


In this paper, we will begin with describing our MI BCI

system. Then, we will continue by methods used for classifi-

cation of short and long trials. This will be followed by the

results and discussion.

II. METHODS

A. Motor Imagery (MI) BCI

In a synchronous MI BCI paradigm, the users learned to

voluntarily modulate EEG oscillatory rhythms by performing

motor imagery tasks, e.g. movement imagination of right hand,

left hand, or feet. Two female and two male healthy subjects

(mean age 27, range 24-30 years old) participated in this

study. One of the subjects had experience with MI BCI. All

the experiments were conducted in the laboratory conditions

to minimise additional sources of noise. EEG was recorded

using 16 electrodes over the sensorimotor cortex at 512Hz

and band-pass filtered between 0.1Hz and 100Hz. Laplacian

spatial filtering was then applied on the signal. Then, feature

extraction and classification (detailed below) were executed to

decode the user’s intention, i.e. moving the cursor to the right

or to the left.

1) Experimental protocol: First, subjects underwent a train-

ing phase, where they were asked to imagine the movement

of their right hand, left hand, and feet following the relevant

cue. The training phase was done in a session comprising

four ‘offline’ runs, which were used to train the classifier. The

runs consisted of 15 trials of each mental task which were

randomly organized. Timing of trials is depicted in Figure 2.

First, a cross appears on the screen showing that the subject

should get ready to execute the task. Then, a cue (arrows to

the right, left, or up) is shown, based on which the subject

needs to do the instructed mental task for a period of four

seconds. During these four seconds, they see the gray bar

moving in the direction indicated by the cue with a constant

speed. A feedback is then given to them showing that the trial

has ended. The recorded EEG signal was assessed using the

feature selection and classification methods (discussed in the

following sections). Then, in case of achieving a certain level

of classification accuracy, the two most separable mental tasks

were chosen to be used for online BCI control.

In the following sessions, the subjects were recorded in a

two-class motor imagery task (e.g. hand/feet), in which they

were asked to do the relevant mental task following a cue

on the screen while receiving a visual feedback from the

classifier outputs (‘online’ runs). In fact, the classifier outputs

were translated into the movement of the gray bar at each

time point. The gray bar continued to move until the classifier

output surpassed a subject-specific threshold, at which point

the corresponding BCI command was ‘delivered’ and the

subject had a brief rest (random between 2 and 3s). In this

way, the users were able to learn from the congruent feedback

and adjust their techniques of performing the mental tasks

accordingly. The experiment was done in a session comprising

six online runs. The runs consisted of 15 randomly organized

trials of each mental task. As mentioned in the previous

section, the command delivery time is not the same for all the

online trials as the movement of the feedback bar is directly

controlled by the classifier output [9].

It is worth mentioning that all the four subjects performed

right hand movement imagination as class 1. As class 2,

subject1 and subject4 performed left hand movement imag-

ination while subject2 and subject3 performed feet movement

imagination. All the three subjects went through one offline

session. The number of online sessions was 1, 2, 2 for subjects

1, 2, and 3 respectively. Subject4 had experience with MI BCI.

2) EEG decoding: Decoding of the user’s intention from

EEG was carried out in the following steps:

Feature extraction/selection: The brain correlates associ-

ated to motor imagery appear as a decrease/increase in the

band power of the EEG signal [10] in specific frequency bands

(typically µ, 8 − 14Hz and β, 18 − 24Hz). Therefore, the

power spectral density (PSD) of the signal (over the last one

second) was calculated with the resolution of 2Hz. The PSDs

were estimated every 62.5ms (i.e., 16 times per second) using

Welch method with 3 overlapped (50%) Hamming windows of

500ms. Given the number of channels (16) and the number of

frequency components (23), each EEG sample comprises 368

features.

After extracting the features, we performed a feature se-

lection process to find for each subject those features that

maximized the separability of the two mental tasks. Canonical

variate analysis (CVA) was used to project PSD samples

onto the canonical space [11]. Subsequently, the features were

ranked based on their correlation with the projected ones.

The final feature selection was done manually considering

this rank and the neurophysiological evidence on the cortical

areas/frequency bands, which are expected to contribute to the

mental task [12]. In this study, we selected 7 to 13 features

per subject.

Classification: Data from the training period was used to fit

a Gaussian Mixture model (GMM) classifier of four prototypes

per class. Then, in the online runs, real-time classification of

selected features was done at each time point. Classes were

assumed to have equal priors as well as common diagonal

covariance matrices. The activation of jth prototype of class

i, with center µij and covariance matrix Σi is given by:

aij =
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k

∑
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exp(−
1

2

∑

k

(xk − µijk)
2

∑
ik

) (1)

where x is a sample with k elements (selected features, i.e.

EEG channels and frequency bands).

