
PDF issue: 2024-04-24

Real-time Voice Adaptation with Abstract
Normalization and Sound-indexed Based
Search

MIDTLYNG, Mads Alexander / MIDTLYNG, Mads Alexander

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編 / 法政大学大学院紀要. 情報科学研究科
編

(巻 / Volume)
11

(開始ページ / Start Page)
1

(終了ページ / End Page)
6

(発行年 / Year)
2016-03-24

(URL)
https://doi.org/10.15002/00012917

Real-time Voice Adaptation with Abstract

Normalization and Sound-indexed Based Search

Mads A. Midtlyng

Graduate School of Computer and Information Sciences

Hosei University

Tokyo, Japan

midtlyng.madsalexander.9c@stu.hosei.ac.jp

Abstract—This paper proposes a two-step system to conduct

real-time voice adaptation in the field of speech processing. The

first step includes recording and pre-processing to form a voice

profile. Secondly is real-time input of the voice and adapting the

input into a target voice. Concerning the fact that individual

voices’ structure are habitually varying, this paper suggests a

method for converting them into a comparable format. The new

method is called abstract normalization which cuts the voice data

into smaller sounds. From the sounds are generated an abstracted,

simplified version of the data using a level of abstraction along

with parameter fitting. The normalized data is used to generate a

sound-index which consists of a sequence hash that represents the

current object in a simpler fashion. The indices are used to

compare different sounds/voices for adaptation. This effectively

transforms the speech-related challenges into a search problem

rather than a biometric one. To assess the approach, voice profile

data are compared against each other as a method to verify the

sound-index. Lastly a real-time voice input using alternating levels

of abstraction is run against a voice profile created with

Norwegian words. The degree of adaptation success is measured

in percentage, and experimental results show that while accuracy

is not yet excellent, the concept was validated.

Keywords-Voice adaptation, speech processing, voice profile,

parameter fitting, search algorithm

I. INTRODUCTION

This paper introduces a new approach to perform voice
adaptation (VA) in real-time. The approach has a different
perspective on the problem than past research on the topic, and
is intended to be coherent to implement as well as accurately
adapt the voice. VA is a part of artificial intelligence (AI) which
is the study about transforming one voice into another, while
keeping the spoken information unchanged. For example, an
input voice utters a specific message into the VA system, then,
the output voice will be a distinct targeted voice, however the
spoken message remains unchanged. The goal is to always keep
the original message, and only affect the sound of the voice.
Simply said, such a system could allow a person to use the voice
of another individual. Additionally, if the adaptation can be
performed without emerging as synthetic or robot-like, its
potential for use could expand to any field that employs the use
of voice interaction; from implementation with Text-to-Speech
(TTS) systems, games, speech AI in smart devices and other
entertainment.

Since this study is about the human voice, past research has
tried to recreate the human speech system in experiments
conducive to VA. However, our suggested approach does not
consider the human speech system nor does it treat the problem
as a biometric simulation. The core idea of this approach is that
a voice is made up by numerous of sounds. These sounds, only
when combined make up the individual voice and its
characteristics, but separately they are pieces that can be used in
a search problem in order to puzzle together the desired result.

Previously [1], we suggested a method called Interpolated
Curve Fitting (ICF). This method also considered the voice as
pieces of sounds, and the ICF method was to be applied to each
sound to be managed. It would perform per-sound operations in
order to adapt an input voice into the target voice. The proposed
method in this paper is a redesigned process for improving
accuracy and efficiency, also using the per-sound concept. In
order to categorize and contain the sounds, all information about
a voice is stored in a voice profile.

An individual’s voice is a very varying piece of information,
there are both minor and major differences that makes it difficult
to compare sounds from particular sources. To overcome this
challenge, we wanted to bring forth a method that could
disregard these variations, but keep the general data structure
intact as to not impair the data. The result is a two-step approach
that includes a pre-processing step and utilizing what is called
abstract normalization and sound-indexing. One of the issues we
want to avoid that conventional research falls into is the need to
simulate the human speech system and feed it with large
amounts of training data. The amount of training data is only the
initial recording of a voice profile. Our goal is to create an agile
VA that can see real use. What we learned from our own past
research is that unless we remodel the current voice information
into a more abstracted object, the adaptation becomes unreliable
in cases where the different voices are high in contrast to each
other. In order to achieve this we decided to create a model that
can normalize the data with a degree of abstraction which can be
decided.

