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Abstract—In this paper, we propose a multi-kernel classifier
learning algorithm to optimize a given nonlinear and nonsmenth
multivariate classifier performance measure. Moreover, tosolve
the problem of kernel function selection and kernel parameer
tuning, we proposed to construct an optimal kernel by weighed
linear combination of some candidate kernels. The learningof
the classifier parameter and the kernel weight are unified in
a single objective function considering to minimize the uppr
boundary of the given multivariate performance measure. Tle
objective function is optimized with regard to classifier paameter
and kernel weight alternately in an iterative algorithm by using
cutting plane algorithm. The developed algorithm is evaluéed on
two different pattern classification methods with regard tovarious
multivariate performance measure optimization problems. The
experiment results show the proposed algorithm outperforrs the
competing methods.

Index Terms—Pattern recognition, multiple kernel, multivari-
ate performance measures, cutting plane algorithm

I. INTRODUCTION
In different pattern classification problems, various perf

mances are employed to evaluate the classifiers, includi
classification accuracy (ACC), F1 score , Matthews Coriaalat
Coefficient (MCC), area under the receiver operating chara
teristic (ROC) Curve (AUC) and recall-precision break even

point (RP-BEP) of recall-precision curve. Due to the nosdin

and nonsmooth nature of many performance measures, it
difficult to optimize them directly to learn an optimal class
fier. To solve this problem, Joachimis [1] proposed a supporji.n
vector machine learning method for multivariate Perforogan
measures (SVNI°"f). This other method has been applied to

optimized some nonlinear multivariate performance messur problem first, optimizing it then, and developing an iterati

to learn linear classifiers successfully. However, it isitéd

to the learning of linear classifiers. When data samples o
different classes cannot be separated by a linear bouritary,
suggested to employ the kernel trick to map the data samples T
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method lies on the choosing of an optimal kernel function
with its corresponding parameter. Inl [5], the RBF-Kernel is
used to classification problems on some data sets without any
justification, but it is highly doubt if this kernel is suiti@b

for other data sets. Moreover, how the optimal parameter of
the kernel function possibly influences the results sigaifity.

One possible way to solve this problem is to conduct an
exhausting linear search or a cross validation in the kernel
function and parameter space by using the training set,hwhic
is very time-consuming and also makes the learned classifier
over-fitting to the training samples.

To solve this problem, we assume that the desired kernel can
be obtained by the linear combination of some candidategkern
functions with different kernel parameters. The optimaiied
is parameterized by the linear combination weights astetia
with different kernels. This framework is called Multi-keel
Learning (MKL) since we explore the nonlinear kernel spaces
of multiple kernels[[6]. To learn the kernel weights, we cast

ng\e MKL problem with the multivariate performance measures
roblem, and proposed an unified learning problem for both
KL and multivariate performance measures problems. For
the first time, we propose the problem of learning an optimal
kernel for multivariate performance measures, and a novel
%olution for this problem by learning kernel in multiple ket
spaces simultaneously with optimizing multivariate perfo
ance measures.
The rest parts of this paper are organized as follows: in
section), we introduce the novel method by formulating the

algorithm finally, in sectioi1ll, the proposed method is leva
ated on some benchmark data sets, and in sdction 1V, the paper

is concluded.

. PROPOSED METHOD

to a nonlinear high-dimensional data space so that a linear

boundary could be learned![2],][3]./[4]. Joachims and Nu [5
also extended the SVf"/ to its kernel version to handle the

]A. Problem Formulation
We assume we have a training data set withraining

nonlinearly distributed data. One important shortage @ th samples, and the training samples are organized in anrteaini
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matrix X = [xq,---,X,] € R¥™", where thei-th columnx; To avoid the over-fitting problem, we try to reduce the com-
is the d-dimensional feature vector of theth training sample.  plexity of the hypotheses function parameteby minimizing
Moreover, we also organize the class labels in a class lab#he squared, norm,

vectory = [y1, - ,yn] ' € {+1,—1}", wherey; € {+1,—1}

is the binary class label of th_Eth training sample. Under min {l||w||§ _ lWTW} (4)
the framework of kernel learning[[7], an sample vector can 2

be mapped into a high dimensional nonlinear Hilbert Spac

via a implicit mapping functiong : x — 6(x) € R e\/Ve also want to reduce the prediction error of the hypotheses

whered > d is the dimension of the Hilbert Space. The function on t_he training set. T_o measure the predictionrerro
a loss function can be applied to compare the true class