The posterior probability pt of class c is derived as a

function of the total activation of the classifier (A) and the

activation of class c (ac):

pt =
ac

A
(2)

A =

Nc∑

i=1

Np∑

j=1

aij (3)



ac =

Np∑

j=1

acj (4)

Where Nc is the number of classes and Np is the number

of prototypes for each class.

Evidence accumulation: The GMM classifier provides a

discrete posterior probability distribution over the two mental

tasks (pt = P (ci|xt)) given the feature vector xt extracted

from the EEG signal at time t. In order to tackle the uncertainty

of the single sample classification and to provide smooth

feedback to the user, we introduced memory to the system

by incorporating the past evidence. That is, the feedback to

the user (the movement of the bar) is updated based on an

integrated probability P ∗

(t), which is computed as:

P ∗

(t) = αP ∗

(t−1) + (1− α)pt (5)

Where α ∈ [0, 1] and it was set as 0.96 or 0.97 in our

experiments based on previous experience. α is one of the

user specific values which affects the speed of the feedback

bar (since this represents the integrated classifier output) and

consequently the delivery time. Delivery of a BCI command is

performed when the integrated probability reaches a decision

threshold (thd).

B. Real-time prediction of long/short delivery of mental com-

mands

The uncertainty in BCI systems in general and the evidence

accumulation strategy in our system lead to (sometimes high)

variations in command delivery time. The distribution of com-

mand delivery time over different trials is depicted in Figure

3 for the four subjects and confirms this variation between

different trials in the experiment. Our main goal in this study is

to estimate reliability of commands by predicting the expected

delivery time in online runs based on the initial samples. As

the BCI chain has different modules (Figure 1), one may think

of doing this assessment in different levels, such as the EEG

signal, the PSD features, and the classifier output.

Previously, we used Entropy as a measure of information

content of the EEG signal in order to evaluate how reliable the

BCI command is [13]. However, this method is challenging

for many reasons: firstly, the window of data required for a

reliable entropy estimation is longer than some of the trials.

Secondly, in order to perform well in real-time, a simple and

fast method of estimating entropy should be applied which may

not necessarily lead to accurate estimations. Thirdly, some of

the preprocessing steps, like binning the data before entropy

estimation, requires the data of each trial to be normalised

which may mask some modulations in the signal.

In order to overcome these issues, in this study, we focus

on the feature level and the classifier output. To do so, we

have explored five different cases for conducting the long vs.

short classification of trials. In order to do the prediction,

we considered a window W at the beginning of a trial

(the green window in Figure 2) which is shorter than the

shortest trial (W is 1.2s to 1.5s for all the subjects). In this

way, we can predict for all the trials whether they will be

short or long. Also, we separated the trials into ‘long’ and

‘short’ ones based on the median of command delivery time

(MDT) in a session of online experiment. These analyses were

conducted separately for different mental tasks (right hand, left

hand, or feet movement imagination). A linear discriminant

analysis (LDA) classifier with five-fold cross validation was

implemented for classification of short vs. long trials in all

cases (I to V).

(I) Classifier output: The goal is to assess if the posterior

probabilities at the beginning of a trial reflect the level of time

efficiency in that trial. To do so, the average of the posterior

probabilities within W was calculated in order to classify long

vs. short trials.

PSD features: As it was mentioned, the posterior prob-

ability of a feature vector ‘xt’ belonging to class Ci is an

exponential function of the distance between the feature vector

and the center of the prototypes of the class. That is, the closer

the sample is to the center of prototypes of Ci, the higher the

probability of that sample belonging to Ci is. Given the feature

vectors extracted from EEG within W , we define a distance

measure for class i and prototype j as:

Distij =
1

Nw

Nw∑

l=1

Nf∑

k=1

(xlk − µijk)
2

∑
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(6)

Where Nw is the number of feature vectors within the

window, and Nf is the number of features in the feature vector

xl. Therefore, for each trial we have 2 ×Np distances to the

prototypes of the two classes. The defined distance measure is

similar to the one used for calculating the posterior probability

of the GMM classifier. However, in order to compute the

posterior probabilities, the distances are normalized using an

exponential function which smooths the differences. Also,

posterior probabilities are sum of the activation of prototypes

while some of the prototypes may be more influential than oth-

ers in the differences between long and short trials. Therefore,

four different sets of features have been considered:

(II) For class i, the prototype with the smallest distance

to the feature vector xl contributes more to the posterior

probability. In this case, the minimum distance to prototypes

of the two classes were considered as the features to be used

for long/short classification.

fsl2 = [ min
j=1:Np

Dist1j , min
j=1:Np

Dist2j ] (7)

(III) A measure of how a feature vector xl is close to the

prototypes of one class and far from the others can be derived

by subtracting the average of distances to the prototypes of the

two classes.

fsl3 = (

Np∑

j=1

Dist1j −

Np∑

j=1

Dist2j)
2 (8)

(IV) The distances of a feature vector xl to all the eight

prototypes.

fsl4 = Distij , i = 1 : Nc, j = 1 : Np (9)





Fig. 4. The average distances of the PSD features (within window W) to the
prototypes of both classes, averaged over trials (subject2). Solid lines show
the distance to the prototypes of the desired class, i.e. the mental task that
the subject is doing with respect to the cue. Dashed lines show the distance
to the prototypes of the other class. Short trials show smaller distance to the
prototypes of the desired class and larger distance to the prototypes of the
other one.