II. RELATED WORK

Looking back at our previous work with ICF, it gave us more
insight into how diverse the voice is even with simple spoken
sounds. ICF’s objective was to take the data for two voices and
manage their sounds; the current sound in queue from spoken

Supervisor: Professor Yuji Sato

input, and the other was the current sound from a search in a
voice profile. The two sounds’ temporal structure is compared,
and a new set of data is generated based on the interpolated
values from the two. From the new data set, an area of influence
is generated, as seen in Fig. 1, and is imagined as a wide line. If
a “major” percentage of the two original sounds could be
identified within this area, the sounds are to be considered
matching and the sound is outputted, performing the voice
adaptation.

Fig. 1. Interpolated Curve Fitting (red dashed line) from the original
sound A (solid line) and sound B(dotted line).

However, the drawbacks of this method is that it cannot take
account for sounds that are very polar, for instance in the case of
sounds from a male and female subject; their difference in voice
structure would make the method too fragile and accuracy falls.
This is a problem that is taken account for in the new proposed
method, and it could also in theory function for adaptation
between numerous of subjects at the same time. Due to the
working nature of the abstract normalization, different voices
from different speakers are all forced into the same
“normalization space” in which they are adjusted and from that
the sound-index is generated.

Past research has had a tendency to focus on the human
aspect of performing VA, with the intention of creating intricate
digital models that function as the different parts of the human
vocal system, such as the shape of the mouth, tongue, vocal tract
and other physical aspects. [2]’s results were based on two male
subjects alone and a large amount of training material. If we
desire a dynamic VA system that can be applied to practical use,
reducing the amount of training data is important for the sake of
usability and robustness. Many concurrent systems focus on the
spectral conversion of the adaptation, and often apply basic
adjustments such as shift pitching to simulate prosody [3] [4].
The case of simulating the human factor and all its small
individual differences handicaps the goal of having a real-time
system that requires little training data. Other research [5]
employs a training step using interactive evolution which
considers the parameters of pitch, power and length. These are
then subsequently applied to real-time adaptation in order to
perform prosody. Results show that evolutionary computation
could get closer to a target compared to a human performing
trial-and-error experiences. [6]’s approach considers mapping of
the voice spectrum which is stored in a “codebook”, and then
codebook between speakers are compared in order to conduct
the voice conversion. In its learning step, however, they employ
two speakers that utter a learning set of words which is put

through dynamic time warping in order to produce vectors that
could be corresponding between the speakers. They also take
into account pitch and power values. In our case, speaker A is
learned beforehand and Speaker B is compared against A in real-
time. In our case there is no relation between potential speakers
A, B, C, and so on. Only the target voice exists in the system at
all times, everything else is tested input.

III. TWO-STEP VOICE ADAPTATION IN REAL-TIME

Due to the fact that we want to create a real-time VA,
minimized processing time is a crucial factor and that is why a
two-step approach is used. The first step is the recording and pre-
processing of a subject’s voice, second is the actual voice
adaptation. The result of pre-processing lets us create a voice
profile that includes managed data for the subject voice,
efficiently lowering processing time for the later VA stage due
to the fact that half of the data is already prepared.

A. Pre-processing Step

Fig. 2. The pre-processing operation.

Figure 2 demonstrates the course that creates a voice profile

from a voice recording. The voice is recorded by microphone

with the guidance of our program, where the voice subject reads

a manuscript. The recorded file is then put through individual

stages of noise cancellation, trimming, analysis, normalization

and sound-indexing before all of the useful data is stored in a

voice profile. The prominent stages including the abstract

normalization and sound-indexing is used to qualify a sound

before it could be used in the adaptation stage. Half of the used

data is already prepared and could be loaded into the program.

