Snap4City: A Scalable IOT/IOE Platform for
Developing Smart City Applications

C. Badii, P. Bellini, D. Cenni, M. Marazzini, P. Nesi, G. Pantaleo, M. Paolucci, M. Soderi, 1. Zaza
DISIT Lab, Department of Information Engineering — Universita degli Studi di Firenze, Italy
{name.surname} @unifi.it

E. G. Belay, F. Hachem, M. Mesiti, S. Valtolina
Department of Computer Science — University of Milano, Italy
{name.surname } @unimi.it

Abstract—Smart City solutions, initially started with open
data, are evolving towards data aggregation and semantics.
Recently, some of them are also offering IOT support. The
combination of IOT and smart city is not an easy task, the data
volumes are much higher than those addressed for industrial IOT.
The complexity of IOT smart city solutions have been identified
by a number of actors. The European commission started to set
up the EIP project for stimulating and concerting actions. The
Select4Cities project of the European Commission and associ-
ated community http://www.selectd4cities.eu/ created
a challenge to find research solutions satisfying a formalized set of
functional and nonfunctional requirements. Snap4City presented
in this paper is one of the solutions developed in response to
that challenge. The solution proposed offers a platform where
sophisticated IOT applications for controlling city dashboards as
well as IOT mobile applications can be developed in few steps.
Moreover, a number of development and monitoring tools have
been developed. Among them, in this paper, a special attention
is given to the tools and solutions for monitoring communication
performance and to perform the assessment of scalability.

Index Terms—IoT data, smart city, performance assessment.

I. INTRODUCTION

The world of ICT solutions for smart city is very wide
encompassing services at different levels of complexity and
coverage, from classical Open Data portals (CKAN [9], Open-
DataSoft [19], ArcGIS and OpenData [2]) to sophisticate
solutions that provide data aggregation and Smart City APIs
facilitating the development of web and mobile applications
(Km4City [5], City SDK [8]). The former solutions are mainly
suitable for collecting and sharing open data files and their
indexing on the basis of corresponding descriptive metadata.
Open data, in those cases, can be uploaded by providing files
in different formats: CSV, XLS, XML, SHP, etc. On the other
hand, the latter solutions based on data aggregation and Smart
City APIs try to create uniform data models describing the
city entities and are focused on few domains (e.g. mobility
and transport, culture and information, collection of feedback
from the city users, e-heath). In more detail, most of the Smart
City solutions provide to some extent: open data management,
control room dashboards, data analytics, big data stores, data
mining and data warehouse at the data ingestion, smart city

Select4Cities Consortium and the European Commission with Grant Agree-
ment No:688196

APIL. Only few of them offer development tools for data
analytics and application development [3].

The effectiveness of smart city services is enabled by the
availability of solutions capable to combine public (open) and
private data owned and managed by City Operators address-
ing specific domains (e.g. transport, mobility, energy, health,
tourist operators, culture and events). These city stakeholders
provide data and services of different volumes and at different
time and space granularities. For example, in the city, we can
have few energy operators with capillary house distribution
and data collection, many public transport operators with
thousands of vehicles/buses (millions of travels per year), some
telecom operators with a very large number of mobile devices
and millions of calls per year, and IOT networks of tens to
hundred thousand of sensors with several millions of messages
per year. Different granularity implies different methods for
collecting and for providing access to data such as publication
of open data files and/or statistics, real time publication of data
updates in several different protocols for different purposes.

The IOT solutions arrived in the context of Smart City
with new solutions deploying sensors/actuators with a set of
protocols directly enforced in the devices, such as: OneM2M
[20], ETSI M2M [15], MQTT [16], COAP, SigFox, AMQP,
LoraWAN, Green Button Connect [11]. The IOT revolution
has also opened the path for the integration of personal
IOT devices and their exploitation in the context of personal
applications; for example, for adding specific house tempera-
ture sensors and actuators, for managing personal health care
sensors (e.g., glycosometer), training devices. Furthermore, the
exploitation of contextual data coming from the city for taking
personal decision is also very relevant. In most cases this issue
is neglected and fully in charge of the single users. As a result,
IOT solutions for smart city, providing support for the final
users in exploiting city and personal data in the context of
personal IOT applications, are really a few. See for example
classical IBM, Google or AWS solutions that do not provide
specific contextual and local data but facilitate the usage of
your personal data only.

