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Abstract—Egocentric vision is an emerging field of computer
vision that is characterized by the acquisition of images and video
from the first person perspective. In this paper we address the
challenge of egocentric human action recognition by utilizing the
presence and position of detected regions of interest in the scene
explicitly, without further use of visual features.

Initially, we recognize that human hands are essential in the
execution of actions and focus on obtaining their movements as
the principal cues that define actions. We employ object detection
and region tracking techniques to locate hands and capture their
movements. Prior knowledge about egocentric views facilitates
hand identification between left and right. With regard to
detection and tracking, we contribute a pipeline that successfully
operates on unseen egocentric videos to find the camera wearer’s
hands and associate them through time. Moreover, we emphasize
on the value of scene information for action recognition. We
acknowledge that the presence of objects is significant for the
execution of actions by humans and in general for the description
of a scene. To acquire this information, we utilize object detection
for specific classes that are relevant to the actions we want to
recognize.

Our experiments are targeted on videos of kitchen activities
from the Epic-Kitchens dataset. We model action recognition as
a sequence learning problem of the detected spatial positions
in the frames. Our results show that explicit hand and object
detections with no other visual information can be relied upon
to classify hand-related human actions. Testing against methods
fully dependent on visual features, signals that for actions
where hand motions are conceptually important, a region-of-
interest-based description of a video contains equally expressive
information with comparable classification performance.

Index Terms—egocentric action recognition, hand detection,
hand tracking, hand identification, sequence classification

I. INTRODUCTION

In recent years the egocentric point of view has been
employed by the research community to address computer
vision challenges such as activity recognition [1] and object
detection [2] traditionally contemplated as belonging in the
domain of third-person vision. Since then, egocentric vision
has been applied to more elaborate applications including
video summarization [3] and social interaction analysis [4].
Notably, it has also expanded into the domain of health-care
[5] where static camera systems tend to struggle to a greater
extent following privacy concerns [6]. Ultimately, egocentric
vision is affiliated with the domain of augmented reality
towards human-centered applications that provide task-specific

* Corresponding author: georgios.kapidis@noldus.nl, g.kapidis@uu.nl

assistance [7], thus enhancing human independence; an ap-
propriate fit for scenarios where human ability is impaired or
reduced.

The prominent characteristic of egocentric vision is that it
provides a first person perspective of the scene by placing
a forward-facing wearable camera on the chest or head of
a human. This provides a unique view that is person-centric
and optimally set to capture information that is arguably more
relevant to the camera wearer [8]. Naturally, this refers to the
surrounding area and its contents, usually consisting of objects,
hands, other people and the scene background. Being able to
examine a perspective of the scene that accumulates all this in-
formation with clarity allows for improved inference of higher
level cues such as the quantification of interactions between
the hands from their proximity [9], object-activity relations
from associated movements [10] and location identification
from the presence of distinctive objects [11].

However, understanding of visual content in human intelli-
gible terms remains challenging despite being facilitated from
the egocentric perspective. That is, recognition of a specific
area in view as the ‘hand‘ or as a specific object class which
may or may not be under manipulation, will always deteriorate
due to inter-object and object-hand occlusions. In the video
domain the recognition task can become more challenging in
the egocentric setup, due to motion noise introduced by rapid
movements of the camera or of the objects seen from this
perspective. In Figure 1 we illustrate an example where slight
motion of a hand causes missed detections.

This limitation poses a challenge for algorithms developed
in the context of third-person vision in terms of their appli-
cability into a comparable yet divergent field. We argue that
methods yielding cues towards human-like understanding of
a scene from one domain can be compatible with egocentric
vision given a certain amount of fine-tuning. The scope of this
work is to assess up to what point existing object detection

Fig. 1. Results of a hand detector from two consecutive frames on the Epic-
Kitchens dataset [12].
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and tracking schemes can produce valuable information for
egocentric action recognition. Our idea relates to methods that
reduce RGB images to trajectories or poses of hands or objects
in the scene and use this contextual information alone for
human action recognition [9], [13] or a related task such as
prediction [14]. Our objective is to investigate the information
encoded in egocentric movements of hands and objects in
contrast to the currently predominant approach of using the
visual information directly [15]. Are the motion sequences
alone able to be the basis for modeling actions? Our aim is to
test the limits of object detection and tracking methods in their
ability to produce usable data towards higher level inference.

