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Abstract—This paper proposes a two-step system to conduct 

real-time voice adaptation in the field of speech processing. The 

first step includes recording and pre-processing to form a voice 

profile. Secondly is real-time input of the voice and adapting the 

input into a target voice. Concerning the fact that individual 

voices’ structure are habitually varying, this paper suggests a 

method for converting them into a comparable format. The new 

method is called abstract normalization which cuts the voice data 

into smaller sounds. From the sounds are generated an abstracted, 

simplified version of the data using a level of abstraction along 

with parameter fitting. The normalized data is used to generate a 

sound-index which consists of a sequence hash that represents the 

current object in a simpler fashion. The indices are used to 

compare different sounds/voices for adaptation. This effectively 

transforms the speech-related challenges into a search problem 

rather than a biometric one. To assess the approach, voice profile 

data are compared against each other as a method to verify the 

sound-index. Lastly a real-time voice input using alternating levels 

of abstraction is run against a voice profile created with 

Norwegian words. The degree of adaptation success is measured 

in percentage, and experimental results show that while accuracy 

is not yet excellent, the concept was validated. 

Keywords-Voice adaptation, speech processing, voice profile, 

parameter fitting, search algorithm 

I.  INTRODUCTION 

This paper introduces a new approach to perform voice 
adaptation (VA) in real-time. The approach has a different 
perspective on the problem than past research on the topic, and 
is intended to be coherent to implement as well as accurately 
adapt the voice. VA is a part of artificial intelligence (AI) which 
is the study about transforming one voice into another, while 
keeping the spoken information unchanged. For example, an 
input voice utters a specific message into the VA system, then, 
the output voice will be a distinct targeted voice, however the 
spoken message remains unchanged. The goal is to always keep 
the original message, and only affect the sound of the voice. 
Simply said, such a system could allow a person to use the voice 
of another individual. Additionally, if the adaptation can be 
performed without emerging as synthetic or robot-like, its 
potential for use could expand to any field that employs the use 
of voice interaction; from implementation with Text-to-Speech 
(TTS) systems, games, speech AI in smart devices and other 
entertainment. 

Since this study is about the human voice, past research has 
tried to recreate the human speech system in experiments 
conducive to VA. However, our suggested approach does not 
consider the human speech system nor does it treat the problem 
as a biometric simulation. The core idea of this approach is that 
a voice is made up by numerous of sounds. These sounds, only 
when combined make up the individual voice and its 
characteristics, but separately they are pieces that can be used in 
a search problem in order to puzzle together the desired result.  

Previously [1], we suggested a method called Interpolated 
Curve Fitting (ICF). This method also considered the voice as 
pieces of sounds, and the ICF method was to be applied to each 
sound to be managed. It would perform per-sound operations in 
order to adapt an input voice into the target voice. The proposed 
method in this paper is a redesigned process for improving 
accuracy and efficiency, also using the per-sound concept. In 
order to categorize and contain the sounds, all information about 
a voice is stored in a voice profile. 

An individual’s voice is a very varying piece of information, 
there are both minor and major differences that makes it difficult 
to compare sounds from particular sources. To overcome this 
challenge, we wanted to bring forth a method that could 
disregard these variations, but keep the general data structure 
intact as to not impair the data. The result is a two-step approach 
that includes a pre-processing step and utilizing what is called 
abstract normalization and sound-indexing. One of the issues we 
want to avoid that conventional research falls into is the need to 
simulate the human speech system and feed it with large 
amounts of training data. The amount of training data is only the 
initial recording of a voice profile. Our goal is to create an agile 
VA that can see real use. What we learned from our own past 
research is that unless we remodel the current voice information 
into a more abstracted object, the adaptation becomes unreliable 
in cases where the different voices are high in contrast to each 
other. In order to achieve this we decided to create a model that 
can normalize the data with a degree of abstraction which can be 
decided. 

II. RELATED WORK 

Looking back at our previous work with ICF, it gave us more 
insight into how diverse the voice is even with simple spoken 
sounds. ICF’s objective was to take the data for two voices and 
manage their sounds; the current sound in queue from spoken 
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input, and the other was the current sound from a search in a 
voice profile. The two sounds’ temporal structure is compared, 
and a new set of data is generated based on the interpolated 
values from the two. From the new data set, an area of influence 
is generated, as seen in Fig. 1, and is imagined as a wide line. If 
a “major” percentage of the two original sounds could be 
identified within this area, the sounds are to be considered 
matching and the sound is outputted, performing the voice 
adaptation. 

          

Fig. 1. Interpolated Curve Fitting (red dashed line) from the original 
sound A (solid line) and sound B(dotted line). 