The remaining data is the inputted voice which we can’t

anticipate because it is unrelated to the voice profile, thus has to

be handled as-is upon input.

Although a very basic procedure for the voice adaptation to

work, it is one of the most crucial ones. The target voice we

want to create a voice profile from has to read a manuscript into

a microphone, using the developed software. Compared to

traditional approaches, the grammar and semantics are not

important, only the combination of words is. Ideally, for the

voice to include the highest possible potential of unique sounds,

we need to combine words that can create phonemes and

utterings to be used in the voice profile. Both a raw original

recording and an optimized, cleaned file is stored for later use.

B. Real-time Voice Adaptation Step

Fig. 3. The voice adaptation operation’s management of sound data.

In preparation to perform the actual VA, a voice profile is
loaded into memory with the use of our developed software. The
system is then ready to receive input from a speaker using a
connected microphone. Figure 3 shows the course of action as
speech is inputted. The operations are similar to the pre-
processing stage. The voice is cut into sounds, and each of the
sounds is queued for abstract normalization and then sound-
indexing. In the current stage, a sound is made by cutting the
voice into 10ms long fragments, incrementing 5ms between
each cut, so that the variation between two sounds could also be
included into the voice profile. For the human ear, a 10ms sound
makes no sense, but if many of them are stitched together to form
a longer segment, we’d be able to hear something that makes
sense.

Once complete, the sound-index value between the inputted
sound and the collection of sounds from the voice profile are
compared. The sounds that come close, or even is a complete
comparable match are then successfully adapted by the output
of the voice profile’s sound. As this happens in real time, the
outputted sounds form words, sentences, depending on the input
speaker’s message – taking no accounts for semantics, grammar
nor language.

While it in theory can function with several languages at
once, it is apparent that if the voice profile does not include the

proper pronounced sound, attempting to match the sound
becomes futile. Although due to the fact that phonemes exist,
different words can invoke the same pronunciations, which is
why the design of the manuscript is genuinely important.

IV. ABSTRACT NORMALIZATION AND SOUND-INDEXING

A. Abstract Normalization

Fig. 4. Abstract Normalization of a sound. (From original sound wave to

normalized representation).

To solve the problem discovered with ICF, we suggest an

approach called abstract normalization, as seen in Figure 4. This

method was inspired from the graphical term ‘level of detail’

(LoD), where an object’s level of detail is decided by how far it

is viewed from. We take this idea and create an abstraction level

of α that we establish and apply to a current sound in the queue.

The level of abstraction decides how complex, or simple the

normalized object becomes. Since different voices are always

varying, a method such as ICF is too optimistic, hence the

introduction of this method that takes more considerations

about the vocal differences.

Considering it is a normalization, certain aspects of the

current sound is adjusted, so that all data passed through this

process can be compared on equal grounds. In the

normalization process they are all aligned with the center line.

What happens during the normalization is that first, the level of

abstraction is declared.

The level dictates the different levels of pitch which is

allowed for the sound wave’s main characteristics. The main

characteristics are also decided, these include the highest and

lowest amplitude points, as well as every part of the wave

crossing the center line. Once the main characteristics of the

sound has been declared, these are then forced into what is

known as the normalization space, which is a defined maximum

and minimum pitch. Anything over or under is forced to align

with the defined levels. To imagine what the level of abstraction

does, imagine a level α = 4. This means that under and over the

center line will be 4 evenly distributed thresholds which points

will snap into, based on proximity. For the normalization, the

actual pitch values are not relevant, only the main

characteristics chosen by the algorithm. Differences between a

set of 3 points are evaluated, if the middle point could be found

along this line and is too small of a variable; it is discarded.

Finally, we are left with a set of points describing the sound

wave’s original shape. From the set of points now declared, the

normalized representation of the original sound is generated.

The current set of points are used to create a sound-index which

is used for comparing sounds against each other.

B. Sound-Indexing

Fig. 5. The sound-index represents a normalized sound.