Considering the general scenario of IOT for Smart
City, Select4Cities EC project and associated community
(http://www.selectd4cities.eu/) launched a chal-



lenge as a competitive PCP (Pre-Commercial Procurement)
based on research activity according to the definition of EC.
The challenge aimed to look for platforms that could cover a
wide range of requirements at the same time in the context
of IOT/IOE (internet of thing/everything) and smart city ap-
plications, with the aim of experimenting them on different
cities in Europe such as Helsinki, Copenhagen and Antwerp.
Among the identified requirements, there are the capability
of the IOT/IOE solutions: to serve as a City Dashboard (this
might mean to have centralized unique control room or to
have several control rooms for each domain); to serve as
an open city platform at service of different operators; to
cope with real time communications of different kinds and
formats; to manage data referential; and, to be capable to
support the creation of a Living Lab enabling the city users
and city stakeholders to develop their own applications by
using different and suitable tools, and to put them at the
disposal of the city. A set of challenges has been proposed by
EIP European commission actions for Urban Platforms [10],
mainly on clean power for vehicles, multimodality routing,
smart logistic, sustainable mobility, etc.

In response to the above-mentioned research and devel-
opment challenge, we have constituted the Snap4City team
(http://www.snapdcity.org) combining two research
teams from the University of Firenze and University of Milano.
The team has worked since the beginning of the 2017 for
setting up the Snap4City platform. It is an open source
IOT/IOE platform satisfying the above-mentioned require-
ments and a number of non-functional requirements regard-
ing: open sources, scalability, standard compliance, robust-
ness, distributed, managing heterogeneous communications,
interoperability, security and privacy respect. At the present
development stage, the first version of the Snap4City platform
has been deployed and validated against several challenging
cases as described in the rest of the paper, and it has been
tested twice by the Select4Cities team. The solution proposed
started from the exploitation of Km4City platform and its
smart city API (http://www.kmdcity.orqg) [3], adding
IOT/IOE capabilities and scalable management.

The paper is structured as follows. Next section discusses
related work. Then, Section III presents the main requirements
for IOT smart city solution and the proposed architecture.
Section IV provides an example of what can be realized by
using the Snap4City solution taking into account a mobility
and transport scenario for infomobility. In Section V two
scenarios of performance analysis for the proposed solution
are presented. One is for the assessment of communications
and the other one is for general scalability and workload.
Conclusions are drawn in Section VI.

II. RELATED WORK

According to [12] more than 450 platforms for IOT have
been presented that provide implementation for the functional
blocks described in [4]. A comparison of the most represen-
tative IOT solutions at the state of the art is reported in Fig.
1. Among them, according to the information collected, we

o - | ¥ 2
: z| 52 |%|2 |85l | 5| &
9 = | = ws | Z|E c&|8 & =
it o |2| £5 |0|§ S E I &
- = L. T -4 s 5|2
c - ™ E t|lwEl®" S|k 2 b
@ = 2 E 5 Tl c5|lo =22 @ o
3 = Sa | E[less(l2f&|2o| 8 2
o = c Er Y| ER|([ZS=E|8E| 2 °
5 & |8 on |D|E5E|[T2 & G =
2 ™ = Fa a8 na P @ o
a o & aq b = u " ® a 5
§ | 52 |5|3 |82|¢ z| 2
& 3 < o . £
& = < |2 - & ©
Kan ¥ Y ¥ N Y| N Y ? N Y
ot ¥ MarT
IGNITE | (client) | ¥ N ¥ N N N N N only
PTC (via ;
. Y (via
ThingW | S I I T T N A R
orkx UE sions)
AL -
BEZIRK Y M M M N Y N Y M i
Bosch
10T Suite N Y ¥ Y Y N M Y Y ¥
FIWARE Y (Y) N N Y N N Y Y i
cisco
N Y ? N N N N N N N
Jasper
1BM ¥
Watson N Y ¥ | (Node | ¥ ¥ N Y (¥) Y
loT -RED)
Siemens Y
MindSp ? Y (via (via
here N ¥ ATOS) N N N Y IBM]) ¥
; marT
?
Carriots N Y ? N N N N 2 Y anly)
. MQTT,
Thingsh ( '
Oardg ¥ i i N N N N N N CoAF,
http)
ot N
eclipse.o 5 (via
o Y Y ? M N N N Y BIRT) Y
Fig. 1. Comparison among representative IOT platforms. Legend: Y/N

present/not present feature; (Y) partially present; ? no evidence from docs

can see solutions that clearly declare to be suitable for the
smart city scenarios and IOT such as Kaa, Bosch, FIWARE,
CISCO, IBM and Carriots and few more. Among the graphical
environments for the specification of applications working
with streams of IOT data, NodeRed [18] is probably the most
effective for rapid prototyping and has a large portability and
limited footprint. Other solutions, as Eclipse, are based on Java
and present larger footprint and more complex languages to
be used. Moreover, NodeRed can be used in conjunction with
Kafka, Spark, R studio, external services, etc., adding simple
blocks, and thus the scalability on massive access to sensors
can be delegated to data driven data collectors in blocks also
exploiting IOT Directory/Discovery services.