;neimggalm:ﬁgogof erzzt)éido?){(hae k:igweli:]ungtflotc\;owgéﬂ IIZIabeI tupley against the output of the hypotheses function
P Pping P ﬁ . The following optimization problem is obtained with

x; and x;, as K (x;,X;) = ¢(x;)Té(x;). In the multi-kernel A( ha(X)),
learning framework, we may have several such Hilbert Spaces y, W
available and there correspondmg nonlinear mapping fonst )
are denoted a$e,, (x) € R% }M_  whereM is the number min A(y, fuw(X))- (5)

of Hilbert Spacesg,,(x) is the nonlinear mapping function . o ,
of the m-th mapping function, and’,, is the dimension of !nstead of trying to optimiz&\(y, hw(X)) directly, we try to

the m-th Hilbert Space. We also define the kernel functionfind its upper boundary and then minimize its upper boundary.

for the m-th Hilbert space as,, (Xi,X;) = ¢(X:)) dm(X;). Given [2), we have the following inequalities,
We weight and concatenate the mapping function to form

a longer vector in a more general Hilbert Spage(x) = W or (X )hw(X) =W o (X)Y, Wy € {+1,—1}"
T / . T el T ) 9
(g1 ()7, 7 (X) 7] € RY wherer,, € Ry is - e
the nonnegative weight for the:-th Hilbert Space,r = = A, hw(X)) + W ¢ (X) (h(X) —y) = Aly, hw(X()é)
71+, 7u]" € RY is the weight vector,and = 3=, d,,  Thys we have the upper boundary Afy, hy(X)), and the

is the dimension of the general Hilbert Space. Its corredjmon

SR optimization problem in[{5) can be relaxed to
kernel function is given as

Invén {A(y, hw(X)) + WT¢T(X) (hw(X) — Y)} - (7
K-,-(Xi,xj) = (b‘r( i ¢‘r X] Z Tm K, Xza (1) . .
We further relax the minimization ofA(y,hw(X)) +

s A A
It can be seen that the kernel function is also a welghte(‘é;' ¢Td( )(h"t‘;( h) _3% bto tk?e m(ljnlljm|zat|lon of h'ts luppﬁrb
linear combination of theM kernel functions of theM oundary, which could be obtained by exploring the classlla

Hilbert spaces. We map all the samples to the Hilbert space&fple space excluding, y; € J/y,

and organize the mapping results inda x n matrix as

Or(X) = [pr(x1),-+ , Pr(Xa)] € RT*™. We can also apply Ay, 7y (X)) + W ¢r (X) (hw(X) —y)
the kernel function to the matrix and obtain the< n kernel

T !
matrix K,(X,X) = Zm T2 K (X, X) € R, where < l:;;ne%i(/y (A, y) +W' o (X) (y; —Y)]
Kn(X,X) = [Kn(Xi,X;)] € R™*" is the kernel matrix of 8)
the m-th Hilbert space. Thus we can translate the problem i (7) [id (9),
We consider the problem of learning a hypotheses function
hw(X) which maps a tuple ofi samples organized in a data
matrix X to a label vector of: labelsy. To this end, we first min {l.%%c/y [Aly,Y) +wW ¢ (X) (Y, —Y)] } . (9

map the data matri¥X to the general Hilbert spacg, (X),

and then apply a linear discriminant function of the follogi |t could be further relaxed by introducing a nonnegativelsla
form variable¢ to represent the upper boundary, so that the problem
could be rewritten as

/

hW(X): argmax WT¢T(X)y = argmax ZW Or Xl)yl

ye{+1,-1}» y'e{+1,—-1}n min &,
2) e
wherew € R? is the parameter vector. Actually, it is equal to st AY,Y) +W o (X)(y; —y) <& VE:y, € Yy, (10)
the following prediction results, £>0.
ha(X) = sign (W' ¢, (X)) 3) Combining the problems if(2) anf{10), and introducing

constrains o to prevent negative kernel weights, the follow-
wheresign () is an element-wiseign operation function. ing overall optimization problem,



LT
in -ww+C
mgln2 + C¢,

st AW Y) +W o (XY —Y) SEL: YV €YY, (19
M

5201 ZTmzlaTmzoamzla"'7M'

m=1

whereC' is a tradeoff parameter.

