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Abstract—Icebergs generated from ice ablation processes con-
tinue to be a threat for operations conducted in polar regions.
Systems that have been developed to track and observe these
threats often use either space-based radar imaging or visual
observation by the crew of the ship. Both of these methods have
disadvantages, mostly in terms of real-time observation or the
physical abilities of the crew. We propose a robotic solution for
in-situ observation of icebergs, so that countermeasures may be
quickly implemented. Our focus in this work is the problem of
allocating resources to observation regions: once areas of iceberg
activity have been identified, how are robot observers assigned
to these regions and what cost metric may be used to determine
the best placement of robot observers. Our solution is currently
demonstrated and evaluated in simulation.

Keywords—Multiagent robotics, resource allocation, probabilis-
tic methods, cryosphere

I. INTRODUCTION

Floating ice collisions are a constant threat for ship-based
operations in Arctic regions [1]. A means of tracking floating
ice is usually necessary for situational awareness at sea. This
need is a result of the fact that most of the ships that operate
in these regions are slow-moving (e.g., large shipping vessels)
or immobile (e.g., oil platforms). Data products are produced
to assist in avoiding floating ice; the International Ice Patrol
(IIP) is an organization dedicated to tracking and providing
such products for operations that are conducted in the northern
Atlantic Ocean/Newfoundland region [2]. Radar and visual
observations are both used to construct these data products.

However, for both radar and visual observation, disad-
vantages exist. Satellite-based synthetic aperture radar (SAR)
is generally not available in real time. Additionally, smaller
icebergs, with their lower magnitude radar cross section (RCS)
with respect to sea clutter can be difficult to track. Visual
observation requires a dedicated crew, but not all threats are
completely observable in this manner, and evasive maneuvers
or other countermeasures may not be able to be instigated in
time.

These issues suggest that placing a lesser emphasis on radar
in sensing these targets, with an additional focus on under-
standing the threat sources would be a better approach to the
problem. In our previous work, we developed a probabilistic
model for the sources of icebergs on a glacier generated from
sensor measurements of the icebergs [3]. These sources are
referred to as ablating target sources, as they model the ice

ablation process that results in icebergs being generated from
a glacier. These target sources shrink in mass as they eject
targets until they can no longer generate targets.

The foundation of the problem definition behind the prob-
abilistic model of ablating target sources was based on an
existing robotic observation problem [4], [5]. Using this model,
metrics can be generated regarding the behavior of the ice-
bergs. In this paper, we focus on using these metrics and the
properties of the robotic agents to reassign agents to different
search regions to more efficiently observe new icebergs as they
are calved from the glacier.

This paper is organized as follows. Section II summarizes
the iceberg observation problem definition and the probabilis-
tic iceberg ablating source model. Section III provides the
additional definitions that constrain the iceberg observation
problem and modeling methodology. Section IV describes
some of the existing work in robotic resource allocation and
outlines our approach to the problem. Simulation results are
provided in Section V. Finally, we conclude the paper with
remarks in Section VI.

II. TARGET SOURCE MODELING

In this section, we outline our definition for the iceberg
observation problem and the probabilistic methods by which
we model the target sources. As icebergs can be modeled as
moving targets that move into and out of a particular region
of interest, remotely observing these targets is similar to that
of the class of multiagent observation problems referred to
as Cooperative Multi-robot Observation of Multiple Moving
Targets (CMOMMT) [4]. The main difference between our
approach and the CMOMMT approach is that the agents
in CMOMMT remain stationary, as they statically observe
an area with a constant number of targets to maximize the
amount of amount of time that any target is observed. We
modify this problem class, using it as a robotic observation
problem framework, by adapting the assumptions that define
the problem. It should be noted, though, that the original
problem is difficult enough that many solutions have been
explored by researchers; e.g., [6]–[9].

In our definition of the problem; however, instead of the
objective function relying on observation of all moving targets
at all times, we desire to minimize the initial target acquisition
time. This allows for efficient deployment of countermeasures



as suggested in Section I. That is, we define the objective
function to be the following:

min
R

E[Ts|O(t)], (1)

where R is the set of all robots participating in the mission, Ts
is the target acquisition time, O(t) is the set of targets present
at a given time t, and E[·] denotes the expected value operator.
That is, we want to minimize the expected acquisition time,
over the current set of targets, for all robots participating in
the mission.