Many efforts are nowadays devoted to the creation of virtual
bridges among these platforms in order to guarantee the
development of cross-platforms (also named horizontal) appli-
cations, that is applications able to connect sensors belonging
to different platforms. European projects (like OpenloT, BIG-
IoT, Biotope, INTER-IoT, SymbloTe) are moving in this
direction and their idea is to offer facilities across all layers
of the network stack in order to improve the interoperability
among the different components involved in the management
of sensors, actuators and network infrastructures. XGSN [6]



Transport systems [

Mahbility, parking

Public Services
SYElT. &

Sensors, 10T

<
Cameras, ..

Environment,
\Water, energy

Shops, services,

Social Media

g netsork

Development Tools DataGate/CKAN Application Builder
(_r _._'._ I DataMart Dashboard Builder n
_I'_:l — 1 — DataIMapper App Development Kit E
7 | SE""':IEMEP SDK x ETL processes —
. Indexing and Search  gpy » para Analytics N~}
T 3
Dashboards o
S
2
~
=

<

£

(&)

il t . o
Big Data Services External Services -l W
10T/IOE Services ETL Process Services E 3
App Services Data Analytic Services —
Dashboard Services Comput. Mng Services g
Notification Services  Access Services 2 iT

g \ a
] =]
: . < u—
Knowledge Services [ . )
! | S
2
| Smart City Cloud Infrastructure ||

Peol of Virtual Machines / Nodes for Big Data Stream & batch processes

Fig. 2. Snap4City Architecture Overview

(extension of the GSN middleware [1]) is one of the first
middleware (at the base of the OpenloT project) for the IoT
that supports a Domain Ontology for mitigating the semantic
interoperability issues arising when integrating heterogeneous
physical and virtual sensors. It exploits the SSN Ontology [7]
for semantically annotating sensor data and observations in
order to provide a standardized queryable representation that
makes it easier to share, discover, integrate and interpret the
data. Snap4city is moving in the same direction of this system
with the following peculiarities. First, we adopt the Km4City
Ontology that allows to better represent all the kinds of data
that can be generated in a city (and not only the sensor/actuator
data). Moreover, Snap4city adopts intelligent approaches for
the semantic discovery of new sensors/actuators and their clas-
sification in the domain Ontology. Finally, Snap4city combines
modern solutions in order to develop a scalable and efficient
architecture that easily adapts to the millions of events that
need to be treated in the context of smart cities.

A large number of smart city projects are focused on
creating big data infrastructure and solutions such as REPLI-
CATE H2020, RESOLUTE H2020, Triangulum H2020, EIP
[10]. In [13] the case of smart city IOT integration has been
discussed for the city of Santander without proposing details
and performance analysis of the solution. In [14], a smart
city IOT architecture has been proposed without addressing
the aspects of scalability. As outlined in Fig. 1, none of the
analyzed solutions is capable to address all the requirements.
Most of them lack access to smart city data via API, many
others are not scalable, a large number of them are limited
in supporting multiple IOT protocols and data formats. We
remark that the concept of scalability in the context of smart
city is one of the most challenging with respect to those in
the context of IOT for Industry 4.0 and agriculture applications
due to the huge number of data flows related to the inhabitants.

III. SNAP4CITY ARCHITECTURE

The main architecture of Snap4City consists of a set com-
ponents developed for:

o Collecting data from open data, real time data, and IOT
that are produced by different sources, city operators, and
also by the users devices, social media.

o Storing and managing data in a knowledge base (KB)
and tabular noSQL storages, and indexing them for data
retrieval with inference, spatial-temporal reasoning, facet
search, and drill down on time and space.

e Creating IOT applications, data driven and/or periodic,
based on MicroServices [17]. The IOT Applications can
be data flows extending NodeRED of IBM, which may
also exploit Spark and Kafka capability, and personalized
data analytics.

o Creating services/processes by means of a number of
easily accessible tools for developing data analytics in
R, Java, Python, etc., as well as for creating data trans-
formation in ETL, Karma or NIFI.

o Executing and controlling in a reliable and scalable
manner smart city processes (IOT, ETL and data analytic,
exploiting data) on cloud infrastructure, that can be used
to create smart city MicroServices for computing values
periodically and/or in real time.

o Showing and navigating on data results via (i) city
dashboards (for control room or for operators) for data
drill down on time and space, and in turn facilitate
the production of specific city dashboards for decision
makers and city operators, at different levels; (ii) smart
city API; and (iii) bulk data results.

o Providing access to data and services via (i) MicroSer-
vices for IOT and ETL applications, and via (ii) Ad-
vanced Smart City API for Web and Mobile App and
dashboards.