However, the drawbacks of this method is that it cannot take 
account for sounds that are very polar, for instance in the case of 
sounds from a male and female subject; their difference in voice 
structure would make the method too fragile and accuracy falls. 
This is a problem that is taken account for in the new proposed 
method, and it could also in theory function for adaptation 
between numerous of subjects at the same time. Due to the 
working nature of the abstract normalization, different voices 
from different speakers are all forced into the same 
“normalization space” in which they are adjusted and from that 
the sound-index is generated.  

Past research has had a tendency to focus on the human 
aspect of performing VA, with the intention of creating intricate 
digital models that function as the different parts of the human 
vocal system, such as the shape of the mouth, tongue, vocal tract 
and other physical aspects. [2]’s results were based on two male 
subjects alone and a large amount of training material. If we 
desire a dynamic VA system that can be applied to practical use, 
reducing the amount of training data is important for the sake of 
usability and robustness. Many concurrent systems focus on the 
spectral conversion of the adaptation, and often apply basic 
adjustments such as shift pitching to simulate prosody [3] [4]. 
The case of simulating the human factor and all its small 
individual differences handicaps the goal of having a real-time 
system that requires little training data. Other research [5] 
employs a training step using interactive evolution which 
considers the parameters of pitch, power and length. These are 
then subsequently applied to real-time adaptation in order to 
perform prosody. Results show that evolutionary computation 
could get closer to a target compared to a human performing 
trial-and-error experiences. [6]’s approach considers mapping of 
the voice spectrum which is stored in a “codebook”, and then 
codebook between speakers are compared in order to conduct 
the voice conversion. In its learning step, however, they employ 
two speakers that utter a learning set of words which is put 

through dynamic time warping in order to produce vectors that 
could be corresponding between the speakers. They also take 
into account pitch and power values. In our case, speaker A is 
learned beforehand and Speaker B is compared against A in real-
time. In our case there is no relation between potential speakers 
A, B, C, and so on. Only the target voice exists in the system at 
all times, everything else is tested input. 

III. TWO-STEP VOICE ADAPTATION IN REAL-TIME 

Due to the fact that we want to create a real-time VA, 
minimized processing time is a crucial factor and that is why a 
two-step approach is used. The first step is the recording and pre-
processing of a subject’s voice, second is the actual voice 
adaptation. The result of pre-processing lets us create a voice 
profile that includes managed data for the subject voice, 
efficiently lowering processing time for the later VA stage due 
to the fact that half of the data is already prepared.  

A. Pre-processing Step 

     

Fig. 2. The pre-processing operation. 

Figure 2 demonstrates the course that creates a voice profile 

from a voice recording. The voice is recorded by microphone 

with the guidance of our program, where the voice subject reads 

a manuscript. The recorded file is then put through individual 

stages of noise cancellation, trimming, analysis, normalization 

and sound-indexing before all of the useful data is stored in a 

voice profile. The prominent stages including the abstract 

normalization and sound-indexing is used to qualify a sound 

before it could be used in the adaptation stage.  Half of the used 

data is already prepared and could be loaded into the program. 

The remaining data is the inputted voice which we can’t 

anticipate because it is unrelated to the voice profile, thus has to 

be handled as-is upon input. 

 

Although a very basic procedure for the voice adaptation to 

work, it is one of the most crucial ones. The target voice we 



want to create a voice profile from has to read a manuscript into 

a microphone, using the developed software. Compared to 

traditional approaches, the grammar and semantics are not 

important, only the combination of words is. Ideally, for the 

voice to include the highest possible potential of unique sounds, 

we need to combine words that can create phonemes and 

utterings to be used in the voice profile. Both a raw original 

recording and an optimized, cleaned file is stored for later use.  

B. Real-time Voice Adaptation Step 

                       

Fig. 3. The voice adaptation operation’s management of sound data. 

In preparation to perform the actual VA, a voice profile is 
loaded into memory with the use of our developed software. The 
system is then ready to receive input from a speaker using a 
connected microphone. Figure 3 shows the course of action as 
speech is inputted. The operations are similar to the pre-
processing stage. The voice is cut into sounds, and each of the 
sounds is queued for abstract normalization and then sound-
indexing. In the current stage, a sound is made by cutting the 
voice into 10ms long fragments, incrementing 5ms between 
each cut, so that the variation between two sounds could also be 
included into the voice profile. For the human ear, a 10ms sound 
makes no sense, but if many of them are stitched together to form 
a longer segment, we’d be able to hear something that makes 
sense. 