For areas of higher activity on an ablating target source,
more sensing resources will be required to ensure that all
targets are observed in a minimum amount of time. Therefore,
more resources should be allocated to regions with a high
probability of a new target being generated. As the target
probability for a particular region decreases, agents should be
reallocated in a more equal manner around a target source. A
method of quantifying and modeling the target probabilities is
needed.

To determine the appropriate probability density of the
targets, observations must be incorporated into a model [3].
Observations are composed of the following elements:

• The position at which the target was first observed.

• The target observation time.

• The agent that made the observation.

The model incorporates these observations as well as the
current number of observed targets across all agents and the
a priori probability density of a new target being formed,
which is obtained from a previous iteration of this process.
A straightforward choice of probability distribution for this
problem is to use a Gaussian mixture model [10]. Each of the
mixture components will correspond to a region of activity
at the glacier-sea interface; the covariance matrices define the
extents of the region.

An example model as generated from simulated target
measurements for two agents scanning a region is shown in
Figure 1. The target measurements are denoted by the stars;
the target source is the gray rectangle, with activity points
identified by the circles overlaid on the source. The Gaussian
mixture is represented by the heatmap. It can be seen that the
components of the mixture distribution overlay the ablation
regions on the glacier; the components provide sufficient target
containment. Reallocating the agents to use these components
as search regions will more efficiently acquire the targets as
they are generated.

Note that this methodology resembles, in some respects,
the coverage problem. The coverage problem examines a static
region with the problem of interest being determining the most
efficient means of observing the entire region or some aspect of
the region. Our development is an adaptive coverage solution,
since a model of the target sources is determined and the
resources (i.e., agents) and regions of coverage are adapted
to fit that model. Agents deployed to cover an area often use
search patterns for sample acquisition [11], [12]; we adopt this
same approach for target acquisition.
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Fig. 1. Example Gaussian mixture model resulting from a two-agent scanning
solution.

Fig. 2. Illustration of iceberg observation definitions.

III. ICEBERG OBSERVATION DEFINITIONS

Given the methodology overview in the previous section,
the following mathematical definitions further define and con-
strain the CMOMMT problem to fit within the framework of
iceberg observation and the modeling methodology used to
obtain regions of activity. Figure 2 provides an illustration
of the definitions overlaid onto a region of interest, where a
glacier meets the ocean.

• S ⊂ R2 is the rectangular and topologically connected
region of interest. Physically, S is the region of the
ocean in contact with the glacier with the ablation
points that are to be observed.

• U is the set of ablation points in S; i.e., U ⊂ S. The
cardinality of U is finite: |U | = l, l ∈ N. Individual
ablation points are ui ∈ U , with i = 1...l.

• For each ablation point ui, there is a corresponding
random process pi that results in the generation of
target trajectories from the ablation point ui.

• The random process pi, for i = 1...l and associated
with an ablation point ui, is a homogeneous Poisson
process with intensity λi: pi ∼ Poisson (λi).
The random process pi for each ui results in sets of
iceberg target trajectories.



• Bi(t) ⊂ R4, for i = 1...l, is the set of all target
trajectories at a specific time t resulting from the
ablation processes of a specific ui. Bi(t) is referred
to as a target stream. Ni(t) ∈ N is the cardinality of
Bi(t) at time t.

• βi,d(t) ∈ Bi(t), with i = 1...l and d = 1...Ni(t), is
an individual target trajectory state vector at time t,
containing the position and velocity at that time.

With the region of interest and the objects within it defined,
the mixture model used to model the spread of icebergs and
their probability of generation may be defined.

• Q = {qj}kj=1 is the set of mixture components that
represents the target trajectory dispersion within the
region of interest S. The cardinality of Q is finite:
|Q| = k, k ∈ N.