Fig. 2 presents an overview of the Snap4City architecture,
in which the data ingestion section has been implemented
by using: (i) Km4City solution for ETL processes supporting
protocols such as: OneM2M, ETSI, DATEX, Rest Call, FTP,
Web Services, etc., mainly for ingesting data as Open Data,
referral data, and real-time data provided by external services
[3], (ii) a number of IOT Brokers to cover the connection with
IOT devices, namely FiWare Orion Broker (NGSI protocol),
Mosquitto (MQTT protocol) and RabbitMQ (AMQP protocol).

With the aim of abstracting the complexity of managing
multiple IOT brokers and protocols, a new tool called IOT
Directory has been developed in Snap4City. The IOT Directory
allows registering IOT Brokers and collecting their corre-
sponding registered devices, and propagating this information
into the Km4City KB. The IOT Directory also provides
support for IOT applications and processes that would like to
subscribe to receive data driven from IOT devices, registered
on the brokers. So that, when an IOT application is designed,
the IOT application refers to the IOT directory/discovery to
look for a device instead of searching for them manually on
all single brokers. For example, in the NodeRED approach,
one should connect each single IOT Broker for each single
sensor/device. While, in Snap4City case, a new block and
service abstracting the whole set of devices is available and
it has been called IOT Directory and made accessible also
for NodeRED users. An IOT Application developer exploits
the IOT Directory to search and discover the most suitable
devices to be used, by searching through metadata and/or on
map. Discovering capabilities based on the use of maps are
offered that rely on the KB services.

According to Km4City solution [3], the city entities’ models
and relationships are stored into a KB grounded on Km4City
ontology, while the historical and real-time data are collected
in Apache Phoenix storage. In order to cope with the 10T
devices and allow them to be discovered in the map, each
device has to be registered on the KB with its attributes.
While its current and historical values are accessible for data
analytics and further reasoning. To this end, the IOT values
have to be logged into the Hbase storage. This automated
feeding process is performed by a set of processes (one for
each IOT Broker) realized in Apache NIFI. The same set of
processes also perform the indexing for general view, facet
and timeline drill down on Developer Dashboard. In this
manner, both historical/referral data and real-time data are
accessible via Advanced Smart City API that exploit both the
KB Services for spatial-temporal reasoning in SPARQL and
Hbase/Phoenix in SQL, integrated. Moreover, the Advanced
Smart City API are also accessible as MicroServices for
IOT applications in NodeRED. To this end, to implement
the MicroServices, a number of NodeRed Blocks have been
realized and deployed into NodeRED tools. The Advanced
Smart City API and Knowledge Services also provide data
and information to Dashboards that can be produced by the
newly developed Dashboard Builder tool.

The Snap4City architecture is completed by a number of
tools such as: Dashboard Builder for creating city dashboard

and IOT actuator for them; ServiceMap for working with
the KB and generating smart city API; a set of Developers
Dashboards for monitoring consumed resources on the plat-
form: data stored, cloud resources at level of VM (virtual
machine), hosts and containers, and network traffic among Mi-
croServices, IOT Applications, Mobile and Web Applications,
and IOT/IOE devices, and ETL processes. As regarding the
management of cloud resources for the IOT applications, ETL
and Data Analytics processes are put in execution on a pool of
VM as containers. Containers are realized by Docker while the
Marathon-Mesos solution is used for their management. The
whole set of VM constituting the solution is also allocated
on cloud. Therefore, the system may keep under control the
consumption of resources also controlling when they have to
be turned on/off. Before passing to describe the performance
analysis performed, a functional example is reported in the
next section that can be regarded as a proof of a large number
of the above-mentioned functional requirements.

IV. AN EXAMPLE

In order to put in evidence the capability of the Snap4City
solution with respect the IOT challenge presented by Se-
lect4Cities, and the state of the art tools, consider the following
scenario of mobility and transport in which the following
entities are involved:

o A Mobility Operator of the city or some mobility stake-
holder in front of a web page which may be interested in
understanding the city dashboard status in terms of real
time and referral data regarding mobility and transport
(traffic sensors, parking status and predictions, triage in
the hospital, environmental data, etc.), and may act on the
duration of the red-light semaphore in a specific case, and
on speed limit in major paths of the city.

e One or more drivers sitting on their public vehicles and
touring the city (such as a bus, an ambulance, a police
car, a garbage collector track) that may need to monitor
the city traffic conditions and environmental data, and
may also need to act on the red-light semaphore (the one
controlled by the Mobility Operator).

