
Kapinchev, Konstantin I., Barnes, Frederick R.M., Bradu, Adrian and Podoleanu, 
Adrian G.H. (2013) Approaches to General Purpose GPU Acceleration of 
Digital Signal Processing in Optical Coherence Tomography Systems. 
 In: IEEE International Conference on Systems, Man and Cybernetics, 13-16 
Oct 2013, Manchester, UK. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/37009/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1109/SMC.2013.440

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/37009/
https://doi.org/10.1109/SMC.2013.440
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Approaches to General Purpose GPU Acceleration
of Digital Signal Processing in Optical

Coherence Tomography Systems
K.I. Kapinchev and F.R.M. Barnes

School of Computing
University of Kent

Canterbury, UK
{kik2,F.R.M.Barnes}@kent.ac.uk

A. Bradu and A.Gh. Podoleanu
School of Physical Sciences

University of Kent
Canterbury, UK

{A.Bradu,A.G.H.Podoleanu}@kent.ac.uk

Abstract—This paper explores and evaluates two approaches
designed to improve the performance of digital signal processing
within optical coherency tomography systems. Such systems rely
on high-speed cameras or fast photo detectors to capture data,
that is then processed using established techniques (typically
Fourier transforms) and results presented to the user. In certain
applications of these systems, medical imaging in ophthalmology
for instance, performance is an issue. CPU processing cannot
keep pace with data capture, resulting in lost frames and
longer latencies from scan to results. To address these issues,
this research explores the use of commonly available graphics
processors for the bulk of data processing in such systems. We
have integrated this within an existing system, developed using
National Instruments’ LabVIEW software, and report on the
results.

Index Terms—parallel computing; GP-GPU; CUDA; digital
signal processing; optical coherence tomography.

I. INTRODUCTION

Optical Coherence Tomography (OCT) relies on the fact
that electromagnetic radiation at certain frequencies, typically
laser light, has the ability to penetrate solid materials, including
tissues and organs, to some depth and reflect back information
about the sample under test [1]. Unlike ultrasound imaging,
where high frequency sound is used to generate imagery, OCT
uses interference of light between the laser source and that
reflected from the sample. OCT has two main advantages over
traditional (and typically invasive) approaches: it operates with
a low energy laser, safe for live specimens, and it is capable of
producing high-resolution imagery. OCT has applications in a
number of different areas, most notably medicine (ophthalmol-
ogy and cardiology) and art (painting) investigation. In both
these areas the ability to see below the surface of a sample, in
a non-invasive and non-destructive manner, is critical.

Contemporary OCT systems [2] use either high-speed cam-
eras under broadband illumination [3] or fast photo detectors
under tunable lasers [4]. These are connected to a computer
system via an expansion board and appropriate drivers, provid-
ing a digitised version of the input signal for data processing
and visualisation. Given the physical characteristics of the
system, a significant amount of signal processing (based on

Fourier transforms) must be performed on the input data [5]
before the results (a visual representation of the sample under
test) can be obtained. For the benefit of the reader, Fig. 1 shows
the physical structure of the OCT system with which we are
working (typical in medical imaging).

��
��
��
��

(sample)

(light source)

CCD

(scanning mirror)

NI−1430

(PCI interface)

(flat mirror)

Fig. 1. Physical OCT system.

On the software side, and as a starting point for the
work presented here, the OCT system shown uses National
Instruments’ LabVIEW for data acquisition (from the camera
interface board) and processing. LabVIEW is also used to
present the constructed image to the user, along with various
software controls that manipulate both hardware and software
components of the system.

When such systems are initially constructed, performance is
not the primary concern. More important is producing systems
that function correctly, both physically and mathematically.
However, as more complexity is added and as data processing
becomes more intensive, performance does become a concern.
Moreover, a lack of performance is potentially a barrier to both
future research and commercial adoption.

In high-performance computing, graphics processing units
(GPUs) are increasingly being used to perform complex cal-
culations rapidly, utilising the massive parallelism available in
these devices. High-end GPUs, such as NVIDIA’s TESLA [6]
and GeForce GTX based graphics cards, incorporate large
numbers of processor cores and well-engineered memory hi-
erarchies designed for high-bandwidth low-latency processing.



A. Objectives and Contribution
Here we explore how a GPU can be utilised to improve the

performance of an existing OCT system, developed using Lab-
VIEW, with minimal modifications to the existing system and
in a way that could be applied to other similar systems in the
future. We present two relatively straightforward approaches to
achieve this; straightforward in the sense that integration with
the existing system can be done easily and without specialist
computing or GPU knowledge.