• Each member qj ∈ Q, with j = 1...k, is a mixture
component. Each mixture component qj is defined as
the 4-tuple

qj = (µj ,Σj , Zj , v̄j) , (2)

where µj ∈ R2 is the component mean vector;
Σj ∈ R2×2 is the component covariance matrix;
Zj ⊂ R2 is the set of target measurements associated
with the component; and v̄j ∈ R is the estimated
velocity magnitude of targets within a component.

The following definitions further elaborate on the structure
of the set of target measurements Zj .

• Zj ⊂ R2 is a set of target measurements associated
with a mixture component. The cardinality of Zj is
finite: |Zj | = n, n ∈ N.

• Target measurements zj,m ∈ Zj , for m = 1...n, are
noisy position measurements of iceberg position. That
is, for some time t, i ∈ [1, l], and d ∈ [1, Ni(t)]:

zj,m = h(βi,d(t)) + w, (3)

where w ∈ R2 is a sensor noise term, and the function
h : R4 −→ R2 returns the position vector of a specific
βi,d(t).

IV. RESOURCE ALLOCATION

With the definitions of the problem and the modeling
method given in the previous sections, we now outline our ap-
proach to the problem of reallocating multiple agents to search
regions. The first task is to define a cost function that represents
the cost to transition from one region to another. With that
definition, an appropriate assignment algorithm can be used to
reallocate agent resources to different search regions.

A. The Assignment Problem

The assignment problem is among the most common of
resource allocation problems. The typical definition of the
problem is as follows: given a set of resources and a set of
tasks, what is the optimal one-to-one assignment of resources
to tasks? Such a mapping can be represented by entries within
a table, which then equates to defining the problem as a two-
dimensional assignment.

To formalize the definition of the two-dimensional assign-
ment problem, the following definitions are necessary:

T : A set of N tasks tj .

R: A set of M resources ri that can complete a task
contained in T . This is effectively the same definition
as R in Section II.

C: The cost required for a resource ri to complete a
task tj . The cost function is the one-to-one mapping
C : T × R −→ R. Such costs include the energy
required to complete a task.

In most two-dimensional assignment problems, at least one
optimal assignment of resources to tasks minimizing these
costs exists.

Defining the assignment as the mapping X : T −→ R, the
objective function of the two-dimensional assignment problem
is the following:

min
R,T

C, (4)

which results in the optimal mapping X .

In the case of the iceberg observation problem, assigning
robots to search regions can be considered within the context
of the two-dimensional assignment problem: the set of tasks
T is the set of search regions, and the set of resources R is
the set of robots in the mission.1

Many combinatorial methods and algorithms have been
developed over the years to solve the two-dimensional assign-
ment problem; e.g., [13]–[15]. Decentralized, market-based
assignment algorithms lend themselves well to robotics ap-
plications [16]–[20].

In the case of iceberg observation, since the types of
observation tasks are all the same, a standard two-dimensional
assignment approach would serve well. What remains is de-
termining the cost function: such a function can be defined
based on the parameters of the iceberg model and the physical
parameters associated with the robotic agents.

B. Cost Function

To determine an appropriate cost function for the ice-
berg observation problem, an appropriate statement of the
assignment problem must be developed. Hence, the assignment
problem that is to be solved is as follows:

• The initial allocation of agents has each of the agents
assigned to a region derived from the initial mission
plan. Each agent has an average speed vr and a
sensor field-of-view that covers a fixed area AFOV .
Figure 3(a) illustrates an example of such a default
allocation: the mission area is divided into equally-
sized, rectangular cells, and agents search within those
cells.

• New regions of varying area AR and position are
then extracted from the computed iceberg model Q.
Specifically, extracted using the means µj and covari-
ances Σj of the individual model components qj , with

1For the remainder of the section, the terms “two-dimensional assignment
problem” and “assignment problem” will be considered as interchangeable.



j = 1...k. Agents are deployed to the new regions.
Figure 3(b) shows an example of these extracted
regions.

One of the more common cost functions in the assignment
problem uses the Euclidean distance from the position xr of a
robot to a set of given goal points; the assumption is made that
the paths that have this distance are both the shortest and, as
a consequence, the minimum energy paths to the goal points.

