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Abstract—Machine learning is the basis of important advances
in artificial intelligence. Unlike the general methods of machine
learning, which use the same tasks for training and testing,
the method of transfer learning uses different tasks to learn a
new task. Among the various transfer learning algorithms in
the literature, we focus on the attribute-based transfer learning.
This algorithm realizes transfer learning by introducing attributes
and transferring the results of training to another task with
the common attributes. However, the existing method does not
consider the frequency in which each attribute appears in feature
vectors (called the observation probability). In this paper, we
present a generative model with the observation probability. By
the experiments, we show that the proposed method has achieved
a higher accuracy rate than the existing method. Moreover, we
see that it makes possible the incremental learning that was
impossible in the existing method.

Keywords—transfer learning, attributes, multiclass classifica-
tion, incremental learning, generative model.

I. INTRODUCTION

Machine learning has proven successful in diverse fields
of information processing such as image recognition, speech
recognition, and natural language processing. In general, ma-
chine learning techniques require large datasets to overcome
the over-fitting problem. In the real world, you can sometimes
solve this problem by taking an approach of obtaining large
data samples from the Internet. However, this approach does
not work well in machine learning such as supervised learning
because Internet-derived samples are almost unlabeled, and
their feature spaces or distributions (i.e. source tasks or source
domains) are different from those of the working problem
(i.e. target tasks or target domains). To solve this problem,
transfer learning can be applied. In the transfer learning [1][2]
framework, source task data are used to train the target task
by transferring prior knowledge acquired from the source task
to the target task. The difference between traditional machine
learning and transfer learning is illustrated in Figure 1. Among
the various methods of transfer learning, we focus on attribute-
based transfer learning [3][4] .

The attribute-based transfer learning algorithm exploits the
semantic knowledge of the object attributes such as shape,
color, and texture. This knowledge is shared by all classes in
the source and target tasks. Therefore, this transfer learning
approach can learn target tasks even if few or no training
samples exist. Since it seems that human beings also recognize
unseen objects by transferring object attributes, this approach
is intuitive and natural. Moreover, it is much easier to define
the relations between attributes and classes than to label huge

Fig. 1. Traditional machine learning (a) and transfer learning (b)

data.However, the frequency in which each attribute appears in
input feature vectors is not considered in the existing method.
We represent the frequency as the observation probability.
In this study, we assume that the observation probability of
each attribute differs from each other, but is common for all
classes. Moreover, we develop a generative model and compare
it with the existing method. Further, we study the possibility
of its applicability to the incremental learning and verify the
effectiveness of the proposed method.

The remainder of this paper is organized as follows. Section
II discusses the related work, and Section III introduces our
approach, referring to our previous study. Experimental results
are presented in Section IV. Section V concludes the paper and
discusses ideas for future study.

II. RELATED WORK

Subsection II-A of this section describes the existing re-
search on transfer learning. Attribute-based transfer learning,
referred to as DAP, is presented in Subsection II-B.

A. Transfer learning

Whereas traditional machine learning assumes the same
feature space or distribution for both the training and test data,
transfer learning allows them to be different. The data of the
source task are used to train the target task by transferring prior
knowledge acquired from the source task to the target task
(as shown in Figure 1). Transfer learning was conceptualized
long ago and has been called many names: inductive transfer,
domain adaptation, multitask learning, and others.

The term transfer learning is used within the broad frame-
work of machine learning; therefore, it eludes a precise defini-
tion and discussion. In 2005, the NIPS workshop on “Inductive
Transfer: 10 Years Later” [5] defined transfer learning as the



Fig. 2. Traditional machine learning (a) and attribute-based transfer learning
(b)

problem of retaining and applying the knowledge learned in
one or more tasks to efficiently develop an effective hypothesis
for a new task. A few surveys have been published on transfer
learning [1][2].