This method (1) is applied to a sound that has gone through

abstract normalization, and the complexity of the indexing, as

seen in Fig. 5, is related to the abstraction level applied to the

sound. We propose this along with abstract normalization in

order to make the search-and-compare aspect as effective as

possible. A voice profile consists of a large number of small

sounds, in order to make the search instantaneous we propose

sound-index as a search format. It should be noted that the

complexity of the sound-index is in respect to the level of

abstraction. Comparing Fig. 5 with Figure 6 shows that if there

is a higher abstraction level, the sound-index contains more

information about its structure. This is essentially a threshold

function that chooses the closes point between several

available. Fundamentally, we can consider the sound-index as

a hash where the sequence is based on the abstraction object’s

composition. The sequence is the current sound’s signature,

and all the processed sound’s signature is stored in the voice

profile. This information is used during the voice adaptation

stage when the current inputted sound in the queue attempts to

find a comparable sound in the voice profile.

We suppose that a sound-index is denoted as

𝑄(𝑡1𝑡2, ⋯ , 𝑡𝑖 , 𝑡𝑛). Where 𝑖 ∈ 1, 2, ⋯ , 𝑛 𝑎𝑛𝑑 𝑡1𝑡2, ⋯ , 𝑡𝑖, 𝑡𝑛

represents the time series. A sound point (main characteristic)

is denoted as 𝑝(𝑡𝑖 , 𝜆𝑖). In other words, during the time i, the

point has a temporal value of 𝜆𝑖. For each line l that is above

the zero marker, it is denoted as 𝑙𝑗 where 𝑗 ∈ 1, 2, ⋯ , 𝛼 − 1.

Lines that are below the zero marker are denoted as 𝑙𝑘 where

𝑘 ∈ −1, −2, ⋯ , 𝛼 + 1 . The distance between the point

𝑝(𝑡𝑖 , 𝜆𝑖) and 𝑙𝑗 is defined as 𝜃𝑗 and similarly for point 𝑝(𝑡𝑖 , 𝜆𝑖)

and 𝑙𝑘 is defined as 𝜃𝑘. If we can establish that line 𝑙𝑗 or 𝑙𝑘 has

the highest proximity to point 𝑝(𝑡𝑖, 𝜆𝑖), then the subscript (j or

k) of the line is defined as the index of the point. This is

effectively a way to threshold and snap points to their respective

closest line. The corresponding equations are shown as below:

 𝑄(𝑡1𝑡2, ⋯ , 𝑡𝑖 , 𝑡𝑛) = 𝑞(𝑡1)𝑞(𝑡2), ⋯ , 𝑞(𝑡𝑖), 𝑞(𝑡2𝑛) 

 𝜃𝑗 = |𝜆𝑖 − 𝑙𝑗| 

 𝜃𝑘 = |𝜆𝑖 − 𝑙𝑘| 

 min(𝜃𝑗) = min(|𝜆𝑖 − 𝑙𝑗|) = j 

 𝑚𝑖𝑛(𝜃𝑘) = min(|𝜆𝑖 − 𝑙𝑘|) = k 

 𝑞(𝑡𝑖) = {
min(𝜃𝑗) if 𝜆𝑖 > 0

min(𝜃𝑘) if 𝜆𝑘 < 0
  



Fig. 6. Sound-index. (From normalized sound with abstraction level of 8).

V. EXPERIMENTS

A. Experimental methods

Fig. 7. Data validation representation of how n sounds are imagined.
(After normalization and sound-indexing in a voice profile).

We define two methods of experimentation that is used in
this paper, namely data validation as demonstrated in Figure 7,
and speaker VA. Data validation is used to verify to which
degree abstract normalization and sound-indexing is working. In
other words, it compares the stored data between voice profiles
to see if they could match using the proposed method. Speaker
VA can be considered a proof of concept. It shows that the
randomly inputted voice data could be found in the stored voice
profile before outputted again. For this paper, voice profiles
were based on a ~2 minute long recording segment and a
manuscript in the Norwegian language. Two voice subjects there
used, both male. On average, a normal person can speak around
150 words per minute. Due to that fact and that the recording is
relatively short, only certain words were attempted adapted.
However, with a recording time of approximately 2 minutes,
around 12000 sounds were stored in the voice profile (10ms
each). The level of abstraction was 10 for the voice profile only.