Fig. 5. Average of accuracy of classification over 5 folds, in the five cases. The
first case is when we use the average of posterior probabilities for classification
and the rest are when we use different features based on the distances between
feature vectors and classifier prototypes.

control capabilities over time [3]. However, these techniques

usually do not take into account the sources of uncertainty

in the system, such as the user’s internal states at each time

[7]. One of the issues is the variation in the trial lengths across

trials of the online runs. To tackle this issue, we have designed

a classifier to predict (within around one second) if a trial will

be long or short in a MI BCI.

The classifier that is used for our MI BCI system is a

Fig. 6. ROC curve for classification in case IV for each subject. The x
axis and the y axis denote the false positive rate (FPR) and the true positive
rate(TPR), respectively (long trials are considered as positive). The dashed
line shows the random case.

Class1 Class2

sb1 sb2 sb3 sb4 sb1 sb2 sb3 sb4

I 0.79 0.70 0.74 0.83 0.64 0.76 0.70 0.58

II 0.83 0.72 0.78 0.86 0.70 0.79 0.72 0.57

III 0.76 0.70 0.70 0.81 0.66 0.50 0.47 0.61

IV 0.81 0.71 0.76 0.86 0.74 0.76 0.74 0.70

V 0.80 0.71 0.78 0.87 0.73 0.76 0.73 0.69

TABLE I
AREA UNDER THE ROC CURVE FOR EACH CASE.

GMM classifier, in which the posterior probability of a sample

belonging to a class is an exponential function of the distance

between that sample and the center of the prototypes of the

class. The distance between the samples (in the beginning of a

trial) and the prototypes of both classes show different patterns

for long and short trials (Figure 4). In both cases, there is

more or less the same distance to the desired class, but the

short trials have higher distance to the other class than the

long ones. This suggests that in short trials, even the few first

samples are close to prototypes of the desired class and quite

far from the prototypes of the other. This is also reflected in

the posterior probabilities. That is, for short trials there is a

higher certainty of samples belonging to the desired class.

Five different types of features have been considered: the

first based on the posterior probabilities and the rest based

on the distance between the features and the classifier pro-

totypes. Among all, cases I (where posterior probabilities

were considered) and IV (where a subset of the distances

to all prototypes were considered) showed the higher and

more consistent accuracies for all the subjects (Figure 5).

This suggests that not only the closest prototypes (case II),

but a subset of them (as chosen by CVA) contribute to the

differences in long and short trials. There is a small difference

between the accuracies in these two cases which can be due

to the fact that for the calculation of posterior probabilities

(case I), all the distances are considered, whereas in case IV,

the redundant information is discarded by selecting a subset

of features that carry more information. Besides, to compute

the posterior probabilities, the distances are normalized using

an exponential function which smooths the differences.

Comparing the results of long vs. short classification of



trials with the results in [13] highlights the advantages of

choosing features from the PSD feature level or classifier out-

put rather than using entropy of the EEG signal. Firstly, when

using the distances between the features and the prototypes

or the posterior probabilities, there is no need of additional

preprocessing of the signal. Secondly, the window required

for making prediction about the trial delivery time is shorter

than the shortest trial. That is, the prediction can be reliably

executed for all trials in around 1s.

In classification of long vs. short trials, an important factor

is the false positive rate (FPR), which shows the percentage of

the long trials which are misclassified. The AUC’s for cases

I to V are compared in Table I. These results confirm that

classification of long vs. short in case IV is more reliable

and consistent for all subjects. In other words, the trials can

be reliably classified as long/short ones, considering only

a window of 1.2 − 1.5s at the beginning of the trial (i.e.

900ms or more before the actual median delivery time of the

subject). According to this table and Figure 6, the results of

classification for all subjects are better for the first class (right

hand movement imagination). This is probably due to the fact

that they are right handed and the movement of right hand is

more natural for them compared to left hand or feet.

In conclusion, we have proposed a method for real-time

classification of long and short trials in a MI BCI. According to

the results, this method allows us to make a reliable prediction

of how fast the user will deliver a command within a few

seconds. This prediction is essential for regulating the level of

assistance in shared control systems. That is, we can provide

an adaptive shared controller to overcome some aspects of

uncertainty in the BCI systems.
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