B. Attribute-based transfer learning

Attribute-based classification [3][4] is a computer vision
algorithm that realizes transfer learning. This algorithm, which
has been investigated in several studies [6][7][8], is now
called attribute-based transfer learning to emphasize its transfer
learning property.

Let (x1, l1), . . . , (xn, ln) ⊂ X × Y be training data
samples, where X is an arbitrary feature space and Y =
{y1, . . . , yK} consists of K discrete classes in the source task.
Our goal is to learn a classifier: X → Z for L discrete classes
in the target task Z = {z1, . . . , zL} that is different from Y .

Traditional machine learning requires training samples on
X×Z to solve this problem. However, collecting new training
samples for all classes is a difficult task, and we would prefer
to exploit information from the training data X×Y . Attribute-
based transfer learning is based on attributes, which constitute
high-level semantic knowledge. In addition, each attribute is
binary and shared among all classes. Therefore, information
about each class can be obtained without collecting many
training samples because human beings can easily provide the
relations between attributes and classes.

This method, called direct attribute prediction (DAP), is
illustrated in Figure 2(b). Compared with traditional ma-
chine learning (Figure 2(a)), DAP introduces a middle layer
consisting of attributes A = {a1, . . . , aM}. If the relations
between a class y and corresponding attribute values, given by
ay = (ay1, . . . , a

y
M ) are known in advance, DAP can construct

the classifier that classify input feature vectors into classes in
the source task, by simply learning a set of classifiers, each
of which determines the probability that the input vector has
a certain attribute.

The test data used in the test stage are samples belonging
to the target task Z. Moreover, the relations between a class z
and attribute values, denoted az = (az1, . . . , a

z
M ), are assumed

to be known. Since the posterior probability of a class z given
a sample x can be expressed as p(z|x), DAP can estimate the
best output class from all test classes of the target task using
maximum a posteriori (MAP) estimation:

argmax
z

p(z|x) (1)

Since the probability of attributes for a given input is
formulated as p(a|x) =

∏
p(am|x), the posterior probability

p(z|x) can be calculated as follows:

p(z|x) =
∑

a∈{0,1}M

p(z|a)p(a|x) = p(z)

p(az)

M∏
m=1

p(azm|x) (2)

In Equation (2), the factor p(az) is assumed as a factorial
distribution p(az) =

∏
p(am) and is calculated by p(am) =

1
K

∑K
k=1 m

yk
m . Furthermore, p(azm) has already been learned

as classifier β and the factor p(z) can be ignored because all
classes have the same prior probability. Therefore, DAP can
estimate a class z as follows:

argmax
z

M∏
m=1

p(azm|x)
p(azm)

(3)

III. PROPOSED METHOD

As described in the previous section, attribute-based trans-
fer learning can infer a class in the target task by sharing
the classifier p(azm|x) of each attribute. However, it does
not consider the frequency of attributes appearing in feature
vectors. For example, the attribute of “black” frequently ap-
pears in feature vectors of the animal images represented as
RGB values for pixels. By contrast, the attribute of “hunter”
is hardly observed in images. In our previous work [9], we
defined this concept and the bias of the attribute value as the
predictive ability and considered it by weighting the logarithm
of Equation (4) as

argmax
z

M∑
m=1

weightm log
p(azm|x)
p(azm)

(4)

where weightm reflects the predict ability of attribute m.

Thereby, we confirmed that the accuracy rate of this method
was higher than that of the existing method. However, the
problem was that there was not an appropriate mathematical
explanation to validate those weights in the equation of MAP
estimation as Equation (4). In this study, we develop a new
method based on the framework of the probability theory.

At first, we redefine the frequency in which each attribute
appearing in feature vectors as the observation probability of
the attribute. Unlike the predictive ability in [9], the bias
of the attribute value is not considered in the observation
probability. Moreover, we propose a generative model that
realizes transfer learning by using the observation probability
as a prior distribution in the different tasks.