The following section gives some further background on the
technologies and techniques involved, including LabVIEW, the
data processing involved, GPUs, and brief details of how the
performance of such systems (in general) can be improved.
Section III gives details on the approaches investigated as part
of this work, with initial performance results in section IV.
Initial conclusions and some discussion of future work are
given in section V.

II. BACKGROUND

A. LabVIEW
A typical use of LabVIEW, as exemplified here, is for con-

structing control systems in a visually intuitive way, using data-
flow between ‘VI’ (virtual instrument) components. For the
end-user, a suitable “front panel” interface can be constructed
that provides various controls and readouts, connected to VI
components as appropriate. As a result of the way the system
is expressed, i.e. as data flow between components, and the
flexibility afforded by LabVIEW, good performance can be
hard to predict or obtain.

For medical imaging using OCT, including the exploration
of alternative (and potentially more complex) hardware, data-
flow and control configurations, something approaching or
achieving real-time performance is highly desirable. More
responsive and more substantial or feature rich imaging has
clear benefit in medicine and elsewhere.

B. Data Processing in OCT
In OCT systems, the reflected beam of electromagnetic

radiation (typically infra-red laser light) carries a large volume
of information. Different layers within the sample reflect or
scatter the light differently, which is captured (ultimately) as
1280 data-points of interference pattern representing the vari-
ous layers/depths for a single point on the sample, determined
by the scanning mirror.

To construct an image that accurately shows the sample,
a large amount of signal processing is required. Much of
this computational work-load is based on forward and inverse
Fourier transforms as part of cross-correlation between two
input signals. Cross-correlation, widely used in interferometry,
measures the similarity and difference between two signals and
can be calculated via the product of Fourier transforms of the
signals involved [7], specifically:

X ? Y = F−1
(
F(X) ∗ F(Y )

)
(1)

where X and Y are the source signals, functions F and F−1

are forward and inverse Fourier transforms, and F(Y ) is the

complex conjugate of some F(Y ). From the above, it is clear
that Fourier transforms dominate the computational cost. High-
performance implementations of Fourier transforms for CPUs
and GPUs have been well studied [8], [9], which we make
good use of here.

Given that speeding up the computation itself is not a
significant issue (other than for later optimisation) the problem
becomes integrating this into the existing (software) system
without significant effort or re-development, and without dam-
aging the existing data-flow oriented structure.

C. GPU Programming
To be widely applicable, this work assumes relatively little

about the GPU, other than it being a parallel computing
resource. Whilst recent GPUs provide a wealth of features to
enhance general-purpose programming, we only require that
it is capable of Fourier transforms (as provided by NVIDIA’s
CUDA libraries or from elsewhere) and other general arith-
metic/logic operations, e.g. for signal filtering. In practice
we use NVIDIA’s CUDA language (essentially C with GPU-
specific extensions) [10], as it is widely known, relatively
stable and well tested, and compatible GPU cards are already
present in the OCT system.

Although we use the GPU as a coprocessor for signal
processing, in the systems considered the same card provides
the primary video output. This creates some hardware con-
tention, and depending on the particular card, can introduce
significant overheads. We do not attempt to minimise or hide
these overheads, but merely note their presence.

D. Improving Performance
In addition to the GPU approach considered here, there

are other approaches to improving the performance of systems
such as these, but at a cost — significant in hardware, software
or a lack of reusability. These include:

• The use of dedicated FPGA accelerator hardware that can
be integrated cleanly with LabVIEW, the significant cost
primarily being hardware [11].

• Taking advantage of existing multiprocessor and multi-
core hardware. To do this in a straightforward way within
an existing LabVIEW system requires additional software
(plug-in components designed for parallel computing).
Such components also exist for utilising GPU resources,
but at a cost and not necessarily with optimal perfor-
mance.

Another approach is to re-develop the entire system in a lan-
guage such as C or C++, utilising CPU cores and GPUs to their
full potential. Whilst such systems undoubtedly have (near)
optimal performance, specialised hardware aside, developing
them comes at significant cost, and it may be hard for non-
specialists to be able to re-use parts of the system elsewhere as
they will likely be tailored to specific hardware and algorithms.

III. PROPOSED APPROACH

The proposed GPU implementation performs Fast Fourier
Transforms (FFTs) and cross-correlation on signal data us-
ing CUDA library functions provided by NVIDIA, namely



“cufftExecR2C” and “cufftExecC2C”. These are fairly general,
catering for forward and inverse FFTs on data in up to 3
dimensions, working with both real “cufftReal” and complex
“cufftComplex” types. As with user-defined CUDA kernels,
the FFT functions work with data stored in the GPU’s own
memory [12].