Once complete, the sound-index value between the inputted 
sound and the collection of sounds from the voice profile are 
compared. The sounds that come close, or even is a complete 
comparable match are then successfully adapted by the output 
of the voice profile’s sound. As this happens in real time, the 
outputted sounds form words, sentences, depending on the input 
speaker’s message – taking no accounts for semantics, grammar 
nor language.  

While it in theory can function with several languages at 
once, it is apparent that if the voice profile does not include the 

proper pronounced sound, attempting to match the sound 
becomes futile. Although due to the fact that phonemes exist, 
different words can invoke the same pronunciations, which is 
why the design of the manuscript is genuinely important. 

IV. ABSTRACT NORMALIZATION AND SOUND-INDEXING 

A. Abstract Normalization 

          

Fig. 4. Abstract Normalization of a sound. (From original sound wave to 

normalized representation). 

To solve the problem discovered with ICF, we suggest an 

approach called abstract normalization, as seen in Figure 4. This 

method was inspired from the graphical term ‘level of detail’ 

(LoD), where an object’s level of detail is decided by how far it 

is viewed from. We take this idea and create an abstraction level 

of α that we establish and apply to a current sound in the queue. 

The level of abstraction decides how complex, or simple the 

normalized object becomes. Since different voices are always 

varying, a method such as ICF is too optimistic, hence the 

introduction of this method that takes more considerations 

about the vocal differences.  

Considering it is a normalization, certain aspects of the 

current sound is adjusted, so that all data passed through this 

process can be compared on equal grounds. In the 

normalization process they are all aligned with the center line. 

What happens during the normalization is that first, the level of 

abstraction is declared. 

 



The level dictates the different levels of pitch which is 

allowed for the sound wave’s main characteristics. The main 

characteristics are also decided, these include the highest and 

lowest amplitude points, as well as every part of the wave 

crossing the center line. Once the main characteristics of the 

sound has been declared, these are then forced into what is 

known as the normalization space, which is a defined maximum 

and minimum pitch. Anything over or under is forced to align 

with the defined levels. To imagine what the level of abstraction 

does, imagine a level α = 4. This means that under and over the 

center line will be 4 evenly distributed thresholds which points 

will snap into, based on proximity. For the normalization, the 

actual pitch values are not relevant, only the main 

characteristics chosen by the algorithm. Differences between a 

set of 3 points are evaluated, if the middle point could be found 

along this line and is too small of a variable; it is discarded. 

Finally, we are left with a set of points describing the sound 

wave’s original shape.  From the set of points now declared, the 

normalized representation of the original sound is generated.  

The current set of points are used to create a sound-index which 

is used for comparing sounds against each other. 

B. Sound-Indexing           

 
Fig. 5. The sound-index represents a normalized sound. 

This method (1) is applied to a sound that has gone through 

abstract normalization, and the complexity of the indexing, as 

seen in Fig. 5, is related to the abstraction level applied to the 

sound. We propose this along with abstract normalization in 

order to make the search-and-compare aspect as effective as 

possible. A voice profile consists of a large number of small 

sounds, in order to make the search instantaneous we propose 

sound-index as a search format. It should be noted that the 

complexity of the sound-index is in respect to the level of 

abstraction. Comparing Fig. 5 with Figure 6 shows that if there 

is a higher abstraction level, the sound-index contains more 

information about its structure. This is essentially a threshold 

function that chooses the closes point between several 

available. Fundamentally, we can consider the sound-index as 

a hash where the sequence is based on the abstraction object’s 

composition.  The sequence is the current sound’s signature, 

and all the processed sound’s signature is stored in the voice 

profile. This information is used during the voice adaptation 

stage when the current inputted sound in the queue attempts to 

find a comparable sound in the voice profile. 

 

We suppose that a sound-index is denoted as 

𝑄(𝑡1𝑡2, ⋯ , 𝑡𝑖 , 𝑡𝑛).  Where 𝑖 ∈ 1, 2, ⋯ , 𝑛 𝑎𝑛𝑑 𝑡1𝑡2, ⋯ , 𝑡𝑖, 𝑡𝑛 

represents the time series. A sound point (main characteristic) 

is denoted as 𝑝(𝑡𝑖 , 𝜆𝑖). In other words, during the time i, the 

point has a temporal value of 𝜆𝑖. For each line l that is above 

the zero marker, it is denoted as 𝑙𝑗 where 𝑗 ∈  1, 2, ⋯ , 𝛼 − 1. 

