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Developmental Human-Robot Imitation Learning
with Phased Structuring in Neuro Dynamical System

Keita Mochizuki, Harumitsu Nobuta, Shun Nishide, Hiroshi G. Okuno, and Tetsuya Ogata

Abstract— This paper mainly deals with influences of teach-
ing style and developmental processes in learning model to the
acquired representations (primitives). We investigate these in-
fluences by introducing a hierarchical recurrent neural network
for robot model, and a form of motionese (a caregiver’s use of
simpler and more exaggerated motions when showing a task
to an infants). We modified a Multiple Timescales Recurrent
Neural Network (MTRNN) for robot’s self-model. The number
of layers in the MTRNN increases according to learn complex
events. We investigate our approach with a humanoid robot
“Actroid” through conducting an imitation experiment in which
a human caregiver gives the robot a task of pushing two buttons.
Experiment results and analysis confirm that learning with
phased teaching and structuring enables to acquire the clear
motion primitives as the activities in the fast context layer of
MTRNN and to the robot to handle unknown motions.

I. INTRODUCTION

Imitation learning is considered to be one of the most
promising approaches for creating a consistently developing
robot. With imitation learning, even an ordinary person can
easily teach a robot any task. Moreover, a robot that can learn
a task by imitating motions a human showed it is valued
even in the engineering field because it is hard and costly to
perfectly control a robot’s motions by hand.

We can get a key to imitation learning in development
from how infants learn tasks in interaction with their parents.
Studies on imitation in cognitive science and developmental
psychology mainly focus on a caregiver or interaction be-
tween a caregiver and learner, rather than considering the
problem as merely a robot simple substance such as do most
existing studies on robots imitation learning. Good examples
of approaches used in human developmental learning include
“scaffolding” and “motionese” as mentioned detail in Section
IL.

There are two important factors in robot learning with a
caregiver respect to scaffolding and motionese:

1) Phasing from lower learning to upper learning
2) Simultaneous design of caregiver and learner

Most existing studies on phased learning such as 1) have
not considered 2), that is, interaction between a teacher and
learner, despite the availability of knowledge on scaffolding
and motionese. Our goal is to construct a developmental
learning environment where a learner develops and a care-
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giver changes his ways of showing things in accordance with
the phase of the learner’s development.

In terms of the specific phases a caregiver should go
through in teaching a task to a robot, our key idea is primitive
motions or “primitives”, the basic unit of sequential motion.
Motionese is closely related to primitives as it plays a role
in clarifying pauses in primitives performed in a sequential
motion. When inducing learners to imitate motions, there
are two inevitable factors that caregivers must keep in
mind, (1) the restrictions of their own physical structure
and capabilities and (2) the differences between their own
physical structure and capabilities and those of others. They
thus need to express the nature or intention of the motions
they show as precisely as possible. Therefore, the approach
has been taken of having a demonstrated sequential motion
recognized as a symbol sequence of meaningful motions, i.e.,
a primitive sequence [1] [2].

Another point that needs to be discussed is how learners
should be as they progress in learning from primitives to
complicated motions, because we consider the simultane-
ous design of a caregiver and learner. Our key idea is a
“start from immaturity” approach. Elman gradually increased
memory capacity as an approach for language learning with
RNN (Recurrent Neural Network), given a restricted memory
capacity at the beginning [3]. Even in Nagai et al.’s study
on joint attention, a robot’s vision was made to develop
in parallel with the gradual raising of difficulty for a task;
they confirmed that this vision development improved post-
training performance [?].

We adopt the idea of daring to impose restrictions on a
learner at the beginning and have him develop gradually. On
the basis of the finding in the above-mentioned related stud-
ies, we expected that an immature learner with restrictions
would be better able to grasp essence of things he is learning.

Note that our goal is to investigate the influences of
acquired internal representations by the changes of both a
caregiver’s teaching way and a learner’s capability rather
than to exceed the performances of existing model. Although
many studies on imitation learning have succeeded using
primitives and thier relationships, a few studies on imitation
learning focus on changes of both a caregiver’s teaching way
and a learner’s capability.