Current experiments are done with an abstraction level of 10,
20 and 40, to determine which levels of abstraction is the most
suitable. Note that at this early stage it is uncertain which value
is the best, due to the fact that the quality of the voice profile
plays a large a role as the abstract normalization, both must be
“just right”. If the voice profile data is lacking, the level of
abstraction is impartial. On the other hand, if the voice profile
data is good, but the level of abstraction is too low or too high,
the VA is unreliable. Creating the perfect recipe for a voice
profile recording as well as fine-tuning the level of abstraction
will continue in future work.

All things considered, this research is about authentic vocal
output, thus a very ideal experiment is to perform listening tests
with various judges. Finally, if the outputted voice could be

deemed as a real person’s speech it would be a great advance for
this research. Before that point, however, smaller, other tests are
performed to test the voice profile quality, the algorithms
functionality and proof of concept.

B. Test environment

In order to test, visualize and demonstrate the suggested

approach, a multi-thread system is developed using C++

functionality in Microsoft Visual Studio 2013. The test

system’s specifications are seen in Table 1. Various libraries are

incorporated into the solution to take care of different tasks. The

major ones include Chromium Embedded Framework [7]

which integrates WebKit. In our case it is used for rendering

custom made HTML pages alongside with CSS and JavaScript

for graphically visualizing the voice adaptation, offering a user

friendly recording process and more. Another library is FMOD

[8] which is a sound engine with a wide reputation and use in

many known applications for its ease of use and power.

TABLE I. TEST ENVIRONMENT

OS Windows 7 64 bit edition

CPU Intel Core i5-4690K 3.5 – 3.9 GHz

GPU AMD Radeon R9 2080X 3GB DDR5

RAM 16GB

Tools
Dynamic USB Microphone (44.1 kHz/48 kHz sample rate)

Developed VA software (C++, CPU calculation)

C. Experimental results

As expected, the data comparison experiment shows both
matching and not matching data. Refer to Fig. 7 to see how the
comparison can be imagined. In the Norwegian voice profile,
11953 “sounds” were categorized based on the recording that
was made.

For the Speaker VA experiment presented in Figure 8, a
speaker A’s input was tested against the Norwegian voice profile
in a case where the speaker uttered the most used words and
similar words that were used in the manuscript. The speaker
uttered each word 20 times and the VA system attempted output.
In some cases, only partial utterings were outputted by the
system, indicating that sounds were missing from the voice
profile, or that the stored profile data should have used a
different level of abstraction. There were also cases where the
wrong sound was outputted. This is most probably because the
level of abstraction was too low to distinguish different sounds
because details of the sound is ignored the lower the level is. On
the contrary if the level is too high, the index becomes too
complex for practical search. Furthermore, even if the voice
profile and the input data is managed with different levels of
abstraction, the sound-index is obviously difficult to compare on
a symbol-to-symbol basis. The sound-index actually represents
the shape of the sound and that is how the system compares it,
by controlling the sounds’ high and low points. There is still
room for improvements, as seen by the results. Also consider
that this experiment was done on a word-to-word basis, instead
of a fluid continuous speech, which is purposed for future

research and larger voice profiles, ideally between 5 and 6
minutes long, in order to contain as many as possible phonemes
and combinations of sounds.

Fig. 8. Results from the Norwegian voice profile experiment. (Blue shows

the best results and red the poor results).

VI. DISCUSSION

While many past experiments regarding VA or “voice
conversion” are relatively preceding, most of the results were
done in a similar fashion with just minor sounds, and in some
cases just utterings of the alphabet. Our proposed system is still
not complete. There are many factors to take account for,
including design and length of the recording manuscript, length
of a sound, sound increment, normalization space definition,
level of abstraction value and the strictness of the sound-index
search. All things considered, the proposed method produced
results and was able to output a sound from the voice profile
based on the input of the speaker. The data and test conditions
in this case were adequately uncomplicated, so we want to
improve the system for more ambitious tests along the way.