Initially, we focus on distinguishing the action specific cues
that can be acquired solely from hand movements. Instinc-
tively, human hand movements are expected to carry much
of the spirit of actions that are explicitly named after the
actual motion itself e.g. ’put’, ’take’, ’stir’, ’open’, ’close’
etc. We strive to exploit the clear view of the hands and
their movements in egocentric videos and study them closely
towards identifying associated actions, facilitated by detection
and tracking of hand regions. Furthermore, we capitalize on
the structure of the actions themselves which are generally not
only associated with the hand movements but also related to
objects of interest arising from the context of the scene. For
example ’wash dishes’ as in Figure 1.

This work is directly associated with the production of hand
trajectories. The prelude is that an object detector is applied on
egocentic videos with the aim to accurately detect the hands,
thus substituting the arduous task of manually labelling hand
regions, to an automated process. Subsequently, tracking is
applied to temporally associate the detections into meaningful
sequences, which are cleared from overlapping misdetections
and attributed to the left or the right hand. Finally the hand
trajectories are augmented with the presence of objects and
used as input for action classification. Figure 2 illustrates our
approach.

The contributions of this paper are threefold:

• A hand detection, tracking and identification pipeline that
extracts hand motions from egocentric videos, structured
to provide the hand positions for every frame including
the distinction into left and right hands.

• The assessment of the capability of hand tracks alone for
egocentric action recognition and the effects of temporal
sampling in the representative ability of hand motions.

• Further experimentation with the inclusion of object
presence and position to capitalize on the limited set of
specific actions that an object can be associated with.

In Section II we discuss related work about action recog-
nition in egocentric videos with a focus on hand-object in-
teractions. In Section III we describe our hand detection,
tracking and identification pipeline, in Section IV the temporal
classification problem for action recognition and in Section V
our experiments and results. Finally, in Sections VI and VII
we discuss our findings and conclude the paper.
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Fig. 2. Our pipeline for action recognition. Hands are detected with YOLOv3
[16] in Epic-Kitchens [12] and tracked by detection using SORT [17]. We
remove track overlaps and identify left and right hands from their position
on the frame. For the objects we also rely on YOLOv3 with a second
model trained on the noun classes of Epic-Kitchens. Binary presence vectors
are propagating the object knowledge per frame. Finally, hand and object
information is used as input for the LSTM to classify actions.

II. RELATED WORK

A. Egocentric activity and action recognition

One of the first works about egocentric activity under-
standing focuses on the intrinsic information that defines the
egocentric vision paradigm [1]. They modelled relationships
between hands, objects and actions using extracted visual
features to model activities and showed through bottom-up
and top-down models the mutual improvements that these
relationships offer. We base our work on the concept that hands
and objects are rudimentary for egocentric action recognition
and video understanding.

Motion based egocentric action recognition is described in
[18]. Hand-object interaction points, objects, head and ego-
motion are classified into actions based on motion and color-
based features and trajectories extracted from the video frames,
but without a specific focus on modeling the hand locations.
Another multimodal approach for egocentric activity recogni-
tion is described in [19]. Here, a hand segmentation network,
an object localization network and a network trained on motion
flow are joined to predict actions. Their understanding that
hands and objects are fundamental for actions is similar to



ours, but our pipelines are different in that we model the
temporal associations of the tracked hands and objects in the
video instead of structured feature representations of the raw
image pixels with CNN features or other descriptors.

In [10] a two-stream visual segmentation-based architecture
is used to predict the interaction areas between hands and
objects in a video stream and model them as actions. The
concept of hand-object interactions is further explored in [20]
with the detection of grasps in relation to the shape of objects
for modeling actions. End-to-end methods also include [21],
where in order to recognize actions a network is trained
on pairs of frames and is jointly optimized for the training
objectives of action recognition, object segmentation and inter-
frame object interactions and their temporal association with
recurrent networks. We also match the intuition that hands
and objects are fundamental for egocentric actions, however
we emphasize on the explicit detection of hand and object
regions and their positions to recognize actions.