The only portable and practical way to integrate external
code with LabVIEW is through the use of a Dynamic Link
Library (DLL). A specific component in LabVIEW can be
configured to load and call functions inside a DLL, passing
pointers to data buffers [13]. The execution of the DLL
call with respect to the rest of the LabVIEW system is not
clearly documented. In the standard (non-augmented) version
of LabVIEW used, the observed behaviour is that the system
is essentially suspected whilst the DLL (function) call takes
place.

Two approaches are investigated. First, building the CUDA
code into a DLL which is then called from LabVIEW, and sec-
ond, building a standalone CUDA application that exchanges
data with LabVIEW via a DLL and shared-memory. In both
cases, the called function has the same structure:

void do_oct_dsp (float *in, long size,
float *out)

{
// CUDA routines

}

A. CUDA Functions in a DLL

An obvious approach to integrating CUDA code is to simply
compile it into a DLL using appropriate tools — NVIDIA’s
CUDA compiler and Microsoft’s Visual C/C++ compiler (part
of Visual Studio) in this case. This is shown in Fig. 2.

LabVIEW project

interface

camera

call

capture pre−proc

post−procdisplay GPU DLL

DLL kernel
GPU

Fig. 2. DLL implementation of CUDA DSP.

Although this is straightforward, there is a significant issue
in that the GPU context is re-created each time the function
is called. This includes allocating and releasing memory on
the GPU, in addition to copying data to/from main memory
and launching the kernel. For the array sizes involved and the
frequency with which the function is called, this approach does
not yield good performance.

B. Standalone CUDA Application

In the second approach, shown in Fig. 3, the GPU code
is compiled into a standalone application, that exchanges data
with LabVIEW using a DLL and shared-memory. This ensures
that the GPU context is created only, but is less transparent to
the end-user, who must launch this application separately to
the LabVIEW system.

interface

camera

GPU appLabVIEW project

call

capture pre−proc

post−procdisplay

DLL
DLL
shm code

shm

system allocated
shared memory

kernel
GPU

Fig. 3. Independent implementation of CUDA DSP.

The DLL to which LabVIEW interfaces is responsible for
reading and writing data to a shared-memory region (treated as
a page-mapped file) and notifying the CUDA application. The
CUDA application then copies the data to the GPU (into a pre-
allocated region) and launches the kernel. On completion, the
results are copied back into the shared memory area and the
waiting DLL notified. The overall operation of this is shown
in Fig. 4.

(init) initialise & attach

shared−memory

copy−to−shm(cycle)
notify

wait

copy−from−shm

DLL / LabVIEW

allocate shared−memory

initialise GPU

wait

copy−to−GPU

execute kernel

copy−from−GPU

notify

CUDA application

(loop)

Fig. 4. Interfacing LabVIEW with CUDA via shared-memory.

Two different implementations of the ‘wait’ and ‘notify’ are
used. The first uses Windows semaphores to suspend execution
of the relevant process until the shared memory area has been
populated. The second uses busy-waits on part of the shared
area, interleaved with ‘yield’ system calls.

IV. PERFORMANCE

Generating accurate performance timing measurements
on a Microsoft Windows platform is not straightforward
in general. Whilst millisecond timers are standardised (in
the Windows API) much of what we wish to measure is
sub-millisecond. Unix based systems such as Linux feature
nanosecond timers [14] that make benchmarking a somewhat
easier prospect. The common approach to sub-millisecond
timing on Windows is to use the hardware cycle counter where
present (available on most x86/IA32/IA64 based systems),
accessed by two system calls: one to read the current value
and one to report the number of cycles per second. A slight
caveat is that any dynamic CPU frequency scaling (usually for
power-saving and/or brief over-clocking) must be disabled.

From the various approaches described previously, the best
performance is obtained when using a standalone application
(meaning the GPU context is only created once) communicat-
ing with LabVIEW using shared-memory, and synchronising



using busy-waits. Fig 5 shows the times for various GPU
operations, measured from within the standalone application
for various sizes of data (in arrays of 32-bit floating-point
values), average over a number of runs. The GPU used is an
NVIDIA GeForce GT 630, with 96 CUDA cores, that is also
used for display output.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

256 512 1024 2048 4096 8192 16384 32768

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Size (32-bit reals)

copy-to-GPU
forward-FFT

cross-correlation

Fig. 5. Benchmark results for GPU operations.