The rest of the paper is as follows. Section II describes
related works. Section III gives an overview of our approach
to developmental imitation learning. Section IV describes
our implementation of imitation learning as preparation for
an experiment. Section V details the experiment setup and
the experiment results obtained. In Section VI we discuss
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Fig. 1. Transition of motionese: an example of motionese in the task putting
a ball into a cup. For an immature learner, the caregiver emphasizes pauses
in sequential motion. As the learner gradually develops, the caregiver show
sequential motions more smoothly.

certain points relative to the results. Finally, we present our
conclusions and mention future work to be done in Section
VII.

II. RELATED WORKS

There are some existing studies on learning model intro-
ducing the concepts of “scaffolding” and “motionese”.

“Scaffolding” is a way in which caregivers who are trying
to help infants to learn, adjust the difficulty of a task
according to an infant’s perceived capabilities [5]. It is well
known as an effective approach in helping infants to learn;
the importance of a caregiver has been pointed out even
in robotics science. Saunders et al. adopt the concept of
scaffolding to robot’s imitation learning [6]. In Nagai et
al’s above-mentioned study, they gradually increased the
difficulty of a task by narrowing the range of a reward
in reinforcement learning as an approach to acquiring joint
attention [?]. They confirmed that this type of developmental
learning accelerated learning more than usual.

The concept of “motionese”, proposed by Brand et al.
[7] in studies that attempted to clarify a caregiver’s role
in an infant’s development, is defined as the modification
of motions a caregiver performs when showing a task to
an infant. Examples include exaggerating or simplifying a
motion. Motionese also includes the effects of clarifying
pauses in sequential motion by stopping or otherwise mod-
ifying motions and it is considered that motionese helps
an infant recognize motions. Fig. 1 shows an example of
motionese. Focusing on motionese, Nagai et al. analyzed
an adult’s motions while he showed a task to a robot [8].
Their results demonstrated that motionese is induced by a
learner’s immaturity and that effective learning is prompted
by motionese. On the basis of their results, they claimed
that dynamic interaction between a caregiver and learner is
important.

III. OVERVIEW OF OUR MODEL

In our research, we dealt with imitation learning in the
form of a human face to face with a robot teaching the
latter the task of pushing two buttons on a table (Fig. 2).
This section describes our approach to the imitation learning
on the basis of discussion in Sec. I. The overview of our
proposed model, a developmental learning environment, is

Fig. 2. Imitation experiment scene: the scene caregiver shows the motions
for a task of pushing two buttons.

Developmental Learning Environment

Complicated
Motion

Fig. 3. Developmental learning environment: phased structuring is incorpo-
rated into a robot’s self-model. Over time a caregiver changes from showing
easy motions to showing complicated ones.

described in Subsection A. Subsections B and C respectively
describe our specific robot design method and the teaching
method the human caregiver used in the environment.

A. Construction of Developmental Learning Environment

In using the “motionese” technique, it is important to
change the difficulty for a task given by a caregiver in
accordance with the learner’s development. Therefore, we
designed a developmental environment of robot-human imi-
tation learning as shown in Fig. 3. In the environment, both
robot and human developmentally change, each in corre-
spondence with the other. In the first phase, the immature-
state robot learns easy motions. In the second phase, where
phased structuring incorporated into the robot’s self-model,
the developed-state robot learns more complicated motions.
We believe it is important that the robot’s state correspond
to the difficulty of a task. In this research, we define the
developmental learning environment as a union of three
factors: (1) the teacher’s phased teaching, (2) the learner’s
development (phased structuring), and (3) the relation be-
tween (1) and (2).