B. Hands and objects

The explicit exploration of hands and objects and their
temporal associations has seen a significant volume of work
in the egocentric action recognition domain. Initially, hand
detection, segmentation and identification techniques [22]–
[24] are developed and their results are utilized to model
actions or activities. In this work we rely on single frame
object detectors for both hands and objects.

Specifically hand based activity recognition from the ego-
centric perspective is discussed in [25]. The EgoHands dataset
together with an egocentric hand detection and segmentation
pipeline are developed before inference of activities. It is one
of the first works that show the difference between relying
on hand detection or segmentation and using manual labels
for activity classification. Inspired by this, we augment the
EgoHands hand dataset with additional samples for our hand
detector and introduce tracking into the action recognition
pipeline to improve the detection output.

Egocentric hand or object trajectories are considered for
classification in [9], [14], [26]. In [14] the trajectories of
detected objects are computed and then classified as active
or passive based on hand manipulations towards them. The
detection and tracking methods are related to our scope how-
ever we focus on the particular objective of recognizing hand-
based actions with the help of objects. In [26] the fingertip
positions are used as a means to identify human gestures with
bidirectional LSTMs. Sequences of fingertip coordinates are
classified into a predefined set of gestures. In contrast, we
are interested in the whole hand and arm regions and do not
rely on a predefined set of trajectories but utilize tracking to
produce them. Egocentric hand based activity recognition is
considered in [9] where the distance between detected hands
or the distance between detected hands and objects marked as
active are considered as features for activity classification. In
this work, we capture the trajectory of each hand and detect
the objects instead of using manual annotations, in order to

introduce real-world complications such as unstable tracks and
false detections to eventually improve robustness.

III. HAND TRACK DATASET

In this section we describe the process to produce a hand
track dataset from the raw frames of Epic-Kitchens [12]. Our
aim is to capture the position of each of the (at most) two
visible egocentric hands in view as an (x,y) coordinate for
every video frame. The coordinate pair signifies the center of
the bounding box of a detected hand.

A. Epic-Kitchens

The Epic-Kitchens dataset comprises a set of 432 egocentric
videos recorded by 32 participants in their kitchens at 60fps
with a head mounted camera. There is no guiding script for the
participants who freely perform activities in kitchens related to
cooking, food preparation or washing up among others. Each
video is split into short action segments (mean duration is
3.7s) with specific start and end times and a verb and noun
annotation describing the action (e.g. ‘open fridge‘). The verb
classes are 125 and the noun classes 352. The dataset is divided
into one train and two test splits. For both test sets, the verb
and noun annotations are not yet openly available hence we
focus our work on the fully annotated train set (272 videos,
28 participants). We partition it into custom train and test
splits based on the participant ids1 to avoid videos from the
same person in both splits. Additionally, almost 300k object
bounding boxes are provided for the videos of the original train
set which we utilize to train an object detector (Section III-D).

For the rest of the paper our subset of Epic-Kitchens is
referred to as Epic-Kitchens, unless stated otherwise.

B. Hand detection with YOLO

In order to acquire hand regions from Epic-Kitchens we
train a hand detector with YOLOv3 [16] on the combination
of a collection of egocentric hand datasets.

1) Dataset collection: We utilize hand annotations from
existing egocentric datasets, namely EgoHands [25], EGTEA
Gaze+ [18], [27], CMU EDSH [22] and THU-READ [28].
Since we are interested in detection and not segmentation we
only keep the bounding rectangle of a hand mask and use this
as the ground truth for a hand region. Next, we augment the
dataset with negative samples i.e. frames that do not contain
visible hands or annotations, in order to punish the objectness
learning part of the network and produce fewer false proposals,
ultimately reducing false positive detections. We manually
annotate 11,683 such frames from the Intel Egocentric Object
Recognition Dataset [29]. Information about the amount of
hand annotations and the size of each train and test split is
detailed in Table I.