B. Optimization

To optimize this problem, we give the primal Lagrangian

function as follows,

LW, ¢, T, a,B3,7,0) = %WTW +C¢

+ ar (A(Y,y) +W - (X)(y; —y) =€)
lylezy/y l l (12)

M M
_55_’7<ZTm_1>_Zéme
m=1 m=1

whereq; > 0, 8 > 0, v > 0 andd,, > 0 are the Lagrange
multipliers. We argue the following dual optimization pfein,

max min L(W, ¢, T, «, 8,7, 0)
,B3,7,6 W,&,T

st.oap >0,1:y, € D)y, (13)
ﬁZOa’YZOa(SmZOam:L 7]\/[

By setting the digestives of the Lagrange function with rdga
to w and¢ to zero, we have

oL

S =0=w= ) aor(X)(y -y
Ly eY/y
o _ C = C >
8—5—0:> — Z a—p=0=>C> Z Q.
Ly €Y/y Ly;eY/y

(14)
By substituting these results and the kernel definitiof nt¢1
(@3), we obtain the dual Lagrangian function,

P(r, .7, 9)
1 M
=3 Z ooy ((y_yz)T Zq-ﬁle(X,X)(y—y;)>
Lkyy .y €V/Y m=1
M
+ Z Ay, y)) (ZTm—1>—Z5me
Ly, €Y/y m=1

(15)
This optimization problem is then transformed to

min min P(7, a,7,0d)
T oy,8

st.og>0l:y, €Yy, C> Y a,  (16)
Ly ey/y
72075m203m:177M

To solve this problem, we adopt an alternate optimization
strategy. In an iterative algorithnay and + with its Lagrange
multipliersy and  are optimized alternately.
« Optimizing « By fixing 7 with its Lagrange multipliers
andd, and only consideringy, the optimization problem
in (I6) is reduced to

max (—% Z Qg ((y—yi)TKr(XvX)(Y—yﬁg))

(a7
Lkyy,€V/y

+ Z alA(yvyZ))

Ly,ey/y
s.t. Z ap <Coa; >0,1:y,€V)y.
Ly,ey/y
(17)
This problem can be solved as a quadratic programming
problem.

« Solving T By fixing «, and only considering- and its
Lagrange multipliersy and 4, we have the following
problem,

. 1
min ma(usx{—i Z (alak(y—yﬁ)T

s
Lk:y, Y, €V/Y

M
x 3 T;KW(X,X)(y—y;)> (18)

m=1
M M
(L) - o
m=1 m=1
st.v>0,0,, >20,m=1,--- M.

This is the dual form of a constrained quadratic pro-
gramming problem, and we can solve it as a constrained
quadratic programming problem.

« Updating Y/y Moreover, it should be noted that the
construction of sef)/y is also a problem. To this end,
we propose to construgt/y sequentially in the iterative
algorithm. We propose to construgt/y by adding one
new class label tuple t9//y in each iteration according
to updatedv and T,

y = arg max Aly,y") +
y’e{+1,-1} "y Ay y &YV /y
(19)

> <al<y-y;>TKT<X,xi>y~>}.

Lyjey/y

where K. (X, %) = [Kr(X1,X), Ko (X, %;)]T €
R™*!, Then we can updat®/y by addingy* to it,

Yy« {y' Judl/y. (20)



C. Algorithm

The iterative multi-kernel learning algorithm to optimize 1 = 1 s
multivariate performance measure is summarized in Algorit T = 8 |= R
. 2 0995 I?I @ %l l;l % i 09 &= 0 = =

1 +
Algorithm 1 Multi-Kernel Learning algorithm for optimize *®ipo cPsp caPo FsPo NoLO *WKiPo PSP CAPO FsPO. DL
multivariate Performance measure Optimization (MKLPO).

Input: Training sample feature matriX, and corresponding (a) AUC (b) PR-BEP

class label tuple;

Initialize a® and 7°; acc F score

Initialize Y /y = 0); ! '

fort=1,.--,7 do 80.98@%‘%‘%@ éo,ggé?%%

Obtain a predicted class label tupteas in [19) by fixing ! v
at_l anth_l’ and add It tOy/y as In @)1 0'%MKLPO CPSP CAPO FSPO NDLO 0'BMKLPO CPSP CAPO FSPO NDLO

Updatea! by solving [IT) and fixingr:—!;
Updater! by solving [I8) and fixing?;
end for
Output: Output the learned” and+7.

(c) ACC (d) F score

MccC

Q
[1l. EXPERIMENTS e s
A. Experiment I: Allergen prediction

In the first experiment, we perform the proposed to the
problem of allergen prediction to optimized various préidic (€) MCC
performance measures [8].
1) Dataset and protocol:In this experiment, we used @ Fig. 1. Boxplots of optimized multivariate performance m@@s of 10-fold
dataset constructed by Dang and Lawrence [8]. This datasetoss validations of allergen prediction problem.
contains 42,977 protein sequences, 3,907 of them are eatisrg

while the remaining 39,070 are non-allergens. To extrachased multivariate performance measure optimization ogeth
feature from each protein sequence, we used the bag-ofswordchieves the best results with regard to different perfocea
method [9]. Firstly, the amino acid sequence of a proteinyeasures. Similar phenomenon can be observed in Figure
is broken to some overlapping peptides with a small slidin, and MKLPO is the only algorithm which obtains a
window, and each peptides is treated as a word. To conduct thiggher MCC median value than 0.900. For other performance
experiment, we perform the popular 10-fold cross validatio measures, MKLPO also optimize them to achieve the best
Various performance measures are considered in this expefarformances measures on the test sets. Among the compared
iment. The multivariate performance measures are Optmnizealgorithms, both CPSP and CAPO are improved by using
on the training set and tested on the test set, including AUGcerne] trickles. However, due to the limitation of singlerhel,
RP-BEP, ACC, F score and MCC. their performance are not necessarily superior to the finea