B. Self-Model of Robot

1) MTRNN: We incorporated the MTRNN (Multiple
Timescales Recurrent Neural Network), which Tani et al.
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[9] proposed as a neuro dynamical model into robot. This
model, which acts as a predictor that inputs the current state
and outputs the next state, can learn and generalize multiple
non-linear time sequential data. It has a hierarchical structure,
comprising three neuron units: an Input-Output Unit (/0) for
the input-output layer, a Fast-Context Unit (Cf), and a Slow-
Context Unit (Cs) for the context layer (Fig. 4). Each unit has
a value called time constant; these values become large in
the order of /0, Cf, and Cs. Since the internal state of a node
that has a larger time constant is updated more slowly, this
system provides each neuron unit with various hierarchical
functions. In general, as shown in Fig.5, the Cf neuron unit
represents primitives of time sequential data and the Cs neu-
ron unit represents a sequence of the primitives. Moreover,
a specific pattern can be deterministically generated by the
initial Cf value (Cfy) and the initial Cs value (Csp) and
parametric space of the Cfy and Cs are self-organizationally
acquired by a correlation between data.

Training of the MTRNN is done using the Back Propa-
gation Through Time (BPTT) algorithm [10]. The algorithm
consists of forward calculation and weight updating.

First, the outputs of the neurons are calculated through
forward calculation. The internal value of the ith neuron at
step ¢, u; ; is calculated as
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T;  time constant of the ith neuron
X;,; + input value at step ¢
w;; - weight value from the jth neuron to the ith neuron

N : set of neurons connected to the ith neuron
The output of the ith neuron is calculated by applying the
sigmoid function

1
sigmoid(u; ) = —— . 2
gmoid (s 1+exp(—ui,) @
Using the outputs calculated in the forward calculation,
the weights are updated using the training error E defined as
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The weight from the jth input to the ith output is updated
using the derivative of the training error JE/dw;; as

(1) _ () JE
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« : training coefficient
n : number of updates

The Cfy values are also updated using a back propagation

algorithm along with the weight values as,

JE
3Cf,'7().

B : training coefficient of Cf neurons
The Csg values is also calculated equally.

2) Phased Structuring of MTRNN: In constructing a de-
velopmental learning environment, it is desirable for the
learner to initially be in an immature state, as described
in Section I. Accordingly, we propose a phased structuring
process for the MTRNN. This involves first training MTRNN
with the two-layer structure of /O-Cf and then developing
MTRNN into a three-layer /O-Cf-Cs structure at a certain
stage, although the MTRNN is usually trained with the latter
structure at the outset. The interaction between the upper
layer (Cs unit) and the lower layer (Cf unit) is made to
continue even after addition of the upper layer.

crm) = Cf(o) .y

[7
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C. Phased teaching

The human teaches the robot in phases as described in
Section I. He first teaches easy motions and then complicated
ones. In this study, primitives are regarded as easy motions
and motions combining multiple primitives are regarded as
complicated motions.

IV. FLOW OF IMITATION LEARNING
A. Imitation Learning Algorithm

The robot’s imitation learning is done by using the fol-
lowing algorithm in interaction with the human.

1) The human shows a motion to robot.

2) The robot recognizes the motion from the neck joint
angle and hand coordinates within its view.

3) The robot actually generates the motion from the Cfj
and Csp acquired in Step 2.

4) MTRNN is trained with the time sequential data ac-
quired in step3.

5) Go back to Step 1.



TABLE I
LEARNING CONDITION

Phased teaching

w/ w/o
Phased structuring w/ TD/MD TND/MD
of MTRNN w/o TD/MND | TND/MND

L

Start Finish
Fig. 6. Example of primitives: Push(R)

TABLE II
DETAILES OF PRIMITIVES

| Name of Motion [ Initial Position | Vector Sequence |

PUSH(R) upper right l
RAISE(R) lower right 7

SLIDE upper right «
PUSH(L) upper left !
RAISE(L) lower left 1

B. Imitation Learning Process

We prepared four teaching conditions consisting two con-
ditions of a human caregiver (w/ phased teaching and w/o
phased teaching) and two conditions of a robot learner (w/
phased structuring of the MTRNN and w/o phased structur-
ing). Table I lists these teaching conditions. In the TD/MD
condition, the MTRNN structure and the teaching style
are changed at the same time. In the TD/MND condition,
the MTRNN initially has three-layer structure, and only
the teaching style are changed. In the TND/MD condition,
the human caregiver teaches complicated motions from the
beginning of learning process, and only the MTRNN struc-
ture are changed. Finally, in the TND/MND condition, the
MTRNN initially has three-layer structure and the human
caregiver teaches complicated motions from the beginning
of learning process.