1Videos from participants 1-8, 10, 12-17, 19-24 are our train and 25-31 our
test set respectively.



TABLE I
COLLECTION OF HAND ANNOTATIONS FROM EGOCENTRIC DATASETS

Dataset Images Hand annotations Train Test
EgoHands [25] 4,800 14,884 11,440 3,444
Egtea Gaze+ [27] 13,847 15,258 14,295 963
CMU EDSH [22] 743 1,394 1,186 208
THU-READ [28] 652 1,331 1,252 79
IEORD [29] 11,683 0 - -
Combined 31,725 32,867 28,173 4,694

2) Training: We perform various experiments to train the
hand detectors to determine the optimal dataset combination
that supports generalization, since our eventual task is to apply
the detector on an unseen dataset for extraction. We train a
detector for each available hand dataset (except IEORD) and
one for the combined train sets. All detectors are trained for a
single target class ‘hand‘ with batch size 64, starting learning
rate 10-3, momentum 0.9 and weight decay 5*10-4. Weights are
pretrained on Imagenet [30] and MSCOCO [31]. We do not
recalculate box anchors for our datasets after preliminary tests
suggesting minor performance decline. Training takes place for
multiple shapes with starting input dimensions of the detector
416x416. We evaluate all detectors on each test set using
Average Precision (AP25) and False Detection Rate2 (FDR
= 1-Precision). In Table II we illustrate the best performing
weights of each detector, based on the two metrics. We show
that in terms of both AP and FDR, the detector based on the
dataset combination performs best.

3) Detection on Epic-Kitchens: We apply the combined
hand detector on the Epic-Kitchens dataset to extract hand
instances. We accept hand detections with confidence greater
than 25%. In Figures 1 and 2 (row 1) we show that the detector
generalizes in unseen images, however slight changes over
the course of video frames that are introduced during hand
movements, strong ego-motion, changing lighting conditions
or occlusions can cause missed detections. Another issue we
address is that of overlapping detections for the same hand
regions.

C. Hand tracking with SORT

The continuity of the visual information that exists in tem-
poral video streams enables the utilization of tracking methods
to enhance the missing detections. The object detector operates
on a per frame basis whereas tracking by detection combines
information from multiple frames. We utilize Simple Online
and Real-time Tracking (SORT) [17] for this task. It associates
the detections over the course of a video with threshold-based
tolerance to missed ones. Hand bounding boxes are associated
through the course of frames and identified as belonging to a
track with a certain id. SORT uses the Kalman filter [32] to
predict the coordinates of what would likely be the next bound-
ing box of an existing track and the Hungarian algorithm [33]
to assign the detections from subsequent frames to existing
tracks or new ones. Tracking with SORT is controlled by three

2Since we plan to use the detections as a preamble for tracking, the
frequency of false positive detections is an important metric to consider.

parameters; IoUmin, TLOST and Tmin. IoUmin is the minimum
required overlap between a new detection and the predicted
target for a track that leads to the detection’s assignment to it.
TLOST defines the number of frames that a track can survive
for without an assigned detection before being finalized. Tmin
is the minimum amount of consecutive detections required to
instantiate a new track or recover it after empty frames. We set
IoUmin to 10% to promote track continuity against strong ego
or hand motions, TLOST to 10 frames without assignment to
allow for sufficient time (equals 167 ms in the 60fps videos of
Epic-Kitchens) to re-establish a track and Tmin to 1 to revive a
track instantly. In row 2 of Figure 3 we show the instantiated
tracks as points in the centers of bounding boxes.

1) Track interpolation: In order to extend our knowledge
about the location of the hands we introduce the concept
of intermediate frames. We define them as the video frames
that are implicitly included in a track by means of previous
and future frames that contain a detection for it. Intermediate
frames do not hold a detection for the track, however given the
inherent continuity of information in sequential video frames
and the short time span we allow for a track to be kept alive
without a detection, we assume that the hands do exist in these
frames but are missed from the object detector. To augment
the tracks for these frames we apply linear interpolation on
the tracked box centers from the (x,y) coordinate of the last
frame to that of the latest one. In row 3 of Figure 3 we display
frames 2-4 assigned with coordinates for the right hand.