The default operation of the CUDA libraries permit some
latency hiding (by performing asynchronous memory copies).
These results are representative of how the application behaves
in real-time, running alongside the LabVIEW application.
As can be seen, the processing time for cross-correlation
dominates. To get a better understanding of the overheads
involved, Fig 6 shows results for the same benchmarks, but
with the GPU device synchronised after each operation.

 0

 200

 400

 600

 800

 1000

 1200

256 512 1024 2048 4096 8192 16384 32768

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Size (32-bit reals)

copy-to-GPU
forward-FFT

cross-correlation

Fig. 6. Benchmark results for GPU operations with stream synchronisation.

The results show that the latency hiding mechanisms em-
ployed by CUDA do provide a significant benefit, but can
cause benchmark results to appear slightly distorted. When
using OS semaphores to control interactions with LabVIEW,
performance of the whole system is significantly reduced,
although there is no significant change in the individual GPU
overheads.

V. CONCLUSIONS AND FUTURE WORK

The nature of the data processing within OCT makes it suit-
able for parallel execution using commonly available GPUs.
Here we have shown how this may be integrated into an exist-
ing LabVIEW system, without extensive modifications to that
system and with limited additional cost (save for development
time). The approach that provides the best performance uses
a standalone application that runs continuously, exchanging
data and synchronising with a running LabVIEW system via
shared-memory.

As can be seen from the results presented, the cross-
correlation operation dominates. Unlike the FFT library imple-
mentation used, we have not optimised this code — compared
with the FFT overheads, this suggests that better performance
could be obtained with some optimisation effort.

To discover what level of performance is possible within
the hardware constraints, we plan to develop a C/CUDA
application that implements (effectively) the entire OCT sys-
tem, including input from the camera and control of other
system components. Such an approach has the advantages of
compiled code and fewer memory copies, as well as direct-to-
display video output via OpenGL, but at the expense of some
generality and flexibility. We hope that it will be possible to
re-use some parts of such a system however, e.g. for direct
visualisation output, without needing to transfer results from
the GPU back into host memory. Moreover, we hope to be able
to integrate such components with existing LabVIEW systems
with minimum effort in order to gain better performance using
hardware already in place.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the University
of Kent, the EU (FP7 grant 249889), the NIHR Biomedical
Research Centre, and the UCL Institute of Ophthalmology.

REFERENCES

[1] W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Tech-
nology and Applications. Springer, 2008.

[2] A. G. Podoleanu, “Optical coherence tomography,” Journal of Mi-
croscopy, vol. 247, no. 3, pp. 209–219, 2012.

[3] A. Bradu and A. G. Podoleanu, “Fourier domain optical coherence
tomography system with balance detection,” Optics Express, vol. 20,
no. 16, pp. 17 522–17 538, 2012.

[4] T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber,
“Megahertz OCT for ultrawide-field retinal imaging with a 1050nm
fourier domain mode-locked laser,” Optics Express, vol. 19, no. 4, pp.
3044–3062, Feb. 2011.

[5] S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resam-
pling in fourier domain optical coherence tomography using a graphics
processing unit,” Journal of Biomedical Optics, vol. 15, no. 3, p. 030511,
2010.

[6] NVIDIA Corporation, “NVIDIA’s next generation CUDA compute ar-
chitecture: Kepler GK110,” 2012.

[7] D. Lyon, “The discrete fourier transform, part 6: Cross-correlation,”
Journal of Object Technology, vol. 9, no. 2, pp. 17–22, 2010.

[8] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, 1965.

[9] S. W. Smith, Digital Signal Processing: A Practical Guide for Engineers
and Scientists. Newnes, 2003.

[10] J. Sanders and E. Kandrot, CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional,
2010.



[11] O. Storaasli and D. Strenski, “Exploring accelerating science applications
with FPGAs,” Proc. of the Reconfigurable Systems Summer Institute,
2007.

[12] NVIDIA Corporation, “Cuda fast fourier transform,” 2012. [Online].
Available: http://docs.nvidia.com/cuda/cufft/index.html

[13] National Instruments Corporation, “Writing win32 dynamic link libraries
(DLLs) and calling them from LabVIEW,” 2010, white paper 4877.
[Online]. Available: http://www.ni.com/white-paper/4877/en/

[14] IEEE and The Open Group, “IEEE Std 1003.1, 2004 edition (derived
from POSIX.1:2001,Single Unix Specification),” 2004. [Online].
Available: http://pubs.opengroup.org/onlinepubs/009695399/