Each of them has his own Dashboard to control, one on
the web and the other on mobile as depicted on Fig. 3.
The Mobility Operator may change the speed limit acting
on the dimer with double control (fine and by step), which
is an IOT device encapsulated into the City Dashboard. Any
action on IOT dimer provokes the sending of a message to
an 10T Broker (IOT Orion broker). Thus, an IOT application
has been designed to update (in data driven) the changes
of the dimer (telemetry protocol) and thus to propagate the
new speed limit to a number of Speed Limit Plates along a
major path in the city. Also the involved Speed Limit Plates
are IOT devices/actuators, which in turn are read by the
former Dashboard to allow the Mobility Operator to verify
if the information has been correctly propagated. In the same
manner, the Speed Limit on the mobile of Driver is updated
since he is registered on the limit corresponding to his location



(a) https://www.disit.org/dashboardSmartCity/view/
index.php?iddasboard=MjU3

traffic sensor FIOS5ZTL02001
vehicle flow (car/h)
200000 020000 080000

14:00:00 21:00:00

car park Parcheggio Stazione Fortezza Fiera

free parking

200000 020000 00000 14:00:00 21:00:00 REQUEST GREEN

Temperature Amo

'5‘957

Speed Limit Morgagni

L.

(b) https://iot-app.snapdcity.org/nodered/nrl5/ui

Fig. 3. (a) Mobility Operator, (b) the view on mobile device of the Driver

in that moment. The presented demonstrator can be accessed
to play with by using the links in Fig. 3.

Both the Driver and the Mobility Operator may act on their
corresponding Dashboard for obtaining the trend and real-
time value of the measured traffic and parking conditions.
The Mobility operator, may obtain that results by acting on
the selector on the left side of the city dashboard, while the
Driver acting on the map of the mobile IOT App (by using
the finger keep pressed on the map for a while, equivalent to
the right button of the mouse) and selecting the point, thus
simulating the movements on the car.

In this integrated scenario, the Mobile application has been
developed by an IOT/IOE application in NodeRED flow with
the addition of Snap4City MicroServices as depicted in Fig.
4. In order to allow monitoring and assessing the network
workload, in the flow, each data received/requested (RX) by
the flow, and transmitted (TX) is also logged into the EventLog
block. It collects the data, index them to monitor the flow
by using the AMMA tool (Application and MicroService
Monitor and Analyzer) for understanding the traffic on the
infrastructure, implemented as a Banana Dashboard on a multi
facet and sharded index on SOLR. A more elegant solution
would be to hide the log into the Smart City MicroServices.

Search Traffic Sensors
point

transform results

world map

world map

vea
popupopen \ L

N

[

Search Car Parks '~

transform results f

service-info /— !
/)

service-info

eventlog

vehicleFlow

\

freeParks T~

vehicle flow (car/h)
traffio sensor |
free parking

e

S Temperature

— ice-inf z air
aitHumidity (o

waterLavel

\ o

Z delay 1s (= off \

timestamp ——— service-info

request green

Ve )
o

s
Humidity

Armno

Orion send

I

\_ N

eventlog

Fig. 4. 10T application in which data are collected from users actions, referral

data from MicroServices of Smart City API Km4City and from IOT brokers.

In addition, the Mobile Operator may act on the red-light
semaphore pressing the green button on the up-right corner
of the Dashboard of Fig. 3. If the semaphore light is green,
the duration of green is increased of 10s for each push. On the
contrary, when the button is pressed, and it is red since 15s, it
is changed to green, otherwise the change to green is delayed
of 15s or red will be passed (this guarantees a minimum flow
in the other direction). The same actions can be obtained by
the Driver, who also sees the countdown until the semaphore
changes its state. Other logic can be easily enforced (e.g. to
make the reservation without acting on the red duration).
The above described logic and transformation has been
implemented with the IOT application reported in Fig. 6.
Also in this case, the monitoring of the traffic flow has been
implemented by adding specific EventLog blocks. Please note
that in the above example, (i) the Mobility Operator dash-
board reported in Fig. 3 has been implemented by using the
Dashboard Builder for Snap4City also including IOT devices
embedded into the dashboard and exploiting real time data,
referral data, and data driven events (received and produced),
(ii) the IOT/IOE application in the hands of the Driver has
been developed in NodeRED with the flow reported in Fig. 6,
in which most of the functionalities have been realized through
MicroServices developed by Snap4City enforcing access and
exploitation of the Smart City API of Km4City, (iii) the IOT
access has been realized using the services of IOT Directory
and IOT Discovery tools for Snap4City, (iv) the EventLog has
been used for monitoring the network usage by the IOT and
ETL applications in the infrastructure. This latter issue will be
more evident when in the following a view of the AMMA tool
(Application and MicroService Monitor and Analyzer) will be
discussed. The solution for IOT smart city has also to cope
with security and privacy of the city users. To this end, the
IOT-smart city solutions have to provide end-to-end secure