V. EXPERIMENT: IMITATION LEARNING
A. Experiment Setup

In this experiment of imitation learning with a human
and robot, the human taught the robot the task of pushing
two buttons. We used an “Actroid” humanoid robot as our
test bed (Fig. 2). Actroid’s joints are made flexible by
controlling them with air pressure. The MTRNN input has
six dimensions and the arm joint (shoulder and armpit)
angle, the neck joint angle, and the hand coordinates within
Actroid’s view all have two dimensions. The MTRNN size
is six /0 nodes, 40 Cf nodes, and two Cs nodes. To enable

Middle Finish

Fig. 7. Example of complicated motions (Initial position: upper right.
Vector sequence: < | .)

Start

Actroid to follow its hand, the robot was designed to be able
to move its neck so that its hand should always be in the
center of its view. Fig. 2 shows the experiment scene. As
can be seen in the figure, both the human and Actroid had a
red marker on their hand to facilitate detection of the hand.

The specific motions shown as primitives or complicated
motions on imitation learning by the human are described
below. The motions used in our experiment can be repre-
sented by an initial position and vector sequence, i.e., the
queue of the move direction.
Primitives

Primitives are defined as five kinds of straight line motions
needed to accomplish the task of pushing two buttons (Fig.
6). The details of each primitive are shown in Table II.
Complicated motions

Complicated motions consist of two kinds of primitives
(Fig. 7). Although combining two kinds of primitives pro-
duces six different patterns, only four of these were used for
imitation learning. The training data not used for imitation
learning were the complicated motions whose initial posi-
tions are lower right or lower left and vector sequences are
(T ).

Phased structuring and phased teaching are done when the
imitation learning algorithm repeats 15 times.

B. Learning Result

Under each of the four learning conditions, TD/MD,
TD/MND, TND/MD, and TND/MND, imitation learning was
carried out. The transitions of learning errors are shown
in Fig. 8. The error [cm] was evaluated by calculating the
difference between a motion shown by the human and the
result of Actroid’s imitating the motion. The vertical axis
is the error value, and the horizontal axis is the number of
loops executed in the imitation learning algorithm in section
IV-A.

From Fig. 8, it is confirmed that only the learning on the
TND/MD condition failed while learning on other conditions
converge. This result is natured considering the condition that
the immature robot was taught complicated motions.

C. Evaluation of Imitation Capability

With the trained MTRNN, Actroid imitated seven new
kinds of complicated motions combining three kinds of
primitives, while also comparing the performance obtained
on each condition. Hereafter, even though all seven of these
motions were untrained motions, we refer to those compris-
ing the combinations of primitives trained in Phase 2 of
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untrained combinations of primitives, the blue bar, the performance on the
TD/MD condition, is the best, and the variance is also the smallest.

imitation learning as trained motions, while those including
an untrained combination of primitives are called untrained
motions. Examples of trained motions include the compli-
cated motion whose initial position is lower right and the
vector sequence is (T < | ), and ones of untrained motions
include the complicated motion whose initial position is
upper right and the vector sequence is ({ T ). Under
this definition, three of the motions used for evaluation were
trained ones and four were untrained ones.

The result of evaluation is shown in Fig. 9. The vertical
axis is the error value, and a smaller value shows a better
performance. The result confirms that the performances for
untrained motions on TD/MD and TND/MND conditions are
better than that on TD/MND and TND/MD.

