occurrence in
regular patterns of mobility, |C?

L| << |B| · τ , Alg.2(in main
paper)is much faster than the original Alg.4.

C. Proof of Proposition 5.1

We begin with the equivalence analysis of our Alg. 2(in
main paper)and Alg. 4 as essentially they solve the vertex
cover problem on dynamic bipartite graph.

Problem Formulation At at time stamp t′, the snapshot is
a bipartite graph consisting of nodes of people and nodes of
locations. The adjacency list of location vertices is CL,t′ , i.e.
the two sets of vertices are connected by CL,t′ . The task is
to find a subset C?

L such that it includes at least one endpoint
of every edge of the bipartite graph.

Guarantee on Equivalence In this sense, a risky person
is traced or traversed if the person node is covered. As the
set CL in Alg. 2(of main paper)is essentially the collection
of set Cp over all potential people B in Alg. 4, the solution
of two algorithms are identical without tracing omissions.

Guarantee on Minimum Necessary Set Given the po-
tential risky locations CL, as the solution of vertex cover
in bipartite graph could be obtained trivially with solutions
to maximum matching by traversing the uncovered location
nodes in the augmenting path, while the maximum match-
ing could be obtained by Hungarian algorithm [30] with
O(|CL| · q) polynomial time without extra time complexity.

Algorithm 4: Basic Contact Tracing

Input: Infected people set F(d), people’s trajectories
J, visiting people set of locations V, current
step t

Output: Intervention strategy for next day λ(d+1)

1 Parameters: Tracking steps τ , maximum tracing
order maxOrder, intervention type β

2 Initialize potential infection source people set
B← F(d)

3 for order = 1→ maxOrder do
4 Initialize concerned people set Cp ← {}
5 for m ∈ B do
6 for t′ = t− τ → t do
7 Query the place that person m visited at t′,

l = Jt′

m

8 for m′ ∈ Vt′

l do
9 Cp ← Cp +m′

10 for c ∈ Cp do
11 Impose intervention strategy λ(d+1)[m]← β

12 Update B by B← Cp

D. Detailed Experimental Settings

Setting for case study in Section 6.2 To test how well
our simulation can fit the real data, we present our case study
on COVID-19 pandemic with recent publicly available data
from United States Census5We extracted necessary features
from the census and synthesize virtual cities with various
sizes, and adjust the infection rate in HMES to fit the real
epidemic progression curve of cities with same scale.

Table IV
EXPERIMENT SETTINGS FOR CASE STUDY

pinfection ptravel preturn intervention tcure tisolate

0.0085 0.12 0.25 hospitalize + isolate 7 3

We set a fixed infection rate pinfection for all the cities,
and people have a certain probability ptravel to travel to
other cities , the specific city they travel to is decided by the
distance (following a long-tail distribution). During travels,
people have a certain probability preturn to return back each
day. Once a person is infected, he will be sent to hospital for
tcure days, his contacts within two days will be isolated for
tisolate days. Specific settings are shown in Table IV.
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Figure 9. Total runtime w.r.t. population size, 10K(small county), 100K (small city), 1M (medium city), 10M (large city).

Setting for case study in Section 6.3The infection data
is publicly available67, and is taken as first thirty days after
outbreak, where all the initial infected count is taken as 10.
The population and tracts data are also public5.

E. Additional Experiment Results on Efficiency

Population size. We demonstrate the impact of population
size on the running time of different methods by varying the
total population with population density unchanged, shown
in Figure 9. These three cases represent three typical city-
scale in the world, a large city with 10M population and
10K locations, a medium city with 1M population and 1K
locations, and a small town with 100K population and 100
locations. Under different populations, HMES outperforms
all the baselines. The running time of HMES scales nearly
linearly with the increasing population size, and performs
fastest simulation under all settings.

Population density. We further compare the scalability in
simulating different population densities. The experiments
are done on a city with 1 million population and various
numbers of locations. As shown in Figure 10(a), running time
of HMES is the smallest under different settings and stays
almost unchanged. The other two location-based methods
EpiSimdemics and FRED are also not sensitive to the
population density, while the running time of EpiFast and
FastSIR explode in high-density scenarios.
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Figure 10. Scalability in population density & infection rate

Infection rate. We also test how these methods scale when
simulating diseases with different infection rates. As shown
in Figure 10(b), HMES achieves the lowest running time
under different infection rates and remains stable with various

6https://data.pa.gov/Health/COVID-19-Aggregate-Cases-Current-Daily-
County-Heal

7https://dshs.texas.gov/coronavirus/AdditionalData.aspx

infection rate, while other methods become much slower as
the infection rate increases.
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