Lines that are below the zero marker are denoted as 𝑙𝑘 where 

𝑘 ∈  −1, −2, ⋯ , 𝛼 + 1 . The distance between the point 

𝑝(𝑡𝑖 , 𝜆𝑖) and 𝑙𝑗 is defined as 𝜃𝑗 and similarly for point 𝑝(𝑡𝑖 , 𝜆𝑖) 

and 𝑙𝑘 is defined as 𝜃𝑘. If we can establish that line 𝑙𝑗 or 𝑙𝑘 has 

the highest proximity to point 𝑝(𝑡𝑖, 𝜆𝑖), then the subscript (j or 

k) of the line is defined as the index of the point. This is 

effectively a way to threshold and snap points to their respective 

closest line. The corresponding equations are shown as below: 

 

 𝑄(𝑡1𝑡2, ⋯ , 𝑡𝑖 , 𝑡𝑛) = 𝑞(𝑡1)𝑞(𝑡2), ⋯ , 𝑞(𝑡𝑖), 𝑞(𝑡2𝑛) 

 𝜃𝑗 = |𝜆𝑖 −  𝑙𝑗| 

 𝜃𝑘 = |𝜆𝑖 −  𝑙𝑘| 

 min(𝜃𝑗) = min(|𝜆𝑖 − 𝑙𝑗|) = j 

 𝑚𝑖𝑛(𝜃𝑘) = min(|𝜆𝑖 −  𝑙𝑘|) = k 

 𝑞(𝑡𝑖) = {
min(𝜃𝑗)  if 𝜆𝑖  > 0

min(𝜃𝑘)  if 𝜆𝑘 < 0
  



Fig. 6. Sound-index. (From normalized sound with abstraction level of 8). 



V. EXPERIMENTS 

A. Experimental methods 

    

Fig. 7. Data validation representation of how n sounds are imagined. 
(After normalization and sound-indexing in a voice profile). 

We define two methods of experimentation that is used in 
this paper, namely data validation as demonstrated in Figure 7, 
and speaker VA. Data validation is used to verify to which 
degree abstract normalization and sound-indexing is working. In 
other words, it compares the stored data between voice profiles 
to see if they could match using the proposed method. Speaker 
VA can be considered a proof of concept. It shows that the 
randomly inputted voice data could be found in the stored voice 
profile before outputted again. For this paper, voice profiles 
were based on a ~2 minute long recording segment and a 
manuscript in the Norwegian language. Two voice subjects there 
used, both male. On average, a normal person can speak around 
150 words per minute. Due to that fact and that the recording is 
relatively short, only certain words were attempted adapted. 
However, with a recording time of approximately 2 minutes, 
around 12000 sounds were stored in the voice profile (10ms 
each). The level of abstraction was 10 for the voice profile only. 

Current experiments are done with an abstraction level of 10, 
20 and 40, to determine which levels of abstraction is the most 
suitable. Note that at this early stage it is uncertain which value 
is the best, due to the fact that the quality of the voice profile 
plays a large a role as the abstract normalization, both must be 
“just right”. If the voice profile data is lacking, the level of 
abstraction is impartial. On the other hand, if the voice profile 
data is good, but the level of abstraction is too low or too high, 
the VA is unreliable. Creating the perfect recipe for a voice 
profile recording as well as fine-tuning the level of abstraction 
will continue in future work.  

All things considered, this research is about authentic vocal 
output, thus a very ideal experiment is to perform listening tests 
with various judges. Finally, if the outputted voice could be 

deemed as a real person’s speech it would be a great advance for 
this research. Before that point, however, smaller, other tests are 
performed to test the voice profile quality, the algorithms 
functionality and proof of concept.  

B. Test environment 

In order to test, visualize and demonstrate the suggested 

approach, a multi-thread system is developed using C++ 

functionality in Microsoft Visual Studio 2013. The test 

system’s specifications are seen in Table 1. Various libraries are 

incorporated into the solution to take care of different tasks. The 

major ones include Chromium Embedded Framework [7] 

which integrates WebKit. In our case it is used for rendering 

custom made HTML pages alongside with CSS and JavaScript 

for graphically visualizing the voice adaptation, offering a user 

friendly recording process and more. Another library is FMOD 

[8] which is a sound engine with a wide reputation and use in 

many known applications for its ease of use and power. 

TABLE I.  TEST ENVIRONMENT 

OS Windows 7 64 bit edition 

CPU Intel Core i5-4690K 3.5 – 3.9 GHz 

GPU AMD Radeon R9 2080X 3GB DDR5 

RAM 16GB 

Tools 
Dynamic USB Microphone (44.1 kHz/48 kHz sample rate) 

Developed VA software (C++, CPU calculation) 

 

C. Experimental results 

As expected, the data comparison experiment shows both 
matching and not matching data. Refer to Fig. 7 to see how the 
comparison can be imagined. In the Norwegian voice profile, 
11953 “sounds” were categorized based on the recording that 
was made. 