Fig. 5. AMMA tool: monitoring in real time data streams with facet search and interactive dashboard for segmenting the traffic: origin destination.

json
\ request Red

listening on http-//iot-a Manage request

event-log

json
\ request Green

AN

listening on http://iot-a event-log 15d2773d123b8

setSemaphore {

Orion send

timestamp event-log

state

/

State Manager —— text

\ text

updateStateCountEntity —

( updateStateTimeEntity ()=

Fig. 6. 10T app. implementing the logic of red-light control of the semaphore

updateOrionCountersEntity2

updateOrionCountersEntity

connection, for example using TLS/HTTPS messaging for the
IOT and HTTPS for accessing the tools.

V. PERFORMANCE ANALYSIS

The adoption of IOT applications in the context of smart city
may imply to give at each single city user the possibility of
having and programming one or more IOT Applications. These
whole set of IOT applications and data processes running in
the smart city back office have to be maintained under control,
since some of them could be (i) intentionally developed
for creating problems, (ii) developed by non-experts users
that could produce IOT applications that in some unplanned

manner may create large network traffic, (iii) adopted in terms
of instances by many people thus creating a large number of
instances performing the same actions, which will become
computationally inefficient and will uselessly increase the
costs. In the latter case, repeated functions/computations could
be leveraged to a shared city service (IOT app as well or
ETL), thus simplifying the costs and the flows. Therefore,
the continuous analysis of the back-office network traffic and
cloud workload helps the smart city operator to keep clean
and sustainable the solution. Most of the IOT platforms have
business models based on the number of messages or Kbyte
exchanged. For these reasons, the performance analysis of the
proposed solution has been conducted addressing two different
aspects and scenarios:

A Duaily and real time: the possibility of putting in the hands
of developers and smart city managers an AMMA tool for
real time monitoring and control of the consumption of
communications bandwidth among the IOT applications,
external services, storage, Micro-Services and smart city
API, file system, etc.;

B Sporadically for validation: the assessment of the ar-
chitecture in terms of maximum number of messages
that can be managed by brokers and applications when
a certain amount of cloud resources are available for
running the processes that put in execution the IOT
applications as containers on cloud.

A. Assessing Communications Bandwidth

In order to assess the communication workload among
the several services, MicroServices, processes in the smart
city IOT back office, a large number of entities have to be
monitored, while those that mainly provoke the traffic are the
processes: ETL, DataAnalytics and IOT [3]. The communi-



CPU Usage (Top 10) @
00 |
BOD
70 J
80 I b
50 =R
40 J !
30 |
20

10

Percent

230717
14,40

W Mesosphere-Slave-8-Debian8-194-... [0 Mesosphere-Slave-5-Debiang-193-..

W eclap.eu-db-running B eclap2-64bit.eclap.eu-54-running

[ eclap-bp64neteclap.eu-132-running [l openmind.disit.org-1-25-running

W TwitterVigilance-MasterHadoop-2... 0 ebos0-eclap-bo-scheduler-39-run...

M Mesos-Marathon-Development-Ubun... B ECLAP-LOD-Solr-INDEX-Ubuntu-125...

Network (Mbps) (Top 10) @

230717
14.50

230717
15.00

2307117
15.10

2307117
15.20

230717
15.30

230717
14,40

230717
14.50

230717
1500

2307117
15,10

2307117
15.20

W Mesosphere-Slave-5-Debians-193- . [ Mesosphere-Slave-6-Debiang-194-
B TwitterVigilance-MasterHadoop-2... @ eclap.eu-db-running

[ eclap2-64bit eclap.eu-54-running [ eclap-bp64neteclap.eu-132-running

M eclap.eu-balancer-ubuntu-133-ru... O ECLAP-LOD-Solr-INDEX-Ubuntu-125...
M openmind.disit.org-1-25-running @ ebos0-eclap-bho-scheduler-38-run.