Something to be vary of is that in our experiment, many of
the words have quite simple pronunciations, however depending
on the dialect and speaking habits it can sound different. For
example, word #10 in the list will have a very large variance in
structure if spoken with normal speed versa slower talking
speed. This is probably the cause as to that word had very
contrasting results with the different levels of abstraction. The
lower the level of abstraction is, the simpler the data we’re left
with, that is probably why it was easily compared with α = 10
versa α = 40 which contains more information, thus is harder to
match. An obvious fact is that with a very simple word that
produces a simple sound, both high and low levels of abstraction
will yield similar results due to the fact that the sound doesn’t
have a detailed structure to begin with.

One aspect that was theorized before testing is the difference
between a high and lower level of abstraction. We studied the
fact that if the abstraction level is too low, then it is highly likely
that one sound can be abstracted into a similar or same object as
a totally different sound, due to the fact that it was abstracted too
much. On the contrary if the level of abstraction is higher, the

sounds retain even miniscule details, which makes the sound
more similar to its original state. That is why we want to perform
more experiments to find the optimal value, or range of values
for the abstraction level, as well as optimize the recording
process of a voice profile to include more, but not redundant
data. It is possible that some other challenges are uncovered
along the way to pursue an excellent VA, nevertheless, a primary
vision for this research is to have VA that is more capable and
easier to deploy than previous research, which is not restricted
by biometric factors.

VII. CONCLUSION

We created a new way to handle voice adaptation by treating
it as a search problem rather than a biometric challenge. Our
proposed method splits a recorded voice profile into tiny sound
fragments, and processes each sound by applying abstract
normalization from which a sound-index is generated. The core
idea of treating the voice as a series of categorizable sounds lets
us ignore many of the speaker individual-differences that are
always varying and unpredictable. The level of abstraction
dictates the complexity or simplicity of the outputted data. The
sound-index, which describes the sound is then used for search
and comparison against another voice/sound. While accuracy is
not yet excellent, future work will strive to prove this method
with more ambitious experiments.

VIII. FUTURE WORK

The goal is to have a fully robust system that can handle real-
time speech and output in harmony with the speaker.
Components for consideration are how to induce accuracy
without having to overcomplicate the user by expanding the
recording stage. Planned experiments include longer and bigger
voice profiles using more alternating levels of abstraction as well
as more challenging speech data in other languages as well.
Finally we want to perform cross-gender VA and speaker tests
to see if impartial subjects can distinguish between VA output
and a real speaker.

REFERENCES

[1] M. Midtlyng and Y. Sato, “Real-time voice adaption by applying pattern
recognition to audio stream,” International Symposium on Artificial Life
and Robotics (AROB) 20th. Beppu, pp. 502–505, January 2015.

[2] Y. Stylianou, O. Cappé, E. Moulines, “Continuous probabilistic transform
for voice conversion,” IEEE Transaction on Speech and Audio
Processing, vol. 1, pp. 285-288, Seattle, May 1998.

[3] Y. Chen, M. Chu, E. Chang, J. Liu and R. Liu, “Voice Conversion with
Smoothed GMM and MAP Adaptation,” Eurospeech, Geneva, 2003

[4] A. Kain and M.W. Macon, “Spectral voice conversion for Text-to-Speech
synthesis,” in Proc. of ICASSP, pp. 285-299, 1998.

[5] Y. Sato, “Voice quality conversion using interactive evolution of prosodic
control,” Applied Soft Computing Journal, pp. 187-190, Elsevier, 2004.

[6] M. Abe, S. Nakamura, K. Shikano and H. Kuwabara, “Voice conversion
through vector quantization,” in International Conference on Acoustics,
Speech, and Signal Processing, vol. 1, pp. 655-658, New York, 1988.

[7] Chromium Embedded Framework. [Online]. Available:
https://bitbucket.org/chromiumembedded/cef. [Accessed: 07- July-
2015].

[8] FMOD. [Online]. Available: http://www.fmod.org/. [Accessed: 15- Sept-
2014]