For the Speaker VA experiment presented in Figure 8, a 
speaker A’s input was tested against the Norwegian voice profile 
in a case where the speaker uttered the most used words and 
similar words that were used in the manuscript. The speaker 
uttered each word 20 times and the VA system attempted output. 
In some cases, only partial utterings were outputted by the 
system, indicating that sounds were missing from the voice 
profile, or that the stored profile data should have used a 
different level of abstraction. There were also cases where the 
wrong sound was outputted. This is most probably because the 
level of abstraction was too low to distinguish different sounds 
because details of the sound is ignored the lower the level is. On 
the contrary if the level is too high, the index becomes too 
complex for practical search. Furthermore, even if the voice 
profile and the input data is managed with different levels of 
abstraction, the sound-index is obviously difficult to compare on 
a symbol-to-symbol basis. The sound-index actually represents 
the shape of the sound and that is how the system compares it, 
by controlling the sounds’ high and low points. There is still 
room for improvements, as seen by the results. Also consider 
that this experiment was done on a word-to-word basis, instead 
of a fluid continuous speech, which is purposed for future 



research and larger voice profiles, ideally between 5 and 6 
minutes long, in order to contain as many as possible phonemes 
and combinations of sounds. 

 

Fig. 8. Results from the Norwegian voice profile experiment. (Blue shows 

the best results and red the poor results). 

VI. DISCUSSION 

While many past experiments regarding VA or “voice 
conversion” are relatively preceding, most of the results were 
done in a similar fashion with just minor sounds, and in some 
cases just utterings of the alphabet. Our proposed system is still 
not complete. There are many factors to take account for, 
including design and length of the recording manuscript, length 
of a sound, sound increment, normalization space definition, 
level of abstraction value and the strictness of the sound-index 
search. All things considered, the proposed method produced 
results and was able to output a sound from the voice profile 
based on the input of the speaker. The data and test conditions 
in this case were adequately uncomplicated, so we want to 
improve the system for more ambitious tests along the way. 

Something to be vary of is that in our experiment, many of 
the words have quite simple pronunciations, however depending 
on the dialect and speaking habits it can sound different. For 
example, word #10 in the list will have a very large variance in 
structure if spoken with normal speed versa slower talking 
speed. This is probably the cause as to that word had very 
contrasting results with the different levels of abstraction. The 
lower the level of abstraction is, the simpler the data we’re left 
with, that is probably why it was easily compared with α = 10 
versa α = 40 which contains more information, thus is harder to 
match. An obvious fact is that with a very simple word that 
produces a simple sound, both high and low levels of abstraction 
will yield similar results due to the fact that the sound doesn’t 
have a detailed structure to begin with.  

One aspect that was theorized before testing is the difference 
between a high and lower level of abstraction. We studied the 
fact that if the abstraction level is too low, then it is highly likely 
that one sound can be abstracted into a similar or same object as 
a totally different sound, due to the fact that it was abstracted too 
much. On the contrary if the level of abstraction is higher, the 

sounds retain even miniscule details, which makes the sound 
more similar to its original state. That is why we want to perform 
more experiments to find the optimal value, or range of values 
for the abstraction level, as well as optimize the recording 
process of a voice profile to include more, but not redundant 
data. It is possible that some other challenges are uncovered 
along the way to pursue an excellent VA, nevertheless, a primary 
vision for this research is to have VA that is more capable and 
easier to deploy than previous research, which is not restricted 
by biometric factors. 

VII. CONCLUSION 

We created a new way to handle voice adaptation by treating 
it as a search problem rather than a biometric challenge. Our 
proposed method splits a recorded voice profile into tiny sound 
fragments, and processes each sound by applying abstract 
normalization from which a sound-index is generated. The core 
idea of treating the voice as a series of categorizable sounds lets 
us ignore many of the speaker individual-differences that are 
always varying and unpredictable. The level of abstraction 
dictates the complexity or simplicity of the outputted data. The 
sound-index, which describes the sound is then used for search 
and comparison against another voice/sound. While accuracy is 
not yet excellent, future work will strive to prove this method 
with more ambitious experiments.  

VIII. FUTURE WORK 

The goal is to have a fully robust system that can handle real-
time speech and output in harmony with the speaker. 
Components for consideration are how to induce accuracy 
without having to overcomplicate the user by expanding the 
recording stage.  Planned experiments include longer and bigger 
voice profiles using more alternating levels of abstraction as well 
as more challenging speech data in other languages as well. 
Finally we want to perform cross-gender VA and speaker tests 
to see if impartial subjects can distinguish between VA output 
and a real speaker. 
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