230717
15,30

Fig. 7. Controlling messages sent / received per minute on the cluster of VM
including container of IOT applications managed by Marathon-Mesos-Docker.

cations may be among applications, with respect to external
services, due to periodic processes, accessing to the smart city
API, etc. Therefore, the whole set of data flow volumes and
messages have to be logged and the log data has to be easily
partitioned and analyzed by the developers to understand over
the time line and on map: (i) how much a given application,
application area and services are communicating, in terms of
volume and messages, (ii) how many messages are exchanged
among applications, services, etc.' (iii) which are the top
applications in terms of communication workload, etc. The
communication activities are related to messages, for each of
which one should have a clear view of its purpose and cost:

« transmitting/receiving data to/from;

« motivation: IOT (via IOT brokers or directly to devices),
data store (save and load), dashboards (user interface
interaction), file system access, external services via rest
call API, WS, FTP, etc.; and Smart City API;

¢ protocol: MQTT, COAP, AMQP, HTTP, OneM2M, ..;

o process agent kind: ETL, Data Analytics or IOT apps;

!Note that in most of the IOT applications on the market the prices exposed,
and thus the business models strongly depend on the number of messages
and/or the volume of data exchanged in terms of KByte/MByte.

o mastered by an IP-local to/from an external service at a
given IP;

¢ and, in the case of external service, the URL should be
a selection aspect as well as the service scope which can
be internal or external to the smart city cloud.

For these reasons, an extension to the above-mentioned ar-
chitecture has been realized to collect the stream of EventLog
data and indexing them into a large SOLR index, thus allowing
the access with a facet viewer to the whole set of data. And so,
permitting at the developer to perform facet search and drill
down over timeline as depicted in Fig. 5. Where, the first set
of pie charts and histograms is representing the distribution
of the volumes of message, while the second is representing
the distribution of the flows in terms of message size. In the
observed period, most of the messages have been due to the
database storage of ETL in TX. While in terms of volume
(message size), also the file system has been strongly involved
and there is balance in TX/RX. From the latter histograms, it is
also possible to identify which are the most exploited services
involved: parking, smart benches, waste collector, bike sharing
racks, electric vehicles.

By selecting with the mouse the single bars, it is possible
to insert a filtering and request to all the other representation
to recompute the graphs. In this manner, the analyst can study
the contributions produced and received by each single 10T
application towards all the other services, over time and kind.

B. Assessing Maximum Number of Messages

In order to assess the maximum number of messages per
minute which can be managed by a set of IOT applications
with a certain number of resources, a test bed has to be set
up. To this end, we have allocated 6 virtual machines, VM,
on which 300 Docker Containers each of which with an IOT
application processes having 196KByte of memory, for 79
GByte Ram. Each host had 24 cores at 2.299 GHz, on 128
GByte RAM: up to the 75% of resources on cloud, to keep the
VM process in a safe/live range. Each single IOT Application
was based on a NodeRED, which can sustain about (in that
condition) 120 msg/s MQTT in input thus performing 120
REST Calls per second. Thus obtaining 240 events per second:
96.000 events per second per Host/Node.

In Fig. 7, a monitoring panel (also implemented as IOT
application) for the workload is presented. On the left bot-
tom corner the trend of the number of healthy IOT ap-
plications/containers is presented. So that, 300 healthy IOT
applications have been registered. The test started by using a
variable number of MQTT messages generated on a Mosquitto
broker which was sending new values of data to the 300
allocated IOT applications. During the same test time, the
amount of messages sent per second has been changed arriving
at 1 Million of messages per minute. Each IOT application of
the test, in effect, collects an MQTT message and sends a
message to a MicroService of data store. Therefore, for the
cluster, the total number of messages per minute was about
2 million. It has been reached by using a number of 10T
MQTT brokers with the aim of arriving at the limit when



Fata storedimin
- Trazmn
101473

Fig. 8. Monitoring cloud resources during the workload test for the IOT smart
city applications

the maximum acceptable exploitation of memory and CPU
resources was reached. The maximum workload has been fixed
at the 75% of Cloud VM resource exploitation. When the
limit is reached, the IOT Applications in Container are not
capable to react, and thus the manager identifies them as not-
running. Fig. 7 depicts the case which represents the limit for
the resources available in that configuration.

The scalability of the solution may be obtained quite easily
since the overhead of the solution is close to 13% for VM,
ESX, Marathon per Node, plus an offset due to the needs of
having 3 VM for the masters that may have managed up to
16 Hosts/nodes, thus doubling resource is needed every other
16 Hosts/nodes. In our test case, 6 VM have been managed.
At the same time the monitoring of cloud resources has been
obtained by using the cloud infrastructure tools as reported in
Fig. 8. The picture represents a real condition in which VM
with IOT contained managed by Mesos work together with
other VM with other processes and services.