2) Track elimination: In the videos of Epic-Kitchens the
participants undertake kitchen activities alone. This limits the
maximum number of co-occurring hand tracks at any given
moment to two, one for each hand. Particularly, we assign
each track to the left or the right hand of the participant based
on the location of the center of the first detection of a track.
Overlapping tracks for the same image region that have been
associated with the same hand are removed and the longest
track survives, as in Figure 3 frame 9 with the elimination
of the second track for the right hand. Finally, for the frames
with no available detection and track information we assume
a hand position below the view of the camera.

D. Noun Object Detector

To study the hand-object relationships we require infor-
mation about object presence. Epic-Kitchens includes sparse
object labels for the majority of its noun classes. We utilize
them to train an object detector using YOLOv3 with the
same parameters as those in Section III-B2 except for the
base network dimensions which are increased to 608x608
and the introduction of Sparse Pyramid Pooling [34] to the
model structure to enhance the detector’s ability to find smaller
objects. We train for 50k iterations with average loss stabilized
around 0.64. We apply the detector on Epic-Kitchens and
accept detections with confidence greater than 25%.

IV. MOTIONS TO ACTIONS

We aim to develop a frame-wise correspondence between
every image of Epic-Kitchens and the hand detection tracks in



TABLE II
AVERAGE PRECISION (%) WITH 25% IOU THRESHOLD. ROW-WISE THE DATASET USED FOR TRAINING AND COLUMN-WISE THE DATASET USED FOR

TESTING. IN PARENTHESES FALSE DETECTION RATES (%) FOR EACH TEST SET. (FOR IEORD WE REPORT THE FALSE POSITIVE COUNTS PER DETECTOR)

IEORD [29] EDSH [22] EgoHands [25] EGTEA+ [27] THU-READ [28] Combined Test
EDSH 71 100 (0) 17 (49) 72.5 (21) 86.17 (9) 31.98 (34)

EgoHands 15 26.09 (53) 90.58 (2) 43.42 (39) 17.15 (79) 77.29 (13)
EGTEA+ 37 89.91 (4) 20.51 (51) 89.65 (5) 74.58 (7) 41.05 (32)

THU-READ 191 90.62 (1) 19.24 (50) 65.85 (19) 100 (0) 33.07 (38)
Combined Train 18 100 (0) 90.53 (3) 89.38 (7) 90.05 (5) 90.42 (4)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Fig. 3. Visualization of the results of hand tracking and track augmentation on a sequence of 10 frames. Each row showcases an additional step. Row 1 shows
the detection output from Yolo. In row 2, SORT [17] associates the available detections to distinct tracks. A track for each hand covers the full sequence but
frames 2-4 and 7 are still not assigned with a right hand coordinate. For these frames we interpolate from the last available coordinate to the latest. In row
3, the right hand track is augmented and the missing detections are covered. In row 4 we show a case of removing a redundant right hand track on frame 9.

order to exchange the visual information with our representa-
tion. The pipeline of Section III contributes knowledge about
the hand locations regardless if they are detected in a given
image or not. This continuous evolution of positions leads to a
sequence of coordinates that in the temporal dimension capture
the motions of the hands. To gain knowledge about these
motions we formulate the problem of hand track classification
as a sequence learning problem. Long Short-term Memory
(LSTM) networks [35] have shown ability to model long-term
dependencies in sequences of arbitrary sizes of coordinate [9],
[26] or object presence [11] data and we employ them for their
classification into actions.

V. EXPERIMENTS AND RESULTS

We construct a series of experiments to demonstrate the
ability of the hand track and object presence information to
substitute the visual information of the raw RGB frames, in
order to model actions related to hands in the egocentric
perspective.