2) Results:We compare the proposed multi-kernel learningmodels, FSPO and NDLO. In most cases, their performances
based multivariate performance measures optimization-alg gre comparable to each other.

rithm agains the original kernel version of SV¥I'/, cutting-

plane subspace pursuit (CPSP) algorithin [5]. Moreoveegthr B. Experiment Il: Rehabilitative speech treatment assessm
different variations of SVM*"/ are also compared as the In this experiment, we test the proposed algorithm for the
state-of-the-art multivariate performance measuresnmopéi-  automatic assessment of rehabilitative speech treatment.

tion methods, including the performance measure optinozat 1) Dataset and protocol:In this experiment, we use the
method by classifier adaptation (CAPQ)[[10], the featurecsel dataset provided by Tsanas et al.l[13]. There &€ phona-
tion method for multivariate performance measures optimiz tions in the data set. A speech expert is employed to assess th
tion (FSPO) [[11], and the non-decomposable loss functionphonations, and label them as “acceptable” or “unaccegtabl
optimization method (NDLO)[[12]. We used these methodsAmong the 126 phonations, 42 is labeled as “acceptable”
to optimize the multivariate performances of AUC of ROC, while the remaining 84 is labeled as “unacceptable”. Each
PR-BEP of recall-precision curve, ACC, F score, and MCCphonation is defined as a data sample in the problem of pattern
respectively on the training set, and the test them on the teslassification, and ‘acceptable” phonation is defined agipes
set. The boxplots of the corresponding performance measuresample, while “unacceptable” phonation as negative sample
of 10-fold cross validations are given in Figuté 1. FromFor the purpose of pattern classification, we extract featur
this figure, we can see clearly that the proposed multi-kerndrom each of the phonations. To conduct the experiment,

0.8
MKLPO CPSP CAPO FSPO NDLO



we also use the 10-fold cross validation. The multivariatedeveloped to optimize the objective function. The experitme
performance measures are optimized on the training set arrdsults on two different pattern classification problemesvsh
tested on the test set, including AUC, RP-BEP, ACC, F scor¢hat the proposed algorithm outperforms the state-ofattie-

and MCC.

RP-BEP

multivariate performance measure optimization methodthé
future, we will also explore the potential of using the prepad
methods to bioinformatics problems [14], [15], [16], [17],
[18], [19], [20], [21], [22], integrated circuit desigh [R324],
[25], [26], [27], [28], [29], [30], [31], [32], multiple moel
big data analysis [33]/_[34][[35]|_[36]l_[37]._[38], [39]40],
software and network security [41], [42], 143], [44], 14%46],

[47], [48], [49], [50], and power systems optimizatidn [51]

[52]. Moreover, we will also improve the proposed method

by regularizing the learning of classifier by graphs| [5BH][5

. 04
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Fig. 2. Boxplots of optimized multivariate performance s@@s of 10-fold
cross validations of rehabilitative speech treatmentssssent problem.

(8]
El

2) Results:Fig.[2 shows the boxplots of optimized multi-
variate performance measures of 10-fold cross validatipns
using rehabilitative speech treatment assessment datdset
can be seen, our MKLPO algorithm significantly outperformsiq
the other multivariate performance measures optimizadien
gorithms in most cases. The performance difference istlage

. I : R 11
the MCC is optimized as the desired multivariate perforneanc
measure. The CAPO algorithm outperforms other algorithms
in most cases slightly besides the proposed MKLPO algorithr12]
This result is consistent with the experiment results giiren
the previous section.

[13]

IV. CONCLUSIONS AND FUTURE WORKS

Recently a multivariate performance measures optimiaatio
method is proposed to estimate a given complex multivariatél4]
performance measure as a linear function. This method is
based on kernel trick. However, it is difficult to choose a[i5
suitable kernel function with its corresponding parameter
To solve this problem, in this paper, we proposed the first!®l
multi-kernel learning based algorithm for the problem of
optimization of multivariate performance measures. Wddbui
a unified objective function for the learning of both mulépl [17]
kernel weight and classifier parameter for the purpose of
multivariate performance measure. An iterative algorittsm

[55], [56], [57], [58], [59], [60], [61].
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