The process of generating feature vectors is assumed to be
Algorithm 1, and its graphical representation is illustrated in
Figure 3. Since this model represents the generating process of
the feature vectors in both source and target tasks, all classes
in all tasks are denoted by zn in this model unlike the existing
method. A class zn generates an attribute cmn according
to the relations between classes and corresponding attribute



Fig. 3. The graphical model of the proposed generative model

Algorithm 1 The process of the proposed generative model
1: Choose µmλ ∼ Beta(α), where m ∈ {1, ...,M}, and

λ ∈ {1, ...,Λ}
2: for n ∈ {1, ..., N} do
3: Choose zn randomly
4: for m ∈ {1, ...,M} do
5: Choose cmn from class-attribute matrix
6: Choose amn ∼ Bern(µcmn), where µcmn means

µmλ on condition that λ = cmn

7: Choose xn ∼ f(amn)
8: end for
9: end for

values which are already known. Whereas an attribute cmn is
true value, an attribute amn is observed value. Therefore, we
call cmn a true attribute and amn an observed attribute. The
observed attribute amn is generated by the discrete Bernoulli
distribution the parameter of which is the observation proba-
bility and is denoted by µmλ as

Bern(amn|µmλ) = µamn

mλ (1− µmλ)
1−amn (5)

where λ is binary and is the value of the true attribute as
λ = cmn.

Moreover, its conjugate prior is the beta distribution with
parameters α as

Beta(µmλ|α, α) =
µα−1
mλ (1− µmλ)

α−1

B(α, α)
(6)

where B(α, α) is the beta function.

In the stage of the source task, the test feature space is
given as Xsource, and the MAP estimator for µ̂mλ is given as

µ̂mλ = argmax
µmλ

p(µmλ|Xsource) (7)

In order to calculate Equation (7), we maximize the loga-
rithm of p(µmλ|Xsource) as

∂

∂µmλ
log p(µmλ|Xsource) = 0 (8)

Equation (8) can be calculated as follows:

µ̂mλ =

∑
n:cmn=λ p(amn = 1|xn) + α− 1

Nmλ + 2(α− 1)
(9)

where the factor p(amn|xn) means the confidence value which
is estimated by training and testing the input data in the source
task. Moreover, Nmλ means the amount of the test data which
satisfy the condition that cm = λ.

In order to calculate Equation (9) from Equation (8), we
use Jensen’s inequality as in the derivation of EM algorithm.

In the stage of the target task, the proposed method
estimates p(amn|xn) by training and testing like the stage
of the source task. The joint distribution of Figure 3 can be
written as

p(X,A,C,Z;µ)

=
∏
J

P (zn)
∏
m

p(cmo|zn)p(amn|cmn, µmλ)p(xn|amn)

(10)

Hence,

p(X = x,Z = z) = p(z)
∏
m

∑
am

p(am|µz
cm)p(x|am) (11)

Therefore,

p(z|x) = p(x, y)

p(x)
∝

∏
m

∑
am

p(am|µz
cm)p(am|x)
p(am)

(12)

In order to estimate the best output class z in the target
task, we use MAP estimation such as Equation (1). According
to Equation (12), the proposed method can estimate z as

argmax
u

p(z|x) = argmax
z

∏
m

∑
a

p(am|µczm)p(am|x)
p(am)

(13)

where czm means the value of the true attribute corresponding
to a class z, and µczm

means µmλ on condition that λ = cmn.

Moreover, p(am) is estimated as

p(am) =
∑
n

p(x, am) =
∑
n

p(am|x)p(x)

=
1

Ntarget

∑
n

p(am|x) (14)

where Ntarget means the amount of the test data in the target
task.

In the existing method, transfer learning was realized by
sharing the classifier. Therefore, it was required to train only in
the source task and test only in the target task. In contrast, the
proposed method uses the observation probability to transfer



Fig. 4. Outline of the experiment 1

Fig. 5. Empirical evaluation of the experiment 1

the knowledge between different tasks. Hence, it can do both
the training and test in each task. This means that incremental
learning is possible in the proposed method.