VI. CONCLUSIONS AND FUTURE WORK

Smart City solutions initially started with the production
of open data and their collection on managing open data
tools. Then smart cities evolved towards data aggregation
and semantics modeling of city entities, benchmarks, and
datasets. Recently, some of them are also offering IOT support.
The combination of IOT and smart city is not an easy task,
the data volumes are much higher than those addressed for
industrial IOT. The complexity of IOT smart city solutions
have been identified by a number of actors. The European
commission started set up the EIP project for stimulating
and concerting actions. On the other hand, the Select4Cities
project of the European Commission and associated commu-
nity http://www.select4cities.eu/ created a chal-
lenge to find research-based solutions satisfying a formalized
set of functional and nonfunctional requirements. Snap4City
solution that has been presented in this paper, is one of the
solutions approved and developed in response to that chal-
lenge. Snap4City solution is based on MicroServices directly
provided by a number of applications and Smart City APIL
Snap4City users can develop in few steps sophisticated 10T

applications exploiting MicroServices that can control city
dashboards as well as IOT mobile applications. Moreover,
a number of development and monitoring tools have been
designed and developed. Among them, in this paper, a special
attention is given to the tools and solutions for monitoring
communication performance among IOT, storage, smart city
API, external services, etc. Another aspect addressed in the
paper consisted on the test to perform the assessment of
scalability feature of the IOT smart city infrastructure in terms
of maximum number of messages exchanged per minute fixed
the number IOT processes and corresponding resources. Future
work will be devoted to put together these aspects to develop
algorithms for automated scaling and IOT cloud management.

ACKNOWLEDGEMENTS

Our thanks goes to the Select4Cities Consortium for sup-
porting our work with useful feedbacks about the real needs
of smart cities like Antwerp, Copenhagen, and Helsinki. We
also thanks to Km4City for the usage of data for testing and
validation in the early phases.

REFERENCES

[1] Aberer K., Hauswirth M., Salehi A., ”A middleware for fast and flexible
sensor network deployment”. In: Proc. 32nd Int’l Conf. on Very Large
Data Bases, pp. 11991202, 2006.

[2] ArcGIS OpenData: http://opendata.arcgis.com/

[3] C. Badii, P. Bellini, D. Cenni, A. Difino, P. Nesi, M. Paolucci, Analysis
and assessment of a knowledge based smart city architecture providing
service APIs, Future Generation Computer Systems, Vol. 75, 2017.

[4] Bandyopadhyay S., Sengupta M., Maiti S., Dutta S., ”Role of middle-
ware for internet of things: A study”, Int’l J. of Computer Science and
Engineering Survey 2(3), 94105, 2011.

[5] Bellini P, Bruno I., Nesi P, Rauch N., "Graph Databases Methodology
and Tool Supporting Index/Store Versioning”, J. of Visual Languages
and Computing, Elsevier, 2015.

[6] Calbimonte J.-P., Sarni S., Eberle J., Aberer K., XGSN: An Open-
source Semantic Sensing Middleware for the Web of Things, In 7th
Int’l Workshop on Semantic Sensor Networks, 2014.

[7]1 Compton M., Barnaghi P., Bermudez L., et al. "The SSN ontology of the
W3C semantic sensor network incubator group”, J. of Web Semantics
17, 2532, 2012.

[8] CitySDK: http://www.citysdk.eu

[9] CKAN: http://ckan.org

[10] Specification For Urban Platforms, EIP Project, version 2.2, 2016,
European Innovation Partnership for Smart Cities & Communities.

[11] Green Button Connect: http://www.greenbuttonconnect .com/

[12] ToT  Analytics. List of 640+ enterprise iot  projects.

iot-analytics.com/product/list-of-640-iot-projects/.

[13] J. Jin, J. Gubbi, S. Marusic and M. Palaniswami, “An Informa-
tion Framework for Creating a Smart City Through Internet of
Things,” in IEEE Internet of Things Journal, (1):2-112-121, 2014. doi:
10.1109/J10T.2013.2296516

A. Krylovskiy, M. Jahn and E. Patti, "Designing a Smart City Internet
of Things Platform with Microservice Architecture,” 3rd Int’l Conf. on
Future Internet of Things and Cloud, 2015, pp. 25-30. doi: 10.1109/Fi-
Cloud.2015.55

Lin F J., Ren Y., Cerritos E., A Feasibility Study on Developing
IoT/M2M Applications over ETSI M2M Architecture.” In Proc. of Int’l
Conf. on Parallel and Distributed Systems, IEEE, 2013.

Message Queue Telemetry Transport (MQTT), OASIS Std., 2014.

S. Newman, Building Microservices. OReilly Media, Inc., 2015.
https://nodered.org/

OpenDataSoft: https://www.opendatasoft.com/

Swetina J. et al. “"Toward a standardized common M2M service layer
platform: Introduction to oneM2M.” IEEE Wireless Communications
21.3 (2014): 20-26.

[14]

[15]

[16]
[17]
[18]
[19]
[20]