In our experiments we apply LSTM with a Fully Connected
layer on the last hidden state from the final LSTM layer to
obtain a class prediction for an action segment. To train the
models we use cyclical learning rate (CLR) [36], [37] with
a triangular policy that fluctuates between the base and the
maximum learning rate in 20 epochs. Batch size is set to
128. We train our models for 1,000 epochs capitalizing on
the ability of the triangular CLR policy to move weights out
of local minima in search of better configurations. We use
categorical cross entropy to calculate the loss and Stochastic
Gradient Descent for optimization. Our learning scheme tar-

gets the 125 verb classes of the Epic-Kitchens dataset. For the
LSTM experiments we consider the following features:

• The concatenated Left/Right hand coordinates (LR)
(x,y) of the center of each hand normalized to the image
size. The values are in the [0-1] range when there is a
hand present. Alternatively, the (x,y) coordinate is set to
(0.25, 1.5) to declare that the left hand is out of view and
correspondingly to (0.75, 1.5) for the right hand. Feature
length is 4.

• The Binary Presence Vector (BPV) of objects [11]
consisting of zeros and ones with length equal to the
number of the noun classes of Epic-Kitchens (352). The
BPVs are concatenated to the hand coordinates for every
frame and the feature length increases to 356 (352 + 4).

• The tracked object coordinates (Obj) instead of the
BPV of the objects in a video frame. This increases the
feature length to 708 (352*2 + 4). In case of multiple
instances of an object in a frame we only consider its
longest running occurrence following the tracking scheme
of Section III-C. When an object is not present on a frame
its coordinates are set to (0,0).

We report classification results for our test set in Table III
in terms of overall Top1 and Top5 accuracy. Following the
evaluation scheme of Epic-Kitchens we additionally report
mean per-class precision and recall for verb classes with more
than 100 samples during training, which in our splits are 24.

A. LSTM Results

Initially, we test the ability of the LSTM to model the
hand track sequences in full length using the LR feature.



TABLE III
VERB CLASSIFICATION RESULTS ON EPIC-KITCHENS

Model Parameters Accuracy % Average %
# Model Feature Hidden Layers Seq. Length Target Top-1 Top-5 Cls Precision Cls Recall Epoch
1 LSTM LRa 32 2 Full Verbs 31.100 74.115 11.02 10.46 918
2 LSTM LR 16 2 32 Verbs 31.013 73.148 10.38 8.46 628
3 LSTM LR+BPVb 32 2 Full Verbs 34.968 76.084 15.08 12 440
4 LSTM LR+BPV 16 2 32 Verbs 34.053 75.358 17.64 10.83 553
5 LSTM LR+Trc BPV 16 2 32 Verbs 34.053 75.289 19.08 11.51 620
6 LSTM LR +Objc 16 2 32 Verbs 32.81 73.701 12.84 10.41 898
7 TSN [38] RGB stream - - 25 Verbs 36.98 77.89 20.28 13.12 22
8 TSN [38] Flow stream - - 25 Verbs 37.99 76.45 23.14 14.06 22
9 MF-Net [39] RGB-3DConv - - 16 Verbs 44.312 79.095 29.46 21.37 35
aLeft/Right normalized hand coordinates (x,y) bBinary Presence Vector of detected objects cNormalized detected object coordinates (x,y)

This is no straightforward task since the durations of action
segments vary significantly from 0.5 seconds to 3.5 minutes
which translates from 30 to as many as 12,000 frames. In
our first experiment we train using the full hand coordinate
sequences. For the LSTM to support training in batches with
variable sequence sizes we zero-pad the shorter sequences to
the size of the longest of the batch. For the shorter sequences
we use the last hidden state before zero-padding as input to the
FC layer and calculate the loss on this prediction. The Top1
accuracy is 31.1% and the Top5 74.115%.

In an effort to simplify and speed-up the learning task,
instead of smoothing the coordinates as in [26], we sample the
action segments into shorter lengths. We are inspired from the
concept used to train 3D CNNs, which aim to capture temporal
structure, but due to computational restrictions are unable to
load full frame sequences to represent video segments [40].

In the second experiment, we sample the coordinate se-
quences to 32 steps and use these as input to LSTM. In
Figure 4 we visualize the difference between a full and a
sampled sequence for the proposed sequence size. Further-
more, we reduce the number of hidden units per layer to
avoid over-fitting, since the input is reduced significantly.
Top1 performance drops ~1% compared to the first experiment
which can be attributed to the exclusion of temporal structure
(more in Section VI).