However, the cost of assigning to a search region requires
additional factors. Such factors include target coverage effi-
ciency. To accommodate these factors, two weighting factors
are placed on the distance to the centers of the search regions,
defined by the means of the Gaussian mixture components µj ,
where j = 1...k.

This leads to a definition of the cost function C as follows:

C =
AR
AFOV

v̄j
vr

√
(xr − µj)T (xr − µj). (5)

The first weighting factor AR/AFOV depends on the area of
a search region and the field of view of the robot’s sensors,
which is the contribution of R to the cost function. This factor
is the ratio of the search regions area to the area covered by
the robot’s sensor field of view. This factor forces the cost to
increase if the search area increases without increasing the area
that the agent’s sensor can cover; i.e., more energy is required.

The second weighting factor v̄j/vr relies on the average
velocities of targets that have been acquired, using the model
components qj , and the average robot velocity. Both this factor
and d are the contributions of T to the cost function. For higher
target velocities with respect to the robot, this factor increases
the cost, since the robot will have to increase its speed to
acquire targets, consuming more energy in the process.

C. Assignment Algorithms

Based on the requirements for the complete resource allo-
cation algorithm for this application, the Bertsekas forward-
reverse-auction algorithm [14] will be used. The algorithm
is an extension of the standard auction algorithm, which
resembles an auction process in that for a given object (e.g.,
a task), the actor that wants the object attempts to make it
as unattractive as possible to the other actors in the auction
such that the desiring actor wins the object once the auction
process has concluded. In particular, the actor makes an object
undesirable by taking turns raising the price at which the object
will be sold. In the case of forward-reverse auction, this activity
is swapped between the actors and objects during each iteration
of the algorithm: actors bid on objects in forward auction,
while actors bid on objects in reverse auction.

With respect to the symbols defined in Section IV-A, the
actors are the robots contained in the set R, and the objects
are the tasks contained in the set T .

D. Arbitration of Resource Allocation

Once the costs have been computed with respect to the
search regions, a method called arbitration is employed to
execute the assignment algorithm and assign the agents to
the search regions. Arbitration is officially defined as the
process by which a dispute between two parties is settled by

TABLE I. SUMMARY OF ACTIVITY REGION PARAMETERS.

Active Re-
gion

µdims σdims µvel σvel

1 5 m x 5 m 0.5 m (-0.5, 0.5) m/s 0.05 m/s
2 5 m x 5 m 0.5 m (-0.5, 0.5) m/s 0.05 m/s
3 2 m x 2 m 1.0 m (0, 0.5) m/s 0.05 m/s
4 5 m x 5 m 0.5 m (0.5, 0.5) m/s 0.05 m/s

an impartial third party. In the case of resource allocation,
this definition may be modified to state that arbitration is the
process by which resources are allocated to agents by another
agent. The fact that an assignment algorithm will be used for
processing the cost matrix and performing target assignment
will play a key role in determining how arbitration will be
handled.

In our approach, a single agent acting as the arbiter is the
implementation that will be used, as it will be closer to its
fellow agents and communications will be more reliable. If the
agent must drop out of the mission for any reason, an arbiter
handover algorithm is used, ensuring that an agent dropping
out of the mission will not hinder the rest of the agents.

V. SIMULATION RESULTS

Two simulations were run: a “control” simulation and a
simulation that uses the modeling and assignment algorithms.
The baseline, control simulation used a traditional search
approach: agents using a search pattern in fixed-size cells, as
in Figure 3(a). Both simulations used the lawnmower search
pattern, for its coverage properties [21]. Each simulation was
split up into a different set of scenarios, varied based on the
target sources that were active on the simulated glacier. The
base scenario is based on the four ablation regions illustrated in
Figure 2. Each of the sources had a varying ablation capacity,
which is defined to be the total amount of ice mass that could
be ejected by a target source. The combination of varying
the ablation capacity plus the additional scenario modifications
made here are extensions of the original simulation scenario
used in [3]. The parameters for each of the ablating sources
with respect to the icebergs that they generate is replicated
from that work in Table I.