There is a study of attribute-based transfer learning by the
generative model as [7]. However, this study differs from our
study in that input feature vectors must be codewords.

IV. EXPERIMENTAL RESULTS

Experiments were conducted on the “Animals with At-
tributes” dataset1. This dataset includes 30,475 images from 50
animal classes. The classes are defined by 85 attributes. The
relations between classes and attributes are labeled by humans
and represented in a 50×85 matrix. In the experiments, we
selected 40 classes as the source task and the remaining classes
as the target task.

1http://attributes.kyb.tuebingen.mpg.de

Fig. 6. Outline of the experiment 2

Fig. 7. Empirical evaluation of the experiment 2

In the “Animals with Attributes” dataset, each image is
associated with six types of features. We selected feature types
SURF and RGB color histograms because these features yield
the first and second highest accuracy rate, respectively, in the
nearest neighbor algorithm [10].

Since the number of feature types is greater than one, we
used Multiple Kernel Learning (MKL) -SVM. The probabil-
ity estimates from SVM are obtained by Platt-scaling [11].
Moreover, we implemented programs in Python, and used the
SHOGUN machine learning toolbox2.

We conducted experiments with two different settings,
experiment 1 and experiment 2.

2http://www.shogun-toolbox.org



A. Experiment 1

We compared the accuracy rate of the existing method with
the proposed method. We tackled the problem of zero-shot
learning in which no classes of the target task are presented in
the training set. Therefore, these methods used the data of the
source task in training and inferred a class in the target task.
In the proposed method, 10% of the training data were used
in order to estimate the observation probability. The outline of
this method is illustrated in Figure 4.

Figure 5 shows the result of zero-shot learning. The ver-
tical axis indicates the accuracy of the classification, and the
horizontal axis denotes the number of training and test images
in each class. The result is the average of three experimental
runs. In this experiment, our method almost outperformed the
existing method. However, when the number of images was
large such as 40, our method did not outperform the existing
method.

B. Experiment 2

Next, we conducted experiments on training in the target
task. While the existing method cannot transfer the knowledge
in such a situation, our method can transfer the knowledge of
the source task by using the observation probability (called
incremental learning). Therefore, this experiment was carried
out to confirm whether incremental learning by using the
observation probability is effective. Figure 6 shows the outline
of this experiment. As in this figure, these methods used 90%
of the target task data in training and inferred the classes of
the remaining 10% of the data. In addition, the method for
estimating the observation probability was same as experiment
1.

Figure 7 is the result of this experiment. The horizontal
axis indicates the sum of the number of the training and test
images of each class. For example, if the number of images is
ten, the number of training and test images of each class is nine
and one respectively. This figure shows that the performance
of our approach was better than the existing approach. Hence,
we confirmed that the incremental learning worked well.

V. CONCLUSION

In this study, we proposed the observation probability of
attributes in attribute-based transfer learning. Further, we con-
firmed the following two observations: (1) The accuracy rate of
attribute-based transfer learning was improved by introducing
the observation probability in most cases. However, when the
number of images was large, our method did not outperform
the existing method. (2) We confirmed that the incremental
learning by using the observation probability was effective.

However, there are some remaining issues. First, in the pro-
posed graphical model, we assumed that probabilities p(x|am)
are independent to each other. In practice, it is hard to imagine
that input feature vectors are generated in such a process.
Therefore, we should devise a probabilistic model that is
more reflective of the real data generation process. Next, the
proposed method performed MAP estimation for µmλ and
class zn. Hence, these values may have been trapped at a
local optimum solution. Therefore, we will estimate them by
using Bayesian estimation. Further, we must prepare the class-
attribute matrix before we tackle the transfer learning problem.

In future work, we plan to develop a method to reduce the
burden to develop this matrix.
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