(a) Original length (b) Sampled to 32

Fig. 4. Left and right hand motion patterns extracted from a 2.7s sequence
for action ‘clean lid‘. (a) The final view of the full sequence including all 161
steps. (b) The same sequence sampled to 32 steps. Zoom-in for best view.

For experiments three to five, we enhance the LR feature
vector with object BPVs by appending them to the hand
coordinates for every sequence step. For the ”LR+BPV” ex-
periments we incorporate the detected objects directly and for
”LR+Trc BPV” we track the objects following the interpola-
tion scheme of Section III-C1, in order to gain object presence
knowledge for as many frames as possible. In experiment three

we use the complete motion sequences (following experiment
one) and improve Top1 classification accuracy by 3.8% to
34.968%. The addition of the BPV feature improves Top1
accuracy in the sampled sequences as well by 3% to 34.053%
showing that the improvement from objects is consistent.
Tracking the objects in the fifth experiment reaches 34.053%
without introducing further improvements.

In the sixth experiment, we use the tracked object coor-
dinates to enhance the LR feature (LR+Obj) instead of the
BPV. Again, we notice an improvement over having no object
presence, however it is not as strong. We attribute it to the
added uncertainty from location information about detections
that may be false positives. The LSTM seems to be able
to more adequately forget a falsely detected BPV from a
coordinate that is propagated in the whole sequence.

B. Comparison with video-based methods

In the final three experiments we compare against state-
of-the-art video based methods, Temporal Segment Networks
[38] (TSN) and Multi-Fiber Networks [39] (MF-Net) that
utilize Convolutional Neural Networks as feature extractors for
two [38] or three dimensional [39] inputs. In the 2D case, TSN
extracts convolutional features from multiple stacks of either
images (RGB stream) or pairs of horizontal and vertical optical
flow values (Flow stream) that capture the perceived motion
through series of images [41]. MF-Net utilizes a set of 16
frames sampled from the sequence of video frames to represent
the segment. Both networks utilize only the video information
without any contextual information about the scene.

In terms of overall Top1 accuracy on the test set, the results
are highest (44.3%) when using 3D convolutions. Our methods
remain close to TSN, but are still ~2% lower. In Table IV we
perform a class-wise comparison for the 10 most common verb
classes in our train set, following the analysis in [12]. We see
that recall and precision are comparable between our methods
and both TSN streams (experiments 1-4 and 7,8) for classes
‘put‘, ‘take‘, ‘wash‘, ‘close‘, ‘mix‘, ‘pour‘ and ‘turn-on‘.
Against MF-Net we are close for actions ‘take‘, ‘wash‘ and
‘pour‘. This closeness in performance indicates an expressive
quality in our data that can lead to action comprehension
comparative to more elaborate methods by using only object
detection and tracking as the means to deliver the input.



TABLE IV
COMPARISON FOR THE 10 MOST FREQUENT VERB CLASSES IN OUR TRAINING SPLIT. SHOWING RECALL AND PRECISION PER-CLASS, RESULTS IN %

# put take wash open close cut mix pour move turn-on
R P R P R P R P R P R P R P R P R P R P

1 42.36 33.29 48.55 28.16 63.09 36.78 11.85 26.5 12.9 19.13 24.35 45.16 13.07 30.3 33.82 18.85 0 0 0 0
2 64.53 28.89 40.57 29.1 52.89 39.6 2.87 55.56 0 0 14.78 47.89 27.45 25.61 0 0 0 0 0 0
3 42.05 34.78 56.61 31.57 68.32 43.62 18.93 39.92 16.72 27.4 28.26 34.03 43.14 38.6 8.82 13.64 0 0 2.2 50
4 34.53 34.48 68.58 28.66 62.55 44.42 17.02 37.87 12.9 36.67 20.87 47.06 28.1 55.13 1.47 4.55 0 0 1.1 12.5
7 57.24 29.89 43.19 29.8 58.93 60.3 43.21 51.36 12.61 39.45 54.35 67.57 30.72 51.09 10.29 26.92 0 0 2.2 20
8 31.87 38.95 81.81 29.9 37.05 56.33 58.51 58.4 24.34 62.88 23.91 60.44 41.18 70 32.35 28.57 0 0 0 0
9 52.62 39.55 60.88 37.47 62.01 63.2 55.64 53.49 26.39 54.88 60.43 64.35 53.59 61.19 26.47 36.73 0 0 24.18 31.43