D. Analysis of Parametric Space of MTRNN

In order to investigate how trained MTRNN represented
motions, we analyzed the parametric space of the trained
MTRNN for each learning condition except TND/MD be-
cause learning failed on this condition. The process of the
analysis is as follows. First, we trained MTRNN to recognize
the five kinds of primitives, and then Cfy was obtained for
each primitive. Here, we define Cfj obtained by recognition
of PUSH(R) as C f(f USH(R). C fp for other motions are defined
in the same manner. Second, we divided the Csp space into
225 (15x15) segments, and trained MTRNN to generate
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Fig. 10. Representation of Csp space: each figure shows generated motions
with fixed Cfj and altering Csp. A position of a vector represents the value
of Csp and a direction of a vector represents the direction of a motion
generated with the Cso and the Cfy under each figure. On the TD/MD
condition, the directions of the vectors are almost unique.

motions from each segment. Cfy and the Cso corresponding
to the each segment were acquired.

Examples of the results are shown in Fig. 10. In this figure,
the position of a vector represents Csy used for generation,
and the direction of a vector represents the direction of the
generated motion. For example, the upper left figure shows
directions of 255 motions generated from C f(f USHIR) and Cso
of each segment. Note that Cfy is fixed and Csy is altered
for motion generation in each figure.

From Fig. 10, it is confirmed that the Csy space of
MTRNN alters on each learning condition, and vectors point
the same direction on only the TD/MD condition. In other
words, the generated motion changes when changing not Csg
but Cfy on the TD/MD condition. This fact shows that a
direction of a motion is controlled by Cf. On the other hand,
it is controlled by Cs on the other conditions.



VI. DISCUSSION

In Section V, we described Cf neuron unit controlled a
direction of a motion on the TD/ND condition. Considering
that Cs neuron unit controls behavior of Cf neuron unit,
it can be said that Cf neuron unit acquires the function
of controlling the direction and Cs neuron unit acquires
the one of controlling direction order. In other words, the
MTRNN trained on the condition can represent a sequential
motion as a sequence of symbols, directions. The fact is
same as the idea of primitives that a sequential motion
should be recognized as a sequence of symbols. Note that
this “primitives” mean not the term we defining but the
generic term. On the other hand, a direction of a motion
was controlled by Cs neuron unit on the other condition as
described in Section V. From the fact, it can be said that
the MTRNNS trained on other conditions regard a sequential
motion as a track. In other words, they merely learn the
whole track of a motion.

As described in Section I, acquiring primitives have a
better influence in recognition of motions. Of course, the
function controlling relationships of primitives is also neces-
sary for recognition of sequential motions. Our experiment
and analysis investigate that this two functions, primitives
and the constitution, can be realized by using the hierarchical
structure of MTRNN and the acquirement needs both phased
teaching and structuring. These facts support the effective-
ness of our phased learning.

Analysis focusing functions of a model acquired by phased
learning has not been studied though performance or learning
speed have been discussed. We consider that such analysis
plays an important role on discussing generalization. For
example, if a fact that a model regards PUSH(R) and
PUSH(L) as same is shown, this represents generalization
of position. It is interesting to investigate how the capability
of such generalization alters by phased learning.

VII. CONCLUSIONS

This paper mainly dealt with influences of teaching style
and developmental processes in learning model to the ac-
quired representations (primitives). We investigated these
influences by introducing a hierarchical recurrent network
for robot model, and a form of motionese.

In this study, we constructed a developmental learning
environment as an approach to imitation learning. We applied
phased structuring to the MTRNN, which we incorporated
into a robot, and had a caregiver show primitives as easy
motions at the beginning before showing complicated mo-
tions that combined multiple primitives. Moreover, these two
developments correspond to each other.

Our experiment results and analysis confirm that learning
with phased teaching and structuring enables to represent a
sequential motion as a sequence of symbols and to the robot
to handle unknown motions.

As our next step, we plan to apply motionese to imitation
learning. Since motionese emphasizes the important points of
a task, we are considering an approach whereby the parts of
a motion that motionese emphasizes, e.g., quiescent points,

are more strongly learned. Kuniyoshi et al. also claims that
there are more important parts on whole a task [11]. We are
hopeful that this approach will make it possible to achieve
more dynamic and effective imitation learning.
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