The simulation scenarios based on the overall scenario are
summarized in Table II. A stream with a regular-sized capacity
has an ablation capacity of 1000 tons; smaller streams have
capacities of 200 tons. While these capacities are much smaller
than the potential capacity of a real ablation source, they are
comparable for the circumstances of this particular test. Each
scenario was run for 20 minutes real-time, and 30 trials of
each simulation were run.

The results of the simulation are summarized graphically
in Figure 4. Target coverage remained at or very slightly below
100% in both scenarios, hence they are not shown. Average
Ts is the average acquisition time (i.e., the quantity of interest
for the overall objective function). Average model Ts is the
acquisition time as recorded by the global iceberg target source
model shared across all of the agents, referenced from the
start of a simulation run. Average local Ts is similar, except
it is the acquisition time as recorded by the local models
that are maintained by each of the agents. Average distance
is the average distance traveled by the agents over an entire
simulation run.



(a) Initial allocation. (b) After agent assignment.

Fig. 3. Illustration of search regions before and after reallocation.

(a) Average acquisition times. (b) Average global model acquisition times.

(c) Average local model acquisition times. (d) Average distance traveled.

Fig. 4. Summary of simulation results.

TABLE II. SIMULATION SCENARIOS

Identifier Description
four Four target streams of equal capacity.
three Three target streams of equal capacity.
two Two target streams of equal capacity.
one One target stream of equal capacity to those before.

one small Three target streams of equal capacity, one stream of small
capacity.

two small Two target streams of equal capacity, two streams of small
and equal capacity.

three small One target stream of “regular” capacity, three streams of
small and equal capacity.

In Figure 4(a), an approximate 50% or more reduction in
the initial acquisition time required when using our methodol-
ogy can be observed. The cases where the behavior varies
is in the single target stream case, and the two and three
small stream cases. This is a result of “overcoverage”: multiple
agents are reallocated to cover a single target stream, while a
single agent remains to cover the other streams.

As for the model acquisition times, in general, there is
improvement in the global time (Figure 4(b)) when using
modeling and assignment. It is clear that there is a downward
trend as target sources are removed or are of smaller capacity.



This can be attributed simply to the fact that the overall
number of targets was reduced, hence less time was required
to acquire the possible targets. As for the local model results,
shown in Figure 4(c) the control remained flat in terms of
variance overall, while there were significant changes when
using modeling and assignment. The increase in the local times
for the two and three small stream cases can be attributed to
the overcoverage problem.

Finally, the distance traveled in both cases, shown in Figure
4(d), remains fairly close, with some reduction when applying
the algorithms. This is attributable to the shorter distance
traveled by the agents as they are allocated to smaller search
regions, but the distance required to travel to a new search
region can offset these reductions.

Overall, given the metrics for performance and the dif-
ferences between the simulation scenarios, improvement can
be observed when using the modeling and reassignment algo-
rithms. This is especially true for the most important metric
of interest, the average acquisition time across all agents and
targets, which is representative of the problem’s objective
function.

VI. CONCLUSION

A methodology for reallocating agent resources for the
iceberg observation problem has been provided. We have
summarized our previous approach to defining the iceberg
observation task in terms of the existing observation problem
known as CMOMMT and our probabilistic methodology for
modeling ablating target sources. The approach to the resource
allocation problem is derived from the problem definition for
the assignment problem. A cost function has been defined,
based on robot parameters and the targets and search regions.
We have compared our solution to a baseline method confining
agents to static regions, which is often the case in many
observation missions.

As this is purely a modeling and search task as currently
given, future work would include incorporating the methodol-
ogy into a full tracking system for icebergs. While the model
can assist in predicting the probability of where icebergs will
be calved, the individual icebergs are still a danger. Such a
tracking system could use dedicated agents for tracking the
icebergs and have a centralized target tracker for monitoring
the iceberg paths.

This approach can also be applied to any structure that
undergoes a process resembling ice ablation. For example,
regions of activity could be developed for discrete herds of
animals that usually stay in one area, but may eventually break
off for various reasons, such as for escaping threats.
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