
ar
X

iv
:1

50
8.

06
26

4v
1 

 [c
s.

LG
]  

25
 A

ug
 2

01
5

Multiple kernel multivariate performance learning
using cutting plane algorithm

Jingbin Wang
National Time Service Center,
Chinese Academy of Sciences,

Xi’ an 710600 , China
Graduate University of

Chinese Academy of Sciences,
Beijing 100039, China

jingbinwang1@outlook.com

Haoxiang Wang
Department of Electrical

and Computer Engineering,
Cornell University,

Ithaca, NY 14850, USA

Yihua Zhou
Department of Mechanical

Engineering and Mechanics,
Lehigh University,

Bethlehem, PA 18015, USA

Nancy McDonald
Department of Computer

Science, Tulane University,
New Orleans, LA 70118, USA
nancya.mcdonald@yahoo.com

Abstract—In this paper, we propose a multi-kernel classifier
learning algorithm to optimize a given nonlinear and nonsmoonth
multivariate classifier performance measure. Moreover, tosolve
the problem of kernel function selection and kernel parameter
tuning, we proposed to construct an optimal kernel by weighted
linear combination of some candidate kernels. The learningof
the classifier parameter and the kernel weight are unified in
a single objective function considering to minimize the upper
boundary of the given multivariate performance measure. The
objective function is optimized with regard to classifier parameter
and kernel weight alternately in an iterative algorithm by using
cutting plane algorithm. The developed algorithm is evaluated on
two different pattern classification methods with regard tovarious
multivariate performance measure optimization problems. The
experiment results show the proposed algorithm outperforms the
competing methods.

Index Terms—Pattern recognition, multiple kernel, multivari-
ate performance measures, cutting plane algorithm

I. I NTRODUCTION

In different pattern classification problems, various perfor-
mances are employed to evaluate the classifiers, including
classification accuracy (ACC), F1 score , Matthews Correlation
Coefficient (MCC), area under the receiver operating charac-
teristic (ROC) Curve (AUC) and recall-precision break even
point (RP-BEP) of recall-precision curve. Due to the nonlinear
and nonsmooth nature of many performance measures, it is
difficult to optimize them directly to learn an optimal classi-
fier. To solve this problem, Joachims [1] proposed a support
vector machine learning method for multivariate Performance
measures (SVMPerf ). This other method has been applied to
optimized some nonlinear multivariate performance measures
to learn linear classifiers successfully. However, it is limited
to the learning of linear classifiers. When data samples of
different classes cannot be separated by a linear boundary,it is
suggested to employ the kernel trick to map the data samples
to a nonlinear high-dimensional data space so that a linear
boundary could be learned [2], [3], [4]. Joachims and Yu [5]
also extended the SVMPerf to its kernel version to handle the
nonlinearly distributed data. One important shortage of this

method lies on the choosing of an optimal kernel function
with its corresponding parameter. In [5], the RBF-Kernel is
used to classification problems on some data sets without any
justification, but it is highly doubt if this kernel is suitable
for other data sets. Moreover, how the optimal parameter of
the kernel function possibly influences the results significantly.
One possible way to solve this problem is to conduct an
exhausting linear search or a cross validation in the kernel
function and parameter space by using the training set, which
is very time-consuming and also makes the learned classifier
over-fitting to the training samples.

To solve this problem, we assume that the desired kernel can
be obtained by the linear combination of some candidate kernel
functions with different kernel parameters. The optimal kernel
is parameterized by the linear combination weights associated
with different kernels. This framework is called Multi-Kernel
Learning (MKL) since we explore the nonlinear kernel spaces
of multiple kernels [6]. To learn the kernel weights, we cast
the MKL problem with the multivariate performance measures
problem, and proposed an unified learning problem for both
MKL and multivariate performance measures problems. For
the first time, we propose the problem of learning an optimal
kernel for multivariate performance measures, and a novel
solution for this problem by learning kernel in multiple kernel
spaces simultaneously with optimizing multivariate perfor-
mance measures.

The rest parts of this paper are organized as follows: in
section II, we introduce the novel method by formulating the
problem first, optimizing it then, and developing an iterative
algorithm finally, in section III, the proposed method is evalu-
ated on some benchmark data sets, and in section IV, the paper
is concluded.