VI. DISCUSSION

In this work we begin with a pipeline to capture the motions
of regions of interest, in order to model the underlying human
actions. This process is in close relation to the information
it aims to comprehend and addresses specific issues that
stem from detection and tracking in an egocentric setup. For
example, in Figure 1 we demonstrate a persistent complication
with the hand detections that is successfully confronted with
tracking. Another issue that may be introducing inconsistency
to the hand tracks is the detection of both hands as one region
of interest (~2.5% of detections). This leads to the assignment
of the detection in either the left or the right hand track and
momentarily produces an outlier coordinate (since the center
of the detection is abruptly found elsewhere - see Figure 5). A
way to suppress this could be to add a third ”dual hand” track
(e.g. LR+D as a feature) that captures these sequences and
incorporates them in the final model as such; we will attempt
this in our future work.

The contextual information added from the detection of
objects, other than hands, contributes to the knowledge about
actions, however we argue that improvement might be even
higher with more accurate object detections. Previous research
[11], [25] about the effect of using object annotations over
detections supports this claim with a clear preference to
minimizing misleading detections.

We view the process of standardizing all sequences to a
certain length in experiments 2,4,5,6 as a manipulation of
their temporal structure. After sampling, the temporal distance
between consecutive steps is not fixed to 16.7 ms (see also Sec-
tion III-C) but becomes a function of the sequence length and
the sampling rate, which in turn originates from the amount
of samples in the learning scheme and is not fixed for any
two sequences. In essence we sacrifice part of the information
related to the precise duration of each tiny motion step. The
trade-off is significantly shorter training times per mini-batch
(0.321s to 0.025s) and epoch (57.2s to 4.4s) in our setup with
a 1080Ti GPU. In future work we plan to investigate spatial

Fig. 5. A double hand detection finds its way into the right hand track.

smoothing techniques (e.g. as in [26]) instead of temporal to
simplify the motions.

Hand tracks are our primary means for distinguishing hu-
man actions. Due to the high representative ability of human
hands and their multipurpossness, the same motion can be
expected to be part of multiple actions, for example ‘pull‘ and
‘take‘ are conceptually alike, hence the related hand motions
are also expected to be similar. This includes an additional
burden to our representation which we enhance using the
objects in the scene. Investigating other sources of contextual
information, such as the explicit duration of hand and object
movements with an emphasis on hand-object interactions,
together with improving existing sources through the removal
of egomotion from the hand tracks and the enhancement of
object detection are other directions we consider for future
work.

VII. CONCLUSION

In this work we perform a study regarding the usefulness of
hand and object sequences for human action recognition. We
focus on actions performed in kitchen environments, utilizing
the recent Epic-Kitchens [12] egocentric video dataset. We
differentiate from state-of-the-art methods in activity recogni-
tion that utilize end-to-end video learning schemes with deep
network structures in order to model explicitly the sequences
of interest points detected in the scene. Our method comprises
a detection and tracking scheme for the acquisition of hand
motions from egocentric videos, which together with the
detected objects in the scene are used to recognize egocentric
actions as a sequence learning problem.

Our results highlight the ability to infer a set of hand-
based human actions with comparable accuracy to video-based
methods, by only using a fraction of the input. In addition, we
show that the inclusion of the presence of relevant detected
objects enhances our feature set and improves performance.

This work is one of the few that comprehend that specialized
hand movements can be interpreted as actions without the need
to specifically rely on learned visual features for the temporal
modeling. In our future work we plan to capitalize further on
the human intelligible cues that define human actions.
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