II. PROPOSED METHOD

A. Problem Formulation

We assume we have a training data set withn training
samples, and the training samples are organized in an training
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matrix X = [x1, · · · , xn] ∈ R
d×n, where thei-th columnxi

is thed-dimensional feature vector of thei-th training sample.
Moreover, we also organize the class labels in a class label
vectory = [y1, · · · , yn]

⊤ ∈ {+1,−1}n, whereyi ∈ {+1,−1}
is the binary class label of thei-th training sample. Under
the framework of kernel learning [7], an sample vector can
be mapped into a high dimensional nonlinear Hilbert Space,
via a implicit mapping functionφ : x → φ(x) ∈ Rd′

,
where d′ ≫ d is the dimension of the Hilbert Space. The
mapping function is explored by a kernel function, which is
defined as the dot-produce of the mapping of two samples
xi and xj , asK(xi, xj) = φ(xi)

⊤φ(xj). In the multi-kernel
learning framework, we may have several such Hilbert Spaces
available and there corresponding nonlinear mapping functions
are denoted as{φm(x) ∈ Rd′

m}Mm=1, whereM is the number
of Hilbert Spaces,φm(x) is the nonlinear mapping function
of the m-th mapping function, andd′m is the dimension of
the m-th Hilbert Space. We also define the kernel function
for the m-th Hilbert space asKm(xi, xj) = φ(xi)⊤mφm(xj).
We weight and concatenate the mapping function to form
a longer vector in a more general Hilbert Space,φτ (x) =
[

τ1φ1(x)⊤, · · · , τMφM (x)⊤
]⊤
∈ R

d′

where τm ∈ R+ is
the nonnegative weight for them-th Hilbert Space,τ =
[τ1, · · · , τM ]⊤ ∈ R

M
+ is the weight vector, andd′ =

∑M
m=1

d′m
is the dimension of the general Hilbert Space. Its corresponding
kernel function is given as

Kτ (xi, xj) = φτ (xi)⊤φτ (xj) =
M
∑

m=1

τ2mKm(xi, vj) (1)

It can be seen that the kernel function is also a weighted
linear combination of theM kernel functions of theM
Hilbert spaces. We map all the samples to the Hilbert spaces,
and organize the mapping results in ad′ × n matrix as
φτ (X) = [φτ (x1), · · · , φτ (xn)] ∈ R

d′×n. We can also apply
the kernel function to the matrix and obtain then× n kernel
matrix Kτ (X,X) =

∑M
m=1

τ2mKm(X,X) ∈ R
n×n, where

Km(X,X) = [Km(xi, xj)] ∈ R
n×n is the kernel matrix of

them-th Hilbert space.
We consider the problem of learning a hypotheses function

hw(X) which maps a tuple ofn samples organized in a data
matrix X to a label vector ofn labelsy. To this end, we first
map the data matrixX to the general Hilbert spaceφτ (X),
and then apply a linear discriminant function of the following
form

hw(X) = argmax
y′∈{+1,−1}n

w⊤φτ (X)y′ = argmax
y′∈{+1,−1}n

n
∑

i=1

w⊤φτ (xi)y′i

(2)
wherew ∈ R

d′

is the parameter vector. Actually, it is equal to
the following prediction results,

hw(X) = sign
(

w⊤φτ (X)
)

(3)

wheresign (·) is an element-wisesign operation function.

To avoid the over-fitting problem, we try to reduce the com-
plexity of the hypotheses function parameterw by minimizing
the squaredℓ2 norm,

min
w,ξ,τ

{

1

2
‖w‖22 =

1

2
w⊤w

}

(4)

We also want to reduce the prediction error of the hypotheses
function on the training set. To measure the prediction error,
a loss function can be applied to compare the true class
label tuple y against the output of the hypotheses function
hw(X). The following optimization problem is obtained with
a ∆(y, hw(X)),

min
w

∆(y, hw(X)). (5)

Instead of trying to optimize∆(y, hw(X)) directly, we try to
find its upper boundary and then minimize its upper boundary.
Given (2), we have the following inequalities,

w⊤φτ (X)hw(X) ≥ w⊤φτ (X)y′, ∀y′ ∈ {+1,−1}n

⇒ ∆(y, hw(X)) + w⊤φτ (X) (hw(X)− y) ≥ ∆(y, hw(X))
(6)

Thus we have the upper boundary of∆(y, hw(X)), and the
optimization problem in (5) can be relaxed to

min
w

{

∆(y, hw(X)) + w⊤φτ (X) (hw(X)− y)
}

. (7)

We further relax the minimization of∆(y, hw(X)) +
w⊤φτ (X) (hw(X)− y) to the minimization of its upper
boundary, which could be obtained by exploring the class label
tuple space excludingy, y′l ∈ Y/y,

∆(y, hw(X)) + w⊤φτ (X) (hw(X)− y)

≤ max
l:y′

l
∈Y/y

[

∆(y, y′l) + w⊤φτ (X) (y′l − y)
]

(8)
Thus we can translate the problem in (7) to (9),

min
w

{

max
l:y′

l
∈Y/y

[

∆(y, y′l) + w⊤φτ (X) (y′l − y)
]

}

. (9)

It could be further relaxed by introducing a nonnegative slack
variableξ to represent the upper boundary, so that the problem
could be rewritten as

min
w,ξ

ξ,

s.t. ∆(y, y′l) + w⊤φτ (X)(y′l − y) ≤ ξ, ∀l : y′l ∈ Y/y,

ξ ≥ 0.

(10)

Combining the problems in (2) and (10), and introducing
constrains onτ to prevent negative kernel weights, the follow-
ing overall optimization problem,



min
w,ξ,τ

1

2
w⊤w + Cξ,

s.t. ∆(y, y′l) + w⊤φτ (X)(y′l − y) ≤ ξ, l : y′l ∈ Y/y,

ξ ≥ 0,

M
∑

m=1

τm = 1, τm ≥ 0,m = 1, · · · ,M.

(11)

whereC is a tradeoff parameter.

B. Optimization

To optimize this problem, we give the primal Lagrangian
function as follows,

L(w, ξ, τ ,α, β, γ, δ) =
1

2
w⊤w + Cξ

+
∑

l:y′

l
∈Y/y

αl

(

∆(y, y′l) + w⊤φτ (X)(y′l − y)− ξ
)

− βξ − γ

(

M
∑

m=1

τm − 1

)

−
M
∑

m=1

δmτm

(12)

whereαl ≥ 0, β ≥ 0, γ ≥ 0 and δm ≥ 0 are the Lagrange
multipliers. We argue the following dual optimization problem,

max
α,β,γ,δ

min
w,ξ,τ

L(w, ξ, τ ,α, β, γ, δ)

s.t. αl ≥ 0, l : y′l ∈ Y/y,

β ≥ 0, γ ≥ 0, δm ≥ 0,m = 1, · · · ,M.

(13)

By setting the digestives of the Lagrange function with regard
to w andξ to zero, we have

∂L

∂w
= 0⇒w =

∑

l:y′
l
∈Y/y

αlφτ (X)(y− y′l)

∂L

∂ξ
= 0⇒C −

∑

l:y′

l
∈Y/y

αl − β = 0⇒ C ≥
∑

l:y′
l
∈Y/y

αl.

(14)
By substituting these results and the kernel definition in (1) to
(13), we obtain the dual Lagrangian function,

P(τ ,α, γ, δ)

= −
1

2

∑

l,k:y′

l
,y′

k
∈Y/y

αlαk

(

(y− y′l)
⊤

M
∑

m=1

τ2mKm(X,X)(y− y′k)

)

+
∑

l:y′
l
∈Y/y

αl∆(y, y′l)− γ

(

M
∑

m=1

τm − 1

)

−
M
∑

m=1

δmτm

(15)
This optimization problem is then transformed to

min
τ

min
α,γ,δ

P(τ ,α, γ, δ)

s.t. αl ≥ 0, l : y′l ∈ Y/y, C ≥
∑

l:y′
l
∈Y/y

αl,

γ ≥ 0, δm ≥ 0,m = 1, · · · ,M.

(16)

To solve this problem, we adopt an alternate optimization
strategy. In an iterative algorithm,α andτ with its Lagrange
multipliers γ andδ are optimized alternately.

• Optimizing α By fixing τ with its Lagrange multipliersγ
andδ, and only consideringα, the optimization problem
in (16) is reduced to

max
α



−
1

2

∑

l,k:y′
l
,y′

k
∈Y/y

αlαk

(

(y− y′l)
⊤Kτ (X,X)(y− y′k)

)

+
∑

l:y′
l
∈Y/y

αl∆(y, y′l)





s.t.
∑

l:y′
l
∈Y/y

αl ≤ C,αl ≥ 0, l : y′l ∈ Y/y.

(17)
This problem can be solved as a quadratic programming
problem.

• Solving τ By fixing α, and only consideringτ and its
Lagrange multipliersγ and δ, we have the following
problem,

min
τ

max
γ,δ







−
1

2

∑

l,k:y′
l
,y′

k
∈Y/y

(

αlαk(y− y′l)
⊤

×
M
∑

m=1

τ2mKm(X,X)(y− y′k)

)

−γ

(

M
∑

m=1

τm − 1

)

−
M
∑

m=1

δmτm

}

s.t. γ ≥ 0, δm ≥ 0,m = 1, · · · ,M.

(18)

This is the dual form of a constrained quadratic pro-
gramming problem, and we can solve it as a constrained
quadratic programming problem.

• Updating Y/y Moreover, it should be noted that the
construction of setY/y is also a problem. To this end,
we propose to constructY/y sequentially in the iterative
algorithm. We propose to constructY/y by adding one
new class label tuple toY/y in each iteration according
to updatedw andτ ,

y∗ = argmax
y′′∈{+1,−1}n,y′′ 6=y,y′′ /∈Y/y







∆(y, y′′) +

∑

l:y′
l
∈Y/y

(

αl(y− y′l)
⊤Kτ (X, xi)y′′

)







.

(19)

where Kτ (X, xi) = [Kτ (x1, xi), · · · ,Kτ (xn, xi)]⊤ ∈
R

n×1. Then we can updateY/y by addingy∗ to it,

Y/y← {y∗} ∪ Y/y. (20)



C. Algorithm

The iterative multi-kernel learning algorithm to optimize
multivariate performance measure is summarized in Algorithm
1.

Algorithm 1 Multi-Kernel Learning algorithm for optimize
multivariate Performance measure Optimization (MKLPO).

Input : Training sample feature matrixX , and corresponding
class label tupley;
Initialize α0 andτ 0;
Initialize Y/y = ∅;
for t = 1, · · · , T do

Obtain a predicted class label tupley∗ as in (19) by fixing
αt−1 andτ t−1, and add it toY/y as in (20);
Updateαt by solving (17) and fixingτ t−1;
Updateτ t by solving (18) and fixingαt;

end for
Output : Output the learnedαT andτ T .

III. E XPERIMENTS

A. Experiment I: Allergen prediction

In the first experiment, we perform the proposed to the
problem of allergen prediction to optimized various prediction
performance measures [8].

1) Dataset and protocol:In this experiment, we used a
dataset constructed by Dang and Lawrence [8]. This dataset
contains 42,977 protein sequences, 3,907 of them are allergens
while the remaining 39,070 are non-allergens. To extract
feature from each protein sequence, we used the bag-of-words
method [9]. Firstly, the amino acid sequence of a protein
is broken to some overlapping peptides with a small sliding
window, and each peptides is treated as a word. To conduct the
experiment, we perform the popular 10-fold cross validation.
Various performance measures are considered in this exper-
iment. The multivariate performance measures are optimized
on the training set and tested on the test set, including AUC,
RP-BEP, ACC, F score and MCC.

2) Results:We compare the proposed multi-kernel learning
based multivariate performance measures optimization algo-
rithm agains the original kernel version of SVMPerf , cutting-
plane subspace pursuit (CPSP) algorithm [5]. Moreover, three
different variations of SVMPerf are also compared as the
state-of-the-art multivariate performance measures optimiza-
tion methods, including the performance measure optimization
method by classifier adaptation (CAPO) [10], the feature selec-
tion method for multivariate performance measures optimiza-
tion (FSPO) [11], and the non-decomposable loss functions
optimization method (NDLO) [12]. We used these methods
to optimize the multivariate performances of AUC of ROC,
PR-BEP of recall-precision curve, ACC, F score, and MCC
respectively on the training set, and the test them on the test
set. The boxplots of the corresponding performance measures
of 10-fold cross validations are given in Figure 1. From
this figure, we can see clearly that the proposed multi-kernel
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Fig. 1. Boxplots of optimized multivariate performance measures of 10-fold
cross validations of allergen prediction problem.

based multivariate performance measure optimization method
achieves the best results with regard to different performance
measures. Similar phenomenon can be observed in Figure
1(e), and MKLPO is the only algorithm which obtains a
higher MCC median value than 0.900. For other performance
measures, MKLPO also optimize them to achieve the best
performances measures on the test sets. Among the compared
algorithms, both CPSP and CAPO are improved by using
kernel trickles. However, due to the limitation of single kernel,
their performance are not necessarily superior to the linear
models, FSPO and NDLO. In most cases, their performances
are comparable to each other.

B. Experiment II: Rehabilitative speech treatment assessment

In this experiment, we test the proposed algorithm for the
automatic assessment of rehabilitative speech treatment.

1) Dataset and protocol:In this experiment, we use the
dataset provided by Tsanas et al. [13]. There are126 phona-
tions in the data set. A speech expert is employed to assess the
phonations, and label them as “acceptable” or “unacceptable”.
Among the 126 phonations, 42 is labeled as “acceptable”
while the remaining 84 is labeled as “unacceptable”. Each
phonation is defined as a data sample in the problem of pattern
classification, and ‘acceptable” phonation is defined as positive
sample, while “unacceptable” phonation as negative sample.
For the purpose of pattern classification, we extract features
from each of the phonations. To conduct the experiment,



we also use the 10-fold cross validation. The multivariate
performance measures are optimized on the training set and
tested on the test set, including AUC, RP-BEP, ACC, F score
and MCC.
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Fig. 2. Boxplots of optimized multivariate performance measures of 10-fold
cross validations of rehabilitative speech treatment assessment problem.

2) Results:Fig. 2 shows the boxplots of optimized multi-
variate performance measures of 10-fold cross validationsby
using rehabilitative speech treatment assessment data set. As
can be seen, our MKLPO algorithm significantly outperforms
the other multivariate performance measures optimizational-
gorithms in most cases. The performance difference is larger as
the MCC is optimized as the desired multivariate performance
measure. The CAPO algorithm outperforms other algorithms
in most cases slightly besides the proposed MKLPO algorithm.
This result is consistent with the experiment results givenin
the previous section.

IV. CONCLUSIONS AND FUTURE WORKS

Recently a multivariate performance measures optimization
method is proposed to estimate a given complex multivariate
performance measure as a linear function. This method is
based on kernel trick. However, it is difficult to choose a
suitable kernel function with its corresponding parameter.
To solve this problem, in this paper, we proposed the first
multi-kernel learning based algorithm for the problem of
optimization of multivariate performance measures. We build
a unified objective function for the learning of both multiple
kernel weight and classifier parameter for the purpose of
multivariate performance measure. An iterative algorithmis

developed to optimize the objective function. The experiment
results on two different pattern classification problems show
that the proposed algorithm outperforms the state-of-the-art
multivariate performance measure optimization methods. In the
future, we will also explore the potential of using the proposed
methods to bioinformatics problems [14], [15], [16], [17],
[18], [19], [20], [21], [22], integrated circuit design [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], multiple model
big data analysis [33], [34], [35], [36], [37], [38], [39], [40],
software and network security [41], [42], [43], [44], [45],[46],
[47], [48], [49], [50], and power systems optimization [51],
[52]. Moreover, we will also improve the proposed method
by regularizing the learning of classifier by graphs [53], [54],
[55], [56], [57], [58], [59], [